Offline Caching

cache

@ Cache that can store k pages SC%??C%CQ% D D D
% [
% [G][]
x 61
% W[[1]
x [[2][5]
x [J[2][3]
v WEA
MniBla

misses = 6

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if requested
page already in cache.

@ Goal: minimize the number of
cache misses.

=] o] [[=]] (=] [[=]

A Better Solution for Example

page
sequence !

(=] o] (2] [&] [o] [=] [e] [=]

cache

.

Cx O] [][]
Cx [
x [5] [4]
% [[2] 4]
% [2] [5]
% [[2][3]
v [l 2][3]
v [l [2[E]

misses = 6

cache

.

x [OC
x [
x [[e
x [[2
v Ol
x [1]Bl[z
v OBl
v O]l

misses = 5

Offline Caching Problem

Input: £ : the size of cache

e e T We use [n] for {1,2,3,--- ,n}.

P15 P2, P3,° -+, pr € [n]: sequence of requests

Output: iy,i9,143,- -+ ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

Offline Caching Problem

Input: £ : the size of cache

n : number of pages We use [n] for {1,2,3,---,n}.

P1, P2, P35+, pr € [n]: sequence of requests

Output: iy, 49,143, - ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Offline Caching Problem

Input: £ : the size of cache

n : number of pages We use [n] for {1,2,3,---,n}.

P1, P2, P35+, pr € [n]: sequence of requests

Output: iy, 49,143, - ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

Offline Caching Problem

Input: £ : the size of cache
We use [n] for {1,2,3,--- ,n}.

n : number of pages
P1, P2, P35+, pr € [n]: sequence of requests

Output: iy, 49,143, - ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the
“competitive ratio” of online algorithms

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache
o LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache
o LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache
o LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

@ LIFO (Last In First Out): Evict the last-in page in cache

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache
o LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

@ LIFO (Last In First Out): Evict the last-in page in cache

@ All the above algorithms are not optimum!

@ Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.

FIFO is not optimum

FIFO

NN

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

NN

—
@

e}
o
D
wn
>
n

x

=]] Lo [o] =]

FIFO is not optimum

FIFO

- O
s [[][]

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x 1] 11
X

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

g
x 1] 11
x [1][2][]

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

I
x 1] 11
x [1][2]]]
X

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x 1] 11
x [1][2]]]
x [1][2][3]

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x [1][][]
x [1][2]]]
x [1][2][3]
X

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x [1][][]
x [1][2]]]
x [1][2][3]
x [4][2][3]

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x [1][][]
x [1][2]]]
x [1][2][3]
x [4][2][3]
X

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x [1][][]
x [1][2]]]
x [1][2][3]
x [4][2][3]
x [4][1][3]

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO
requests || | || |
1] s [][]
2] x [[2][]
3 x [[2][3]
4] x 4] [2][3]
1] x (4] 1] 3]

misses = H

FIFO is not optimum

FIFO - Furthest-in-Future

equess [J[]0] I
ok WL e [
2l s 2]k [[2] []
3 % [1[2][s] % [1][2][3]
4] P x a2 3] % (1] [4] (3]
RIS SEUIRRREI R PN EAREY

misses = 5H misses = 4

Optimum Offline Caching

Furthest-in-Future (FF)

@ Algorithm: every time, evict the page that is not requested until
furthest in the future, if we need to evict one.

@ The algorithm is not an online algorithm, since the decision at a
step depends on the request sequence in the future.

Furthest-in-Future (FF)

X
X
X
X

—
@

Qo
o
@
0
+
n

=]] [eo] [ro] [=]

FIFO

] (=] = =] L
o] [ro] o] [][]
(o] [eo) LI LT L]

x (4] [[3]

misses = 5

Furthest-in-Future

LI

Cx [0
ox [2] []
o x [1][2][3]
- x [1][4] [3]
v][]]3]

misses = 4

requests

,,, >

requests

-]
(]

,,, >

][] 2] %

requests

0 HEEEEE@EQBE B
X X X

0 O [

0 OB B

0 00O [

requests

-]
(]
[+]

,,, >

][] 2] %
=] [2] %

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X X
IR TUF]

(o] [+
(o] [~]
o]]
i
L] O

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X X v
) O]) I 2ol
L O] [5) 5] [8]

L O L0 o) e 4

o]

[in]

requests

1] 5] [4) 2] 5] 3] @) @2) 3] [(B) [3]

4

-

X X X X v
) O]) I 2ol
L O] [5) 5] [8]

