Testing Bipartiteness: Applications of BFS

Def. A graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

29/42

Test Bipartiteness

Testing Bipartiteness using BFS

BFS (s)

1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: while head \leq tail do
4: $\quad v \leftarrow$ queue[head], head \leftarrow head +1
5: for all neighbors u of v do
6: if u is "unvisited" then
7:
tail \leftarrow tail +1, queue $[$ tail $]=u$
8: mark u as "visited"

Testing Bipartiteness using BFS

test-bipartiteness (s)
1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: color $[s] \leftarrow 0$
4: while head \leq tail do
5: $\quad v \leftarrow$ queue[head], head \leftarrow head +1
6: for all neighbors u of v do
7:
8:
if u is "unvisited" then
tail \leftarrow tail +1, queue $[$ tail $]=u$
mark u as "visited"
10:
11:
12:

$$
\operatorname{color}[u] \leftarrow 1-\text { color }[v]
$$

else if color $[u]=\operatorname{color}[v]$ then print(" G is not bipartite") and exit

Testing Bipartiteness using BFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness (v)
5: $\operatorname{print}($ " G is bipartite")

Testing Bipartiteness using BFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness (v)
5: print(" G is bipartite")

Obs. Running time of algorithm $=O(n+m)$

Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)

1: mark all vertices as "unvisited"
2: recursive-test-DFS(s)

recursive-test-DFS (v)

1: mark v as "visited"
2: for all neighbors u of v do
3: if u is unvisited then, recursive-test-DFS (u)

Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)

1: mark all vertices as "unvisited"
2: color $[s] \leftarrow 0$
3: recursive-test-DFS(s)

recursive-test-DFS (v)

1: mark v as "visited"
2: for all neighbors u of v do
3: if u is unvisited then
4:
color $[u] \leftarrow 1$ - color $[v]$, recursive-test-DFS (u)
5: \quad else if color $[u]=$ color $[v]$ then
6: print(" G is not bipartite") and exit

Testing Bipartiteness using DFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness-DFS (v)
5: $\operatorname{print}($ " G is bipartite")

Testing Bipartiteness using DFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness-DFS (v)
5: print(" G is bipartite")

Obs. Running time of algorithm $=O(n+m)$

Bipartite Graph

Def. An undirected graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Bipartite Graph

Def. An undirected graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.

Bipartite Graph

Def. An undirected graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.

Obs. If a graph is a tree, then it is also
 a bipartite graph.

BFS and DFS

Obs. BFS and DFS naturally induce a tree.

BFS and DFS

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree $=$ DFS tree.

BFS and DFS

Obs. BFS and DFS naturally induce a tree.
Obs. If G is a tree, then BFS tree $=\mathrm{DFS}$ tree.
Obs. If BFS tree =DFS tree, then G is a tree.

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Types of Graphs
(3) Bipartite Graphs
- Testing Bipartiteness

4 Topological Ordering

Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G=(V, E)$
Output: 1-to-1 function $\pi: V \rightarrow\{1,2,3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u)<\pi(v)$

Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G=(V, E)$
Output: 1-to-1 function $\pi: V \rightarrow\{1,2,3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u)<\pi(v)$

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

