Testing Bipartiteness: Applications of BFS

```
Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V into two
sets L and R such that for every edge
(u, v) \in E, either u \in L, v \in R or
v \in L, u \in R.
```


• Taking an arbitrary vertex $s \in V$

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- $\bullet\,$ Neighbors of s must be in R

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- $\bullet\,$ Neighbors of neighbors of s must be in L

• • • •

- Taking an arbitrary vertex $s \in V$
- \bullet Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

• • • •

• Report "not a bipartite graph" if contradiction was found

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

• • • •

- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

$\mathsf{BFS}(s)$

1:
$$head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$$

2: mark s as "visited" and all other vertices as "unvisited"

3: while $head \leq tail$ do

$$\textbf{4:} \qquad v \leftarrow queue[head], head \leftarrow head + 1$$

- 5: **for** all neighbors u of v **do**
- 6: **if** u is "unvisited" **then** 7: $tail \leftarrow tail + 1, aueue[tail] = u$

8:
$$tait \leftarrow tait + 1, queue[tait] =$$

8: mark u as "visited"

test-bipartiteness(s)

- 1: $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
- 2: mark s as "visited" and all other vertices as "unvisited"
- 3: $color[s] \leftarrow 0$
- 4: while $head \leq tail$ do
- 5: $v \leftarrow queue[head], head \leftarrow head + 1$
- 6: for all neighbors u of v do
- 7: **if** u is "unvisited" **then**
- 8: $tail \leftarrow tail + 1, queue[tail] = u$
- 9: mark *u* as "visited"
- 10: $color[u] \leftarrow 1 color[v]$
- 11: else if color[u] = color[v] then
- 12: print("G is not bipartite") and exit

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness(v)
- 5: print("G is bipartite")

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness(v)
- 5: print("G is bipartite")

Obs. Running time of algorithm = O(n + m)

test-bipartiteness-DFS(s)

- 1: mark all vertices as "unvisited"
- 2: recursive-test-DFS(s)

recursive-test-DFS(v)

- 1: mark v as "visited"
- 2: for all neighbors u of v do
- 3: **if** u is unvisited **then**, recursive-test-DFS(u)

test-bipartiteness-DFS(s)

- 1: mark all vertices as "unvisited"
- 2: $color[s] \leftarrow 0$
- 3: recursive-test-DFS(s)

recursive-test-DFS(v)

- 1: mark v as "visited"
- 2: for all neighbors u of v do
- 3: **if** u is unvisited **then**
- 4: $color[u] \leftarrow 1 color[v]$, recursive-test-DFS(u)
- 5: else if color[u] = color[v] then
- 6: print("G is not bipartite") and exit

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness-DFS(v)
- 5: print("G is bipartite")

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness-DFS(v)

5: print("G is bipartite")

Obs. Running time of algorithm = O(n + m)

Def. An undirected graph G = (V, E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Def. An undirected graph G = (V, E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.

Def. An undirected graph G = (V, E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.

Obs. If a graph is a tree, then it is also a bipartite graph.

Obs. BFS and DFS naturally induce a tree.

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.

Obs. If BFS tree =DFS tree, then G is a tree.

Outline

1 Graphs

2 Connectivity and Graph Traversal• Types of Graphs

Bipartite GraphsTesting Bipartiteness

4 Topological Ordering

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function
$$\pi: V \to \{1, 2, 3 \cdots, n\}$$
, so that

• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function
$$\pi: V \to \{1, 2, 3 \cdots, n\}$$
, so that

• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

