Example: Find Common Subsequence

1:
$$i \leftarrow n, j \leftarrow m, S \leftarrow ()$$

2: while $i > 0$ and $j > 0$ do
3: if $\pi[i, j] = ```` then$
4: add $A[i]$ to beginning of $S, i \leftarrow i - 1, j \leftarrow j - 1$
5: else if $\pi[i, j] = ``\uparrow`' then$
6: $i \leftarrow i - 1$
7: else
8: $j \leftarrow j - 1$
9: return S

Edit Distance with Insertions and Deletions
Input: a string A and a string B

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we need to change A to B?

Edit Distance with Insertions and Deletions

Input: a string A and a string B each time we can delete a letter from A or insert a letter to A

Output: minimum number of operations (insertions or deletions) we need to change A to B?

Example:

- A =ocurrance, B =occurrence
- 3 operations: insert 'c', remove 'a' and insert 'e'

Edit Distance with Insertions and Deletions

Input: a string A and a string B each time we can delete a letter from A or insert a letter to A

Output: minimum number of operations (insertions or deletions) we need to change A to B?

Example:

- A =ocurrance, B =occurrence
- 3 operations: insert 'c', remove 'a' and insert 'e'

Obs. $\#OPs = length(A) + length(B) - 2 \cdot length(LCS(A, B))$

Edit Distance with Insertions, Deletions and Replacing

Input: a string A and a string B

each time we can delete a letter from A, insert a letter to A or change a letter

Output: how many operations do we need to change A to B?

Edit Distance with Insertions, Deletions and Replacing

Input: a string A and a string B

each time we can delete a letter from A, insert a letter to A or change a letter

Output: how many operations do we need to change A to B?

Example:

- A =ocurrance, B =occurrence.
- 2 operations: insert 'c', change 'a' to 'e'

Edit Distance with Insertions, Deletions and Replacing

Input: a string A and a string B

each time we can delete a letter from A, insert a letter to A or change a letter

Output: how many operations do we need to change A to B?

Example:

- A =ocurrance, B =occurrence.
- 2 operations: insert 'c', change 'a' to 'e'
- Not related to LCS any more

Edit Distance with Replacing: Reduction to a Variant of LCS

- Need to match letters in A and B, every letter is matched at most once and there should be no crosses.
- However, we can match two different letters: Matching a same letter gives score 2, matching two different letters gives score 1.
- Need to maximize the score.
- DP recursion for the case i > 0 and j > 0:

$$opt[i, j] = \begin{cases} opt[i - 1, j - 1] + 2 & \text{if } A[i] = B[j] \\ \\ max \begin{cases} opt[i - 1, j] & \\ opt[i, j - 1] & \text{if } A[i] \neq B[j] \\ \\ opt[i - 1, j - 1] + 1 & \end{cases} \end{cases}$$

• Relation : $\#OPs = length(A) + length(B) - max_score$

• $opt[i, j], 0 \le i \le n, 0 \le j \le m$: edit distance between A[1 ... i] and B[1 ... j].

- $opt[i, j], 0 \le i \le n, 0 \le j \le m$: edit distance between A[1 ... i] and B[1 ... j].
- if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

- $opt[i, j], 0 \le i \le n, 0 \le j \le m$: edit distance between A[1 ... i] and B[1 ... j].
- if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.
- if i > 0, j > 0, then

$$opt[i,j] = \begin{cases} & \text{ if } A[i] = B[j] \\ & \text{ if } A[i] \neq B[j] \end{cases}$$

- $opt[i, j], 0 \le i \le n, 0 \le j \le m$: edit distance between A[1 ... i] and B[1 ... j].
- if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.
- if i > 0, j > 0, then

$$opt[i,j] = \begin{cases} opt[i-1,j-1] & \text{ if } A[i] = B[j] \\ & \text{ if } A[i] \neq B[j] \end{cases}$$

- $opt[i, j], 0 \le i \le n, 0 \le j \le m$: edit distance between A[1 ... i] and B[1 ... j].
- if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.
- if i > 0, j > 0, then

$$opt[i, j] = \begin{cases} opt[i - 1, j - 1] & \text{if } A[i] = B[j] \\ \\ min \begin{cases} opt[i - 1, j] + 1 & \\ opt[i, j - 1] + 1 & \\ opt[i - 1, j - 1] + 1 \end{cases} & \text{if } A[i] \neq B[j] \end{cases}$$

