Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.

,,,,,,

Proof.

Q@ S: any optimum solution
@ p*: page in cache not requested until furthest in the future.
o In the example, p* = 3.

EINEI N E AR 10 KN T —

Proof.
Q@ S: any optimum solution
@ p*: page in cache not requested until furthest in the future.

o In the example, p* = 3.
© Assume S evicts some p’ # p* at time 1; otherwise done.

o In the example, p’ = 2.

Proof.
Q@ S: any optimum solution
@ p*: page in cache not requested until furthest in the future.

o In the example, p* = 3.
© Assume S evicts some p’ # p* at time 1; otherwise done.

o In the example, p’ = 2.

[~ 1[~[+]]

[~
|

53/94

eSS

1]
S/:l
El

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

53,94

SN

1]
S/:l
El

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

53,94

[e[=[-Io

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

[e[=[-Io

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

[e[=[-Io

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

1]
S: 2]
3
X
(11
S 124
3] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,,
X X
B
s: [2] [4][4
3 [3] [3]
X X
[5]
s': 2] [4][4
3] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,,
X X
B
s: [2] [4][4
3 [3] [3]
X X
[5]
s': 2] [4][4
3] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, [alls][a]l o] [3] .
X X
1) 1) 5] 5]
S:l2) 4] 4]]4
EIREIREIRE)
X X
1) [1] 5]
§':l2] 4l]4
13 [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,,
X X v
[5] [5]
s: 2] [4] [4] [4]
3 [3] [3] [3]
X X v
[[5] [5]
s':[2] [4] [4] [4]
31 [2] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, (4l s [4]6] [2] [8] .
X X v

[5] [5]
s: 2] [4] [4] [4]

3 [3] [3] [3]

X X v

[[5] [5]
s':[2] [4] [4] [4]

31 [2] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, (4 [5][4alf6] o] 8] .
X Xv X
1] (1] [5] [5] [5]
S: 2] [4] 4] 4] 4
3] [3] [3] [3] [6]
X X v
1] [1][5][5]
s [2] [4] 4] 4]
3] [2] [2] [2]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, (4l [s][4][6] o] [8] .

X Xv X

1] (1] [5] [5] [5]
S:|2]]4)]4] 4] 4

3] [3] [3] [3] [6]

X Xv X

1] 5] 5])5
§':|2] 4] 4] 4] 14

31 (2] [2] [2] [6]

Proof.

Q Create S’. ' evicts p*(=3) instead of p'(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S’ contains p/(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

|
|
|
|
|
.
|
,
|
|
.
|
|

[o8[2] =[] =[]
BN EREINEER
o[8[+ [] [=[]
== =[] S[=[=[~]

- =lele]i 2]
, ,

0 ™n

54/94

,,,,,, (4l [s][4]e] [2] [8] .
X X v X
[5] [5] [
s: [2] [4] [4] [4] [4]
31 [3] [3] [3] [o]
X X v X
[[5] [5] [
s': 2] [4] [4] [4] [4
31 [2] [2] [2] [6]

Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.

,,,,,,
X X v
[5] [5]
s: 2] [4] [4] [4]
3 [3] [3] [3]
X X v
[[5] [5]
s':[2] [4] [4] [4]
31 [2] [2] [2]

Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.

@ Assume S did not evict p*(=3) before we see p'(=2).

,,,,,,
X Xv
[5] [5] - [o]
s: 2] [4|[4)[4] [8
33 3] [3] - [5]
X Xv
[[5] [5] -+ [e]
s':[2] [4|[4) [4] [8]
3l[2] 2] 2] - [2]

Proof.

@ If S evicted the page p*, S” will evict the page p’. Then, the
cache status of S and that of S” will be the same. S and S” will
be exactly the same from now on.

@ Assume S did not evict p*(=3) before we see p'(=2).

E Eﬂﬂ

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

55,/94

[

E Eﬂﬂ

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

55,/94

[

le Sl
JEEIgCES

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

55,/94

[

lxﬁ Sl
JEEIgCES

l«i «i
%A= KA
=8¢ ~1=[=] =[]

[=]=]
,

(=[]

0 ™n

Proof.

2), then S won't be optimum. Assume

3) for p/(=

Q If S evicts p*(

otherwise.

