
40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

2

2 3

1 2 3

misses = 6

1

51

1 4

1

1 3

1

41/94

A Better Solution for Example

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

2

2 3

1 2 3

misses = 6

1

5

5 4

5

5 2

2

23

1 23

misses = 5

cache

1

51

1 4

1

1 3

1

1

1

21

1

31

1

42/94

O✏ine Caching Problem
Input: k : the size of cache

n : number of pages

⇢1, ⇢2, ⇢3, · · · , ⇢T 2 [n]: sequence of requests

Output: i1, i2, i3, · · · , iT 2 {hit, empty} [[n]: indices of pages to
evict (“hit” means evicting no page, “empty” means
evicting empty page)

We use [n] for {1, 2, 3, · · · , n}.

O✏ine Caching: we know the whole sequence ahead of time.

Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

42/94

O✏ine Caching Problem
Input: k : the size of cache

n : number of pages

⇢1, ⇢2, ⇢3, · · · , ⇢T 2 [n]: sequence of requests

Output: i1, i2, i3, · · · , iT 2 {hit, empty} [[n]: indices of pages to
evict (“hit” means evicting no page, “empty” means
evicting empty page)

We use [n] for {1, 2, 3, · · · , n}.

O✏ine Caching: we know the whole sequence ahead of time.

Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

42/94

O✏ine Caching Problem
Input: k : the size of cache

n : number of pages

⇢1, ⇢2, ⇢3, · · · , ⇢T 2 [n]: sequence of requests

Output: i1, i2, i3, · · · , iT 2 {hit, empty} [[n]: indices of pages to
evict (“hit” means evicting no page, “empty” means
evicting empty page)

We use [n] for {1, 2, 3, · · · , n}.

O✏ine Caching: we know the whole sequence ahead of time.

Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

42/94

O✏ine Caching Problem
Input: k : the size of cache

n : number of pages

⇢1, ⇢2, ⇢3, · · · , ⇢T 2 [n]: sequence of requests

Output: i1, i2, i3, · · · , iT 2 {hit, empty} [[n]: indices of pages to
evict (“hit” means evicting no page, “empty” means
evicting empty page)

We use [n] for {1, 2, 3, · · · , n}.

O✏ine Caching: we know the whole sequence ahead of time.

Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

43/94

O✏ine Caching: we know the whole sequence ahead of time.

Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the o✏ine caching problem?

A: Use the o✏ine solution as a benchmark to measure the
“competitive ratio” of online algorithms

43/94

O✏ine Caching: we know the whole sequence ahead of time.

Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the o✏ine caching problem?

A: Use the o✏ine solution as a benchmark to measure the
“competitive ratio” of online algorithms

44/94

O✏ine Caching: Potential Greedy Algorithms

FIFO(First-In-First-Out): Evict the first-in page in cache

LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

LFU(Least-Frequently-Used): Evict page that was least frequently
requested

LIFO (Last In First Out): Evict the last-in page in cache

All the above algorithms are not optimum!

Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.

44/94

O✏ine Caching: Potential Greedy Algorithms

FIFO(First-In-First-Out): Evict the first-in page in cache

LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

LFU(Least-Frequently-Used): Evict page that was least frequently
requested

LIFO (Last In First Out): Evict the last-in page in cache

All the above algorithms are not optimum!

Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.

44/94

O✏ine Caching: Potential Greedy Algorithms

FIFO(First-In-First-Out): Evict the first-in page in cache

LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

LFU(Least-Frequently-Used): Evict page that was least frequently
requested

LIFO (Last In First Out): Evict the last-in page in cache

All the above algorithms are not optimum!

Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.

44/94

O✏ine Caching: Potential Greedy Algorithms

FIFO(First-In-First-Out): Evict the first-in page in cache

LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

LFU(Least-Frequently-Used): Evict page that was least frequently
requested

LIFO (Last In First Out): Evict the last-in page in cache

All the above algorithms are not optimum!

Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.

44/94

O✏ine Caching: Potential Greedy Algorithms

FIFO(First-In-First-Out): Evict the first-in page in cache

LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

LFU(Least-Frequently-Used): Evict page that was least frequently
requested

LIFO (Last In First Out): Evict the last-in page in cache

All the above algorithms are not optimum!

Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

1 2

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

1 2

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

1 2

1 2 3

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

1 2

1 2 3

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

1 2

1 2 3

4 2 3

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

1 2

1 2 3

4 2 3

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

1 2

1 2 3

4 2 3

4 1 3

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

1 2

1 2 3

4 2 3

4 1 3

misses = 5

45/94

FIFO is not optimum

requests

1

2

3

4

1

FIFO

1

1 2

1 2 3

4 2 3

4 1 3

misses = 5

1 4 3

1 4 3

misses = 4

1

1 2

1 2 3

Furthest-in-Future

46/94

Optimum O✏ine Caching

Furthest-in-Future (FF)
Algorithm: every time, evict the page that is not requested until
furthest in the future, if we need to evict one.

The algorithm is not an online algorithm, since the decision at a
step depends on the request sequence in the future.

47/94

Furthest-in-Future (FF)

requests

1

2

3

4

1

FIFO

1

1 2

1 2 3

4 2 3

4 1 3

misses = 5

1 4 3

1 4 3

misses = 4

1

1 2

1 2 3

Furthest-in-Future

48/94

Example

requests

1 5 4 2 5 3 2 134 5 3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

2

3

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

2

3

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

2

3

4

2

3

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

2

3

4

2

3

4

2

3

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

2

3

4

2

3

4

2

3

4

2

3

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

2

3

4

2

3

4

2

3

4

2

3

4

3

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

2

3

4

2

3

4

2

3

4

2

3

4

3

1

3

4

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

2

3

4

2

3

4

2

3

4

2

3

4

3

1

3

4

5

3

4

48/94

Example

requests

1 5 4 2 5 3 2 134 5

1 1

5

1

5

4

2

5

4

2

5

4

2

3

4

2

3

4

2

3

4

2

3

4

3

1

3

4

5

3

4

5

3

4

49/94

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

49/94

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

50/94

O✏ine Caching Problem
Input: k : the size of cache

n : number of pages

⇢1, ⇢2, ⇢3, · · · , ⇢T 2 [n]: sequence of requests

Output: i1, i2, i3, · · · , it 2 {hit, empty} [[n]
empty stands for an empty page
“hit” means evicting no pages

50/94

O✏ine Caching Problem
Input: k : the size of cache

n : number of pages

⇢1, ⇢2, ⇢3, · · · , ⇢T 2 [n]: sequence of requests

p1, p2, · · · , pk 2 {empty}[[n]: initial set of pages in cache

Output: i1, i2, i3, · · · , it 2 {hit, empty} [[n]
empty stands for an empty page
“hit” means evicting no pages

51/94

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p⇤ be the page in cache that is not
requested until furthest in the future. It is safe to evict p⇤ at time 1.

51/94

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p⇤ be the page in cache that is not
requested until furthest in the future. It is safe to evict p⇤ at time 1.

51/94

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p⇤ be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p⇤ is evicted at time 1.

52/94

3
2
1

4 3

S :

21 ????

Proof.
1 S: any optimum solution
2 p⇤: page in cache not requested until furthest in the future.

In the example, p⇤ = 3.

3 Assume S evicts some p0 6= p⇤ at time 1; otherwise done.
In the example, p0 = 2.

52/94

3
2
1

4 3

3
4
1

S :

21 ????

Proof.
1 S: any optimum solution
2 p⇤: page in cache not requested until furthest in the future.

In the example, p⇤ = 3.
3 Assume S evicts some p0 6= p⇤ at time 1; otherwise done.

In the example, p0 = 2.

52/94

3
2
1

4 3

3
4
1

S :

2

Proof.
1 S: any optimum solution
2 p⇤: page in cache not requested until furthest in the future.

In the example, p⇤ = 3.
3 Assume S evicts some p0 6= p⇤ at time 1; otherwise done.

In the example, p0 = 2.

53/94

3
2
1

4 3

3
4
1

S :

2

Proof.

4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
1
2
4

2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.

5 After time 1, cache status of S and that of S 0 di↵er by only 1
page. S 0 contains p0(=2) and S contains p⇤(=3).

6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.

5 After time 1, cache status of S and that of S 0 di↵er by only 1
page. S 0 contains p0(=2) and S contains p⇤(=3).

6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).

6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5 2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4 2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

6 2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

6

5
4
6

2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

53/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

6

5
4
6

5
4
6

2

1

Proof.
4 Create S 0. S 0 evicts p⇤(=3) instead of p0(=2) at time 1.
5 After time 1, cache status of S and that of S 0 di↵er by only 1

page. S 0 contains p0(=2) and S contains p⇤(=3).
6 From now on, S 0 will “copy” S.

54/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

6

5
4
6

5
4
6

2

1

Proof.

