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Testing Bipartiteness: Applications of BFS

Def. A graph G = (V,E) is a bipartite
graph if there is a partition of V into two
sets L and R such that for every edge
(u, v) 2 E, either u 2 L, v 2 R or
v 2 L, u 2 R.
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Testing Bipartiteness

Taking an arbitrary vertex s 2 V

Assuming s 2 L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component
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Test Bipartiteness

bad edges!
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Testing Bipartiteness using BFS

BFS(s)
1: head 1, tail  1, queue[1] s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head  tail do

4: v  queue[head], head head+ 1
5: for all neighbors u of v do

6: if u is “unvisited” then

7: tail  tail + 1, queue[tail] = u

8: mark u as “visited”
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Testing Bipartiteness using BFS

test-bipartiteness(s)
1: head 1, tail  1, queue[1] s

2: mark s as “visited” and all other vertices as “unvisited”
3: color[s] 0
4: while head  tail do

5: v  queue[head], head head+ 1
6: for all neighbors u of v do

7: if u is “unvisited” then

8: tail  tail + 1, queue[tail] = u

9: mark u as “visited”
10: color[u] 1� color[v]
11: else if color[u] = color[v] then
12: print(“G is not bipartite”) and exit
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Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex v 2 V do

3: if v is “unvisited” then

4: test-bipartiteness(v)

5: print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)
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1: mark all vertices as “unvisited”
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Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)
1: mark all vertices as “unvisited”
2: recursive-test-DFS(s)

recursive-test-DFS(v)
1: mark v as “visited”
2: for all neighbors u of v do

3: if u is unvisited then , recursive-test-DFS(u)
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Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)
1: mark all vertices as “unvisited”
2: color[s] 0
3: recursive-test-DFS(s)

recursive-test-DFS(v)
1: mark v as “visited”
2: for all neighbors u of v do

3: if u is unvisited then

4: color[u] 1� color[v], recursive-test-DFS(u)
5: else if color[u] = color[v] then
6: print(“G is not bipartite”) and exit
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Testing Bipartiteness using DFS

1: mark all vertices as “unvisited”
2: for each vertex v 2 V do

3: if v is “unvisited” then
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4: test-bipartiteness-DFS(v)
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Bipartite Graph

Def. An undirected graph G = (V,E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u, v) 2 E, either
u 2 L, v 2 R or v 2 L, u 2 R.

Obs. Bipartite graph may contain
cycles.

Obs. If a graph is a tree, then it is also
a bipartite graph.
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BFS and DFS

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.

Obs. If BFS tree =DFS tree, then G is a tree.
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Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V,E)

Output: 1-to-1 function ⇡ : V ! {1, 2, 3 · · · , n}, so that
if (u, v) 2 E then ⇡(u) < ⇡(v)

a b

c d e f

g h i
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Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

a b

c d e f

g h i
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