
43/84

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ?
1 0 ? 0 0 1 - 1 1 1
2 0 ? 1 - 1 1 1 1 2 -
3 0 ? 1 " 1 1 2 - 2 2
4 0 ? 1 " 2 - 2 2 3 - 3
5 0 ? 1 " 2 " 2 3 - 3 3
6 0 ? 1 - 2 " 2 3 " 3 4 -

44/84

Find Common Subsequence

1: i n, j m,S ()
2: while i > 0 and j > 0 do

3: if ⇡[i, j] =“-” then

4: add A[i] to beginning of S, i i� 1, j j � 1
5: else if ⇡[i, j] =“"” then

6: i i� 1
7: else

8: j j � 1

9: return S

45/84

Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A and a string B

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

Example:
A = ocurrance, B = occurrence

3 operations: insert ’c’, remove ’a’ and insert ’e’

Obs. #OPs = length(A) + length(B) - 2 · length(LCS(A, B))

45/84

Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A and a string B

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

Example:
A = ocurrance, B = occurrence

3 operations: insert ’c’, remove ’a’ and insert ’e’

Obs. #OPs = length(A) + length(B) - 2 · length(LCS(A, B))

45/84

Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A and a string B

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

Example:
A = ocurrance, B = occurrence

3 operations: insert ’c’, remove ’a’ and insert ’e’

Obs. #OPs = length(A) + length(B) - 2 · length(LCS(A, B))

46/84

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A and a string B

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:
A = ocurrance, B = occurrence.

2 operations: insert ’c’, change ’a’ to ’e’

Not related to LCS any more

46/84

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A and a string B

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:
A = ocurrance, B = occurrence.

2 operations: insert ’c’, change ’a’ to ’e’

Not related to LCS any more

46/84

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A and a string B

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:
A = ocurrance, B = occurrence.

2 operations: insert ’c’, change ’a’ to ’e’

Not related to LCS any more

47/84

Edit Distance with Replacing: Reduction to a
Variant of LCS

Need to match letters in A and B, every letter is matched at most
once and there should be no crosses.

However, we can match two di↵erent letters: Matching a same
letter gives score 2, matching two di↵erent letters gives score 1.

Need to maximize the score.

DP recursion for the case i > 0 and j > 0:

opt[i, j] =

8
>>><

>>>:

opt[i� 1, j � 1] + 2 if A[i] = B[j]

max

8
><

>:

opt[i� 1, j]

opt[i, j � 1]

opt[i� 1, j � 1] + 1

if A[i] 6= B[j]

Relation : #OPs = length(A) + length(B) - max score

48/84

Edit Distance (with Replacing): using DP directly

opt[i, j], 0  i  n, 0  j  m: edit distance between A[1 .. i]
and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =

8
>>><

>>>:

opt[i� 1, j � 1]

if A[i] = B[j]

min

8
><

>:

opt[i� 1, j] + 1

opt[i, j � 1] + 1

opt[i� 1, j � 1] + 1

if A[i] 6= B[j]

48/84

Edit Distance (with Replacing): using DP directly

opt[i, j], 0  i  n, 0  j  m: edit distance between A[1 .. i]
and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =

8
>>><

>>>:

opt[i� 1, j � 1]

if A[i] = B[j]

min

8
><

>:

opt[i� 1, j] + 1

opt[i, j � 1] + 1

opt[i� 1, j � 1] + 1

if A[i] 6= B[j]

48/84

Edit Distance (with Replacing): using DP directly

opt[i, j], 0  i  n, 0  j  m: edit distance between A[1 .. i]
and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =

8
>>><

>>>:

opt[i� 1, j � 1]

if A[i] = B[j]

min

8
><

>:

opt[i� 1, j] + 1

opt[i, j � 1] + 1

opt[i� 1, j � 1] + 1

if A[i] 6= B[j]

48/84

Edit Distance (with Replacing): using DP directly

opt[i, j], 0  i  n, 0  j  m: edit distance between A[1 .. i]
and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =

8
>>><

>>>:

opt[i� 1, j � 1] if A[i] = B[j]

min

8
><

>:

opt[i� 1, j] + 1

opt[i, j � 1] + 1

opt[i� 1, j � 1] + 1

if A[i] 6= B[j]