L O L0 o) e 4

e}

in)

requests

1] 5] [4) 2] 5] 3] @) @2) 3] [(B) [3]

4

-

X X X X v X
L O]) O)R] fE
L0] [s) [s] [s] [3]

L O O [[e [[4]

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X X v X
L O]) O)R] fE
L0] [s) [s] [s] [3]

L O O [[e [[4]

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X X v XV
L) O]) O 2] [2]

=

L0] [s) [s] [s] 8] [3]
L) O O [[a] [4] [a) [4

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X X v Xv v
L) O]) B 2 [2) B2 f2) 2

=

L 00] [s) [s]) [s] [8] [8] [8]
L O L0 [[a] [4] [a) [4) [4]

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X Xv Xv vV
L) O] o) O)R])R] L2l

=

L) 0] [5) [s) [s] [8) [3] [3] [3]
L L) O L) [a) L4 [a] [4] [a] [4]

requests

1]) (4] [2) [5) [3] [2] [4] [3) Lo 5] (B)

-

X X X Xv Xv vV
L) O] o) O)R])R] L2l

=

L) 0] [5) [s) [s] [8) [3] [3] [3]
L L) O L) [a) L4 [a] [4] [a] [4]

requests

1]) (4] [2) [5) [3] [2] [4] [3) Lo 5] (B)

-

X X X X v Xv v v X
L] [0 [[2] 2] [2) [2] [2) [2] [

=

L)L] [s) [s] [s] [3) [3] [3] [8) [3]
L) O L0 [4) [a] [4] [a) [4) [4] [4) [4]

requests

1]) (4] [2) [5) [3] [2] [4] [3) Lo 5] (B)

-- >

X X X X v Xv v v XX

=

L) O]) B 2 [2) [2] [[2) [(5

=

L) 00] [s) [s] [s] [3) [3] [3] [3) [3] [3]
L)L) O L) [a) 4] o) [4] (4] [4) [a] 4

requests

1]) (4] [2) [5) [3] [2] [4] [3) Lo 5] (B)

-

X X X X v Xv vV XXV
L) 00 O [2] 2] 2]) 2] 2] [[s] (5]

=

L 00] [s) [s] [s] [3) (3] [3] [8) [3] [3] [3]
L O L L) [a) [4] o [4f [a) [4) [a) [4] [4]

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Offline Caching Problem
Input: k : the size of cache
n : number of pages
P1,P2,P3,°** , pr € [n]: sequence of requests
Output: iy,i9,143, - ,i; € {hit,empty} U [n]
e empty stands for an empty page
o “hit" means evicting no pages

Offline Caching Problem

Input: k : the size of cache
n : number of pages
P1, P2, 03, ,PT € [n] sequence of requests
P1,D2, - Pk € {empty} U [n]: initial set of pages in cache
Output: iy,149,143,- -, € {hit,empty} U [n]
e empty stands for an empty page
o “hit” means evicting no pages

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

v

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.

,,,,,,

Proof.

Q@ S: any optimum solution
@ p*: page in cache not requested until furthest in the future.
o In the example, p* = 3.

EINEI N E AR 10 KN T —

Proof.
Q@ S: any optimum solution
@ p*: page in cache not requested until furthest in the future.

o In the example, p* = 3.
© Assume S evicts some p’ # p* at time 1; otherwise done.

o In the example, p’ = 2.

Proof.
Q@ S: any optimum solution
@ p*: page in cache not requested until furthest in the future.

o In the example, p* = 3.
© Assume S evicts some p’ # p* at time 1; otherwise done.

o In the example, p’ = 2.

[~ 1[~[+]]

[~
|

53/94

eSS

1]
S/:l
El

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

53,94

SN

1]
S/:l
El

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

53,94

[e[=[-Io

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

[e[=[-Io

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

[e[=[-Io

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

1]
S: 2]
3
X
(11
S 124
3] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,,
X X
B
s: [2] [4][4
3 [3] [3]
X X
[5]
s': 2] [4][4
3] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,,
X X
B
s: [2] [4][4
3 [3] [3]
X X
[5]
s': 2] [4][4
3] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, [alls][a]l o] [3] .
X X
1) 1) 5] 5]
S:l2) 4] 4]]4
EIREIREIRE)
X X
1) [1] 5]
§':l2] 4l]4
13 [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,,
X X v
[5] [5]
s: 2] [4] [4] [4]
3 [3] [3] [3]
X X v
[[5] [5]
s':[2] [4] [4] [4]
31 [2] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, (4l s [4]6] [2] [8] .
X X v

[5] [5]
s: 2] [4] [4] [4]

3 [3] [3] [3]

X X v

[[5] [5]
s':[2] [4] [4] [4]

31 [2] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, (4 [5][4alf6] o] 8] .
X Xv X
1] (1] [5] [5] [5]
S: 2] [4] 4] 4] 4
3] [3] [3] [3] [6]
X X v
1] [1][5][5]
s [2] [4] 4] 4]
3] [2] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, (4l [s][4][6] o] [8] .

