Example: Find Common Subsequence

oLjoLjoLjoLjoLjoL oL
0L |0+ [0« IR |1+ |1« |1«
O L IR |1+ |1+ |1+ |1« |2
OL | 11 |1+ |1+ |2N |2« |2«
0L | 11 |2 |2« |2+ |3~ |3«
OL| 1t | 21T |2« |3~ |3« |3«
OL IR | 27T |2« | 317 |3« |4~

oo W N =@

Find Common Subsequence

i< n,j+m,S <+ ()

2: while 7 > 0 and j > 0 do
if 7[¢,j] ="\" then
4 add A[i] to beginning of S, i« i—1,jj—1
5 else if 7[i, j] ="1" then

6: 141—1
7

8

9:

else
Jjg—1
return S

Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A and a string B

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

v

Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A and a string B

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

v

Example:

o A= ocurrance, B = occurrence

@ 3 operations: insert 'c’, remove 'a’ and insert ‘e’

Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A and a string B

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

v

Example:
e A= ocurrance, B = occurrence

@ 3 operations: insert 'c’, remove 'a’ and insert ‘e’

Obs. #OPs = length(A) + length(B) - 2 - length(LCS(A, B)) J

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A and a string B

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A and a string B

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:

e A= ocurrance, B = occurrence.

@ 2 operations: insert 'c’, change 'a’ to 'e’

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A and a string B

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:

e A= ocurrance, B = occurrence.

@ 2 operations: insert 'c’, change 'a’ to 'e’

@ Not related to LCS any more

Edit Distance with Replacing: Reduction to a

Variant of LCS

@ Need to match letters in A and B, every letter is matched at most
once and there should be no crosses.

@ However, we can match two different letters: Matching a same
letter gives score 2, matching two different letters gives score 1.

@ Need to maximize the score.
@ DP recursion for the case i > 0 and 5 > O:
optli — 1,7 —1]+2 if Ali] = B[j]
PP IT=) max optli, j — 1] if Ali] # Blj]

optli—1,7 — 1] +1

Relation : #OPs = length(A) + length(B) - max_score

Edit Distance (with Replacing): using DP directly

@ optli,j],0 <i<n,0 <j<m: edit distance between A[l .. i
and B[l .. j].

Edit Distance (with Replacing): using DP directly

@ optli,j],0 <i<n,0 <j<m: edit distance between A[l .. i
and BJ[1 .. j].

e if i = 0 then opt[i, j| = j; if j = 0 then optli, j] = i.

Edit Distance (with Replacing): using DP directly

@ optli,j],0 <i<n,0 <j<m: edit distance between A[l .. i
and BJ[1 .. j].

e if i = 0 then opt[i, j| = j; if j = 0 then optli, j] = i.
e ifi > 0,7 >0, then
if Ali] = Blj]

optli, j] = if Ali] # B[j]

Edit Distance (with Replacing): using DP directly

@ optli,j],0 <i<n,0 <j<m: edit distance between A[l .. i
and BJ[1 .. j].

e if i = 0 then opt[i, j| = j; if j = 0 then optli, j] = i.
e ifi > 0,7 >0, then
optli — 1,7 — 1] if A[i] = B[j]

optli, j] = if Ali] # B[j]

Edit Distance (with Replacing): using DP directly

@ optfi,j],0 <i<mn,0<j<m: edit distance between A[l ..]
and BJ[1 .. j].

e if i = 0 then opt[i, j] = j; if 7 = 0 then opt[i, j| = i.

e ifi > 0,7 >0, then

optli — 1,7 — 1] if A[i] = B[j]
optli.] = optli — 1,j]+1
’ min optli,j — 1]+ 1 if A[i] # B[j]

optli — 1,7 — 1]+ 1

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space

Computing the Length of LCS

1. for j <~ 0 to m do

2 opt[0, j] < 0

3: for i <~ 1 ton do

4 opt|i, 0] « 0

5: for j < 1 to m do
6 if Afi] = B[j] then

7 optli,jl < optli — 1,7 — 1]+ 1

8 else if opt[i,j — 1] > opt[i — 1, j]| then
0: optli, j] < optli, 7 — 1]

10: else
11: optli, j] < optli — 1, j]

Obs. The i-th row of table only depends on (i — 1)-th row. |

Reducing Space to O(n + m)

Obs. The i-th row of table only depends on (i — 1)-th row.]

Q: How to use this observation to reduce space? J

Reducing Space to O(n + m)

Obs. The i-th row of table only depends on (i — 1)-th row.]

Q: How to use this observation to reduce space? J

A: We only keep two rows: the (¢ — 1)-th row and the i-th row. |

Linear Space Algorithm to Compute Length of LCS

1. for j <~ 0 to m do

2 opt|0, j] < 0

3: for i<~ 1tondo

4 opt[i mod 2,0] < 0

5 for j < 1tomdo

6 if Afi] = B[j] then

7 opt[i mod 2, j] < opt[i —1 mod 2,5 — 1] + 1

8 else if opt[i mod 2,5 — 1] > opt[i — 1 mod 2, j] then
0: optli mod 2, j] < opt[i mod 2, j — 1]

10: else
11: optli mod 2, j] « opt[i — 1 mod 2, j]
12: return opt[n mod 2, m)|

How to Recover LCS Using Linear Space?

@ Only keep the last two rows: only know how to match A[n]

How to Recover LCS Using Linear Space?

@ Only keep the last two rows: only know how to match A[n]

@ Can recover the LCS using n rounds: time = O(n*m)

How to Recover LCS Using Linear Space?

@ Only keep the last two rows: only know how to match A[n]
@ Can recover the LCS using n rounds: time = O(n*m)
@ Using Divide and Conquer 4+ Dynamic Programming:

How to Recover LCS Using Linear Space?

@ Only keep the last two rows: only know how to match A[n]

@ Can recover the LCS using n rounds: time = O(n*m)

@ Using Divide and Conquer 4+ Dynamic Programming:
e Space: O(m +n)

How to Recover LCS Using Linear Space?

@ Only keep the last two rows: only know how to match A[n]

@ Can recover the LCS using n rounds: time = O(n*m)

@ Using Divide and Conquer 4+ Dynamic Programming:
e Space: O(m +n)
o Time: O(nm)

© Shortest Paths in Directed Acyclic Graphs

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without
(directed) cycles. J

not a DAG

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without
(directed) cycles. J

not a DAG

Lemma A directed graph is a DAG if and only its vertices can be
topologically sorted. J

Shortest Paths in DAG
Input: directed acyclic graph G = (V, E) and w : E — R.
Assume V = {1,2,3--- n} is topologically sorted: if
(i,j) € E, then i < j
Output: the shortest path from 1 to i, for every 1 € V'

AL
ROSEEGl

Shortest Paths in DAG
Input: directed acyclic graph G = (V, E) and w : E — R.
Assume V = {1,2,3--- n} is topologically sorted: if
(i,j) € E, then i < j
Output: the shortest path from 1 to i, for every 1 € V'

/@\69 \3

@2{% 0,
R

Shortest Paths in DAG

e f[i]: length of the shortest path from 1 to i

- S

Shortest Paths in DAG

e f[i]: length of the shortest path from 1 to i

Shortest Paths in DAG

e f[i]: length of the shortest path from 1 to i

. Jo .
= {minjzu,i)eE {f() +w(,d)} i=23,--,n