48/84

Edit Distance (with Replacing): using DP directly

opt[i, j], 0  i  n, 0  j  m: edit distance between A[1 .. i]
and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =

8
>>><

>>>:

opt[i� 1, j � 1] if A[i] = B[j]

min

8
><

>:

opt[i� 1, j] + 1

opt[i, j � 1] + 1

opt[i� 1, j � 1] + 1

if A[i] 6= B[j]

49/84

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

50/84

Computing the Length of LCS

1: for j 0 to m do

2: opt[0, j] 0

3: for i 1 to n do

4: opt[i, 0] 0
5: for j 1 to m do

6: if A[i] = B[j] then
7: opt[i, j] opt[i� 1, j � 1] + 1
8: else if opt[i, j � 1] � opt[i� 1, j] then
9: opt[i, j] opt[i, j � 1]

10: else

11: opt[i, j] opt[i� 1, j]

Obs. The i-th row of table only depends on (i� 1)-th row.

51/84

Reducing Space to O(n +m)

Obs. The i-th row of table only depends on (i� 1)-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the (i� 1)-th row and the i-th row.

51/84

Reducing Space to O(n +m)

Obs. The i-th row of table only depends on (i� 1)-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the (i� 1)-th row and the i-th row.

52/84

Linear Space Algorithm to Compute Length of LCS

1: for j 0 to m do

2: opt[0, j] 0

3: for i 1 to n do

4: opt[i mod 2, 0] 0
5: for j 1 to m do

6: if A[i] = B[j] then
7: opt[i mod 2, j] opt[i� 1 mod 2, j � 1] + 1
8: else if opt[i mod 2, j � 1] � opt[i� 1 mod 2, j] then
9: opt[i mod 2, j] opt[i mod 2, j � 1]
10: else

11: opt[i mod 2, j] opt[i� 1 mod 2, j]

12: return opt[n mod 2,m]

53/84

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2
m)

Using Divide and Conquer + Dynamic Programming:

Space: O(m+ n)
Time: O(nm)

53/84

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2
m)

Using Divide and Conquer + Dynamic Programming:

Space: O(m+ n)
Time: O(nm)

53/84

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2
m)

Using Divide and Conquer + Dynamic Programming:

Space: O(m+ n)
Time: O(nm)

53/84

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2
m)

Using Divide and Conquer + Dynamic Programming:
Space: O(m+ n)

Time: O(nm)

53/84

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2
m)

Using Divide and Conquer + Dynamic Programming:
Space: O(m+ n)
Time: O(nm)

54/84

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

55/84

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without
(directed) cycles.

s a

b

c

d

not a DAG

31

2

4

6

5

7

8

a DAG

Lemma A directed graph is a DAG if and only its vertices can be
topologically sorted.

55/84

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without
(directed) cycles.

s a

b

c

d

not a DAG

31

2

4

6

5

7

8

a DAG

Lemma A directed graph is a DAG if and only its vertices can be
topologically sorted.

56/84

Shortest Paths in DAG
Input: directed acyclic graph G = (V,E) and w : E ! R.

Assume V = {1, 2, 3 · · · , n} is topologically sorted: if
(i, j) 2 E, then i < j

Output: the shortest path from 1 to i, for every i 2 V

31

2

4

6

5

7

8

3

5

1
9

8
6

1

9

5

2

2

8

1

56/84

Shortest Paths in DAG
Input: directed acyclic graph G = (V,E) and w : E ! R.

Assume V = {1, 2, 3 · · · , n} is topologically sorted: if
(i, j) 2 E, then i < j

Output: the shortest path from 1 to i, for every i 2 V

31

2

4

6

5

7

8

3

5

1
9

8
6

1

9

5

2

2

8

1

57/84

Shortest Paths in DAG

f [i]: length of the shortest path from 1 to i

f [i] =

(

0

i = 1

minj:(j,i)2E {f(j) + w(j, i)}

i = 2, 3, · · · , n

57/84

Shortest Paths in DAG

f [i]: length of the shortest path from 1 to i

f [i] =

(
0 i = 1

minj:(j,i)2E {f(j) + w(j, i)}

i = 2, 3, · · · , n

57/84

Shortest Paths in DAG

f [i]: length of the shortest path from 1 to i

f [i] =

(
0 i = 1

minj:(j,i)2E {f(j) + w(j, i)} i = 2, 3, · · · , n