X Xv X

1] (1] [5] [5] [5]
S:|2]]4)]4] 4] 4

3] [3] [3] [3] [6]

X Xv X

1] 5] 5])5
§':|2] 4] 4] 4] 14

31 (2] [2] [2] [6]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

|
|
|
|
|
.
|
,
|
|
.
|
|

[o8[2] =[] =[]
BN EREINEER
o[8[+ [] [=[]
== =[] S[=[=[~]

- =lele]i 2]
, ,

0 ™n

54/94

,,,,,, (4l [s][4]e] [2] [8] .
X X v X
[5] [5] [
s: [2] [4] [4] [4] [4]
31 [3] [3] [3] [o]
X X v X
[[5] [5] [
s': 2] [4] [4] [4] [4
31 [2] [2] [2] [6]

Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.

,,,,,,
X X v
[5] [5]
s: 2] [4] [4] [4]
3 [3] [3] [3]
X X v
[[5] [5]
s':[2] [4] [4] [4]
31 [2] [2] [2]

Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.

@ Assume S did not evict p*(=3) before we see p'(=2).

,,,,,,
X Xv
[5] [5] - [o]
s: 2] [4|[4)[4] [8
33 3] [3] - [5]
X Xv
[[5] [5] -+ [e]
s':[2] [4|[4) [4] [8]
3l[2] 2] 2] - [2]

Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.

@ Assume S did not evict p*(=3) before we see p'(=2).

E Eﬂﬂ

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

55,/94

[

E Eﬂﬂ

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

55,/94

[

le Sl
JEEIgCES

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

55,/94

[

lxﬁ Sl
JEEIgCES

l«i «i
%A= KA
=8¢ ~1=[=] =[]

[=]=]
,

(=[]

0 ™n

Proof.

2), then S won't be optimum. Assume

3) for p/(=

Q If S evicts p*(

otherwise.

,,,,,, (4] (5] [4]--- 2] [3] .
X Xv
1) 1) [5] 5] |6
S: 2] 4)]4] 4] [8]
EIREIREIREINEn)
XX
Lt s) 5] |6
2] 4l 4] 4] |8
3] (2] [2] [2] - [2]

Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

,,,,,,
X X v
[[[5] [5] -
s: 2] [4] [4] [4]
33 [3] [3]
X X v
[[[5] [5] -
s':[2] [4] [4] [4]
31 [2] [2] [2]

Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

[

le Sl
JEEIgCES

I«E «i
(o[[] i [= =]
= R=[=]=] R =[=[=]

[=]=]
,

(=[]

0 ™n

Proof.

2), then S won't be optimum. Assume

3) for p/(=

Q If S evicts p*(

otherwise.

,,,,,,
X Xv X
[[5] [5] - [o] [2]

s: 2] [4|[4)[4] [8][s]
BIBIBIBEEIE
XX v
[[5] [5] - [o] [6]

s':[2] [+ [4) [4] [8][8]
B1[2] 2] 2] - 2] 2]

Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

@ So far, S’ has 1 less page-miss than S does.

,,,,,, (alf[slfal - o] [8] .
X Xv X
L[] 5] 5] e 6]]2
S:|2| 44| 4] [8]8
ENRENEIREIRSREIRE]
X Xv
L[] [5][5] - 6] [6]
§':|2] 4] 4] 4] [8]]8
31 12] [2] [2] - [2] |2

Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

@ So far, S’ has 1 less page-miss than S does.
@ The status of S” and that of S only differ by 1 page.

[

lx_z_s_s_ S]]
E E

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

56,94

,,,,,, [4][5] [4] -
X X v
1)1 [s] 8] -
St |2|]4) /4] 4]
EIREIREINEIRE
X X v
e
]2 4] 4]]4)
13 [2] [2] [2] -

Proof.

@ We can then guarantee that S’ make at most the same number of
page-misses as S does.

e]=]=Jo6 [~
SIESEL: SN SE

H
4
2|

Proof.
@ We can then guarantee that S’ make at most the same number of
page-misses as S does.

o Idea: if S has a page-hit and S’ has a page-miss, we use the
opportunity to make the status of S’ the same as that of S. O

