Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.
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@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.
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Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.




,,,,,,
X X v
[ [ [5] [5] -
s: 2] [4] [4] [4]
33 [3] [3]
X X v
[ [ [5] [5] -
s':[2] [4] [4] [4]
31 [2] [2] [2]

Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.




[

le Sl
JEEIgCES

I«E «i
(o[ [] i [= =]
= R=[=]=] R =[=[=]

[=]=]
,

(=[]

0 ™n

Proof.

2), then S won't be optimum. Assume

3) for p/(=

Q If S evicts p*(

otherwise.




,,,,,,
X Xv X
[ [5] [5] - [o] [2]

s: 2] [4|[4)[4] [8][s]
BIBIBIBEEIE
XX v
[ [5] [5] - [o] [6]

s':[2] [+ [4) [4] [8][8]
B1[2] 2] 2] - 2] 2]

Proof.
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@ So far, S’ has 1 less page-miss than S does.
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Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

@ So far, S’ has 1 less page-miss than S does.
@ The status of S” and that of S only differ by 1 page.
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Proof.

@ We can then guarantee that S’ make at most the same number of
page-misses as S does.
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Proof.
@ We can then guarantee that S’ make at most the same number of
page-misses as S does.

o Idea: if S has a page-hit and S’ has a page-miss, we use the
opportunity to make the status of S’ the same as that of S. O




@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.
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@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

Theorem The furthest-in-future strategy is optimum.




1. fort < 1to T do

2 if p, is in cache then do nothing

3 else if there is an empty page in cache then

4: evict the empty page and load p; in cache

5 else

6 p* < page in cache that is not used furthest in the future
7 evict p* and load p; in cache

v
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Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.

e We can find the next time a page is requested easily.
@ Use a priority queue data structure to hold all the pages in cache,

so that we can easily find the page that is requested furthest in
the future.
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. ages | priority
P2 [4]7 pag values
P3: | 69|12 P5 o
P3 o0

P5: | 21511




1: for every p < 1 ton do

0

O NGO R W

10:
11:
12:

13:

times[p] < array of times in which p is requested, in
increasing order > put oo at the end of array
pointer|[p| « 1
() < empty priority queue
for every t < 1 to T do
pointer|p;] « pointer[p,] + 1
if p, € Q then
Q.increase-key(py, times|p;, pointer|p]]), print “hit”,
continue
if Q).size() < k then
print “load p; to an empty page "
else
p < Q.extract-max(), print “evict p and load p,"

Q.insert(py, times|py, pointer(p]]) > add p; to @ with key
value times|p;, pointer|p|]|

v




© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue



@ Let V be a ground set of size n.

Def. A priority queue is an abstract data structure that maintains a

set U C V of elements, each with an associated key value, and

supports the following operations:

@ insert(v, key_value): insert an element v € V' \ U, with associated
key value key_value.

o decrease key(v, new_key value): decrease the key value of an
element v € U to new_key_value

@ extract_min(): return and remove the element in U with the
smallest key value




Simple Implementations for Priority Queue

@ n = size of ground set V

data structures | insert | extract_min | decrease_key
array
sorted array
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Simple Implementations for Priority Queue

@ n = size of ground set V

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)
heap O(lgn) O(lgn) O(lgn)




The elements in a heap is organized using a complete binary tree:

@ Nodes are indexed as {1,2,3,--- ,s}
e Parent of node i: [i/2]

@ Left child of node i: 27

@ Right child of node 7: 20 + 1




A heap H contains the following fields

@ s: size of U (number of elements in the heap)

e Ali],1 <i < s: the element at node i of the tree
@ p[v],v € U: the index of node containing v

@ keylv],v € U: the key value of element v

=(‘f.g,c, e, D)
° [ T=1,plg]=2p[c]=3,
pl'e’] =4,p[b’] =5




The following heap property is satisfied:

e for any two nodes 4, j such that ¢ is the parent of j, we have
key[ALi]] < key[AL]]

A heap. Numbers in the circles denote key values of elements.



insert(v, key value)
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insert(v, key value)




heapify-up(7)

insert(v, key value) 1: while i > 1 do

s+ s+1 20§« |i/2]
2: Als] v 3: if key|Ali]] < key[A[j]] then
3: plv] + s 4: swap A[i] and Alj]
4: keylv] < key_value 5: plA[i]] < i, p[Alj]] « Jj
5: heapify_up(s) 6: i

7: else break




