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Dynamic Programming
Break up a problem into many overlapping sub-problems

Build solutions for larger and larger sub-problems

Use a table to store solutions for sub-problems for reuse
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Comparison with greedy algorithms
Greedy algorithm: each step is making a small progress towards
constructing the solution

Dynamic programming: the whole solution is constructed in the
last step

Comparison with divide and conquer
Divide and conquer: an instance is broken into many independent
sub-instances, which are solved separately.

Dynamic programming: the sub-instances we constructed are
overlapping.
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Definition of Cells for Problems We Learnt

Weighted interval scheduling: opt[i] = value of instance defined
by jobs {1, 2, · · · , i}
Subset sum, knapsack: opt[i,W 0] = value of instance with items
{1, 2, · · · , i} and budget W 0

Longest common subsequence: opt[i, j] = value of instance
defined by A[1..i] and B[1..j]

Shortest paths in DAG: f [v] = length of shortest path from s to v

Matrix chain multiplication, optimum binary search tree:
opt[i, j] = value of instances defined by matrices i to j
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Important notations/algorithms

Introduction:
Asymptotic analysis: O, ⌦, ⇥, compare the orders

Polynomial time (e�cient algorithm), exponential time

Graph Basics:

Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm
Topological Ordering problem: topological-sort algorithm
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Important notations/algorithms

Greedy algorithms: safety strategy+self reduce
Box Packing problem: greedy algorithm

Interval Scheduling problem: schedule algorithm
Interval Partitioning problem: partition algorithm
O✏ine Caching problem: FIF algorithm
Priority Queue: heap
Hu↵man Code problem: prefix code notation, Hu↵man algorithm
Exercise problems: Job scheduling with deadline, clustering problem,
Coin Problem, Weighted scheduling problem
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Important notations/algorithms

Divide-and-Conquer algorithms: Divide+Conquer+Combine
Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)

Counting inversions problem: sort-and-count algorithm
Selection problem: selection algorithm based on quicksort
Polynomial Multiplication problem: multiply algorithm
Recurrences: recursive-tree method and Master Theorem
Fibonacci number problem: power algorithm
Exercise problems: Modular Exponentiation Problem, Matrix
Multiplication, Closest Pair, Convex Hull
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Important notations/algorithms

Dynamic Programming algorithms: subproblem+recurrence
relation+calculate from base case
Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule

Subset Sum problem: DP algorithm + Recovering optimal schedule
Knapsack problem: DP algorithm + Recovering optimal schedule
Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule
Edit distance with insertions and deletions problem: apply algorithm
for LCS problem
Edit distance with insertions, deletions and replacing problem
Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm
Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg
Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall
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Spanning Tree

Def. Given a connected graph G = (V,E), a spanning tree
T = (V, F ) of G is a sub-graph of G that is a tree including all
vertices V .
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Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n� 1 edges;

T is acyclic and has n� 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.
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How to find a spanning tree?
BFS

DFS
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How to find a spanning tree?
BFS
DFS
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Minimum Spanning Tree (MST) Problem
Input: Graph G = (V,E) and edge weights w : E ! R

Output: the spanning tree T of G with the minimum total weight
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Recall: Steps of Designing A Greedy Algorithm
Design a “reasonable” strategy

Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
Kruskal’s Algorithm

Prim’s Algorithm
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Outline
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Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).
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Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T ): T 0 is also a MST
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Is the Residual Problem Still a MST Problem?
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Contraction of an Edge (u, v)
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⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)
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Greedy Algorithm

Repeat the following step until G contains only one vertex:
1 Choose the lightest edge e

⇤, add e
⇤ to the spanning tree

2 Contract e⇤ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u

and v formed by edges we selected
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Greedy Algorithm

MST-Greedy(G,w)
1: F  ;
2: sort edges in E in non-decreasing order of weights w
3: for each edge (u, v) in the order do
4: if u and v are not connected by a path of edges in F then

5: F  F [ {(u, v)}
6: return (V, F )
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Kruskal’s Algorithm: Example
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Kruskal’s Algorithm: E�cient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)
1: F  ;
2: S  {{v} : v 2 V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: Su  the set in S containing u

6: Sv  the set in S containing v

7: if Su 6= Sv then

8: F  F [ {(u, v)}
9: S  S \ {Su} \ {Sv} [ {Su [ Sv}

10: return (V, F )


