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@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if requested
page already in cache.

@ Goal: minimize the number of
cache misses.
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Offline Caching Problem

Input: £ : the size of cache
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Output: iy,i9,143,- -+ ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)
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@ Offline Caching: we know the whole sequence ahead of time.
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@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the
“competitive ratio” of online algorithms
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Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache
o LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

@ LIFO (Last In First Out): Evict the last-in page in cache

@ All the above algorithms are not optimum!

@ Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.
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FIFO is not optimum

FIFO - Furthest-in-Future
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Optimum Offline Caching

Furthest-in-Future (FF)

@ Algorithm: every time, evict the page that is not requested until
furthest in the future, if we need to evict one.

@ The algorithm is not an online algorithm, since the decision at a
step depends on the request sequence in the future.
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Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)
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Offline Caching Problem

Input: k : the size of cache
n : number of pages
P1, P2, 03, ,PT € [n] sequence of requests
P1,D2, - Pk € {empty} U [n]: initial set of pages in cache
Output: iy,149,143,- -, € {hit,empty} U [n]
e empty stands for an empty page
o “hit” means evicting no pages
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Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.
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Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.
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Proof.
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Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.
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Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.
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Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

@ So far, S’ has 1 less page-miss than S does.
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Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

@ So far, S’ has 1 less page-miss than S does.
@ The status of S” and that of S only differ by 1 page.
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Proof.

@ We can then guarantee that S’ make at most the same number of
page-misses as S does.
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Proof.
@ We can then guarantee that S’ make at most the same number of
page-misses as S does.

o Idea: if S has a page-hit and S’ has a page-miss, we use the
opportunity to make the status of S’ the same as that of S. O