7 If S evicted the page p⇤, S 0 will evict the page p0. Then, the
cache status of S and that of S 0 will be the same. S and S 0 will
be exactly the same from now on.

8 Assume S did not evict p⇤(=3) before we see p0(=2).

54/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

6

5
4
6

5
4
6

2

1

Proof.
7 If S evicted the page p⇤, S 0 will evict the page p0. Then, the

cache status of S and that of S 0 will be the same. S and S 0 will
be exactly the same from now on.

8 Assume S did not evict p⇤(=3) before we see p0(=2).

54/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

2

1

Proof.
7 If S evicted the page p⇤, S 0 will evict the page p0. Then, the

cache status of S and that of S 0 will be the same. S and S 0 will
be exactly the same from now on.

8 Assume S did not evict p⇤(=3) before we see p0(=2).

54/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

1

Proof.
7 If S evicted the page p⇤, S 0 will evict the page p0. Then, the

cache status of S and that of S 0 will be the same. S and S 0 will
be exactly the same from now on.

8 Assume S did not evict p⇤(=3) before we see p0(=2).

55/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

1

Proof.

9 If S evicts p⇤(=3) for p0(=2), then S won’t be optimum. Assume
otherwise.

10 So far, S 0 has 1 less page-miss than S does.
11 The status of S 0 and that of S only di↵er by 1 page.

55/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

6
8
2

1

Proof.

9 If S evicts p⇤(=3) for p0(=2), then S won’t be optimum. Assume
otherwise.

10 So far, S 0 has 1 less page-miss than S does.
11 The status of S 0 and that of S only di↵er by 1 page.

55/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

6
8
2

6
8
2

1

Proof.

9 If S evicts p⇤(=3) for p0(=2), then S won’t be optimum. Assume
otherwise.

10 So far, S 0 has 1 less page-miss than S does.
11 The status of S 0 and that of S only di↵er by 1 page.

55/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

6
8
2

6
8
2

1

Proof.
9 If S evicts p⇤(=3) for p0(=2), then S won’t be optimum. Assume

otherwise.

10 So far, S 0 has 1 less page-miss than S does.
11 The status of S 0 and that of S only di↵er by 1 page.

55/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

1

Proof.
9 If S evicts p⇤(=3) for p0(=2), then S won’t be optimum. Assume

otherwise.

10 So far, S 0 has 1 less page-miss than S does.
11 The status of S 0 and that of S only di↵er by 1 page.

55/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

2
8
3

1

Proof.
9 If S evicts p⇤(=3) for p0(=2), then S won’t be optimum. Assume

otherwise.

10 So far, S 0 has 1 less page-miss than S does.
11 The status of S 0 and that of S only di↵er by 1 page.

55/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

2
8
3

6
8
2

1

Proof.
9 If S evicts p⇤(=3) for p0(=2), then S won’t be optimum. Assume

otherwise.

10 So far, S 0 has 1 less page-miss than S does.
11 The status of S 0 and that of S only di↵er by 1 page.

55/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

2
8
3

6
8
2

1

Proof.
9 If S evicts p⇤(=3) for p0(=2), then S won’t be optimum. Assume

otherwise.
10 So far, S 0 has 1 less page-miss than S does.

11 The status of S 0 and that of S only di↵er by 1 page.

55/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

2
8
3

6
8
2

1

Proof.
9 If S evicts p⇤(=3) for p0(=2), then S won’t be optimum. Assume

otherwise.
10 So far, S 0 has 1 less page-miss than S does.
11 The status of S 0 and that of S only di↵er by 1 page.

56/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

2
8
3

6
8
2

1

Proof.

12 We can then guarantee that S 0 make at most the same number of
page-misses as S does.

Idea: if S has a page-hit and S0 has a page-miss, we use the
opportunity to make the status of S0 the same as that of S.

56/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

2
8
3

6
8
2

1

Proof.
12 We can then guarantee that S 0 make at most the same number of

page-misses as S does.

Idea: if S has a page-hit and S0 has a page-miss, we use the
opportunity to make the status of S0 the same as that of S.

56/94

3
2
1

4 3

3
4
1

S :

3
2
1

S0 :
2
4

5

5
4
3

5
4
2

4

5
4
3

5
4
2

· · ·

6
8
3· · ·

6
8
2· · ·

· · ·

· · ·

2

2
8
3

6
8
2

1

Proof.
12 We can then guarantee that S 0 make at most the same number of

page-misses as S does.
Idea: if S has a page-hit and S0 has a page-miss, we use the
opportunity to make the status of S0 the same as that of S.