Outline

- Weighted Interval Scheduling
- 2 Subset Sum Problem
- 3 Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- 🕡 Optimum Binary Search Tree
- 8 Summary

Computing the Length of LCS

1: for
$$j \leftarrow 0$$
 to m do
2: $opt[0, j] \leftarrow 0$
3: for $i \leftarrow 1$ to n do
4: $opt[i, 0] \leftarrow 0$
5: for $j \leftarrow 1$ to m do
6: if $A[i] = B[j]$ then
7: $opt[i, j] \leftarrow opt[i - 1, j - 1] + 1$
8: else if $opt[i, j - 1] \ge opt[i - 1, j]$ then
9: $opt[i, j] \leftarrow opt[i, j - 1]$
10: else
11: $opt[i, j] \leftarrow opt[i - 1, j]$

Obs. The *i*-th row of table only depends on (i - 1)-th row.

Obs. The *i*-th row of table only depends on (i - 1)-th row.

Q: How to use this observation to reduce space?

Obs. The *i*-th row of table only depends on (i - 1)-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the (i-1)-th row and the *i*-th row.

Linear Space Algorithm to Compute Length of LCS

1: for
$$j \leftarrow 0$$
 to m do
2: $opt[0, j] \leftarrow 0$
3: for $i \leftarrow 1$ to n do
4: $opt[i \mod 2, 0] \leftarrow 0$
5: for $j \leftarrow 1$ to m do
6: if $A[i] = B[j]$ then
7: $opt[i \mod 2, j] \leftarrow opt[i - 1 \mod 2, j - 1] + 1$
8: else if $opt[i \mod 2, j - 1] \ge opt[i - 1 \mod 2, j]$ then
9: $opt[i \mod 2, j] \leftarrow opt[i \mod 2, j - 1]$
10: else
11: $opt[i \mod 2, j] \leftarrow opt[i - 1 \mod 2, j]$
12: return $opt[n \mod 2, m]$

How to Recover LCS Using Linear Space?

• Only keep the last two rows: only know how to match A[n]

How to Recover LCS Using Linear Space?

- Only keep the last two rows: only know how to match A[n]
- Can recover the LCS using n rounds: time = $O(n^2m)$

- Only keep the last two rows: only know how to match A[n]
- Can recover the LCS using n rounds: time = $O(n^2m)$
- Using Divide and Conquer + Dynamic Programming:

- Only keep the last two rows: only know how to match A[n]
- Can recover the LCS using n rounds: time = $O(n^2m)$
- Using Divide and Conquer + Dynamic Programming:
 - Space: O(m+n)

- Only keep the last two rows: only know how to match A[n]
- Can recover the LCS using n rounds: time = $O(n^2m)$
- Using Divide and Conquer + Dynamic Programming:
 - Space: O(m+n)
 - Time: *O*(*nm*)

Outline

- Weighted Interval Scheduling
- 2 Subset Sum Problem
- 3 Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- 🕜 Optimum Binary Search Tree
- 8 Summary

Def. A directed acyclic graph (DAG) is a directed graph without (directed) cycles.

Def. A directed acyclic graph (DAG) is a directed graph without (directed) cycles.

Lemma A directed graph is a DAG if and only its vertices can be topologically sorted.

Shortest Paths in DAG

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$. Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the shortest path from 1 to i, for every $i \in V$

Shortest Paths in DAG

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$. Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the shortest path from 1 to i, for every $i \in V$

• f[i]: length of the shortest path from 1 to i

$$f[i] = \begin{cases} & i = 1 \\ & i = 2, 3, \cdots, n \end{cases}$$

• f[i]: length of the shortest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1 \\ i = 2, 3, \cdots, n \end{cases}$$

• f[i]: length of the shortest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1\\ \min_{j:(j,i) \in E} \left\{ f(j) + w(j,i) \right\} & i = 2, 3, \cdots, n \end{cases}$$