,,,,,, (4] (5] [4]--- 2] [3] .
X Xv
1) 1) [5] 5] |6
S: 2] 4)]4] 4] [8]
EIREIREIREINEn)
XX
Lt s) 5] |6
2] 4l 4] 4] |8
3] (2] [2] [2] - [2]

Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

,,,,,,
X X v
[[[5] [5] -
s: 2] [4] [4] [4]
33 [3] [3]
X X v
[[[5] [5] -
s':[2] [4] [4] [4]
31 [2] [2] [2]

Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

[

le Sl
JEEIgCES

I«E «i
(o[[] i [= =]
= R=[=]=] R =[=[=]

[=]=]
,

(=[]

0 ™n

Proof.

2), then S won't be optimum. Assume

3) for p/(=

Q If S evicts p*(

otherwise.

,,,,,,
X Xv X
[[5] [5] - [o] [2]

s: 2] [4|[4)[4] [8][s]
BIBIBIBEEIE
XX v
[[5] [5] - [o] [6]

s':[2] [+ [4) [4] [8][8]
B1[2] 2] 2] - 2] 2]

Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

@ So far, S’ has 1 less page-miss than S does.

,,,,,, (alf[slfal - o] [8] .
X Xv X
L[] 5] 5] e 6]]2
S:|2| 44| 4] [8]8
ENRENEIREIRSREIRE]
X Xv
L[] [5][5] - 6] [6]
§':|2] 4] 4] 4] [8]]8
31 12] [2] [2] - [2] |2

Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum. Assume
otherwise.

@ So far, S’ has 1 less page-miss than S does.
@ The status of S” and that of S only differ by 1 page.

[

lx_z_s_s_ S]]
E E

l«i «i
8T SEET
B EEEEm

=[] [
,

0 ™n

56,94

,,,,,, [4][5] [4] -
X X v
1)1 [s] 8] -
St |2|]4) /4] 4]
EIREIREINEIRE
X X v
e
]2 4] 4]]4)
13 [2] [2] [2] -

Proof.

@ We can then guarantee that S’ make at most the same number of
page-misses as S does.

e]=]=Jo6 [~
SIESEL: SN SE

H
4
2|

Proof.
@ We can then guarantee that S’ make at most the same number of
page-misses as S does.

o Idea: if S has a page-hit and S’ has a page-miss, we use the
opportunity to make the status of S’ the same as that of S. O

@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.

@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

@ Thus, we have shown how to create another solution S’ with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

Theorem The furthest-in-future strategy is optimum.

1. fort < 1to T do

2 if p, is in cache then do nothing

3 else if there is an empty page in cache then

4: evict the empty page and load p; in cache

5 else

6 p* < page in cache that is not used furthest in the future
7 evict p* and load p; in cache

v

Q: How can we make the algorithm as fast as possible?

A:

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'logk).

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.

e We can find the next time a page is requested easily.

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.

e We can find the next time a page is requested easily.
@ Use a priority queue data structure to hold all the pages in cache,

so that we can easily find the page that is requested furthest in
the future.

time | 0 | 1 2\3\4\5\6\7\8\9\10\11\12\

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

P1: |1]10 priority queue

po. [4]7 pages priority
' values

P3: | 6]9 |12

P4: | 3|8

P5: | 21511

time | 0 | 1 2\3\4\5\6\7\8\9\10\11\12\

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1: |1 110 priority queue

po. [217 pages priority
' values

P3: | 619 |12

P4: | 318

P5: | 25|11

time | 0 | 1 2\3\4\5\6\7\8\9\10\11\12\

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1: |1 110 priority queue

po. [217 pages priority
' values

P3: | 619 |12

P4: | 318

P5: | 25|11

time012\3\4\5\6\7\8\9\10\11\12\

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X

p1: |1 [10 priority queue

e [ol G

P3: | 6|9 |12 Pl 10

P4: | 3|8

p5: [2511

v

time012\3\4\5\6\7\8\9\10\11\12\

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X

p1: |1 [10 priority queue

e [ol G

P3: | 6|9 |12 Pl 10

P4: | 3|8

p5: [2511

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1: |1 [10 priority queue
e [ol G
P3: | 6|9 |12 Pl 10
P5 5
P4: | 3|8
P5: | 25|11

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1: |1 [10 priority queue
e [ol G
P3: | 6|9 |12 Pl 10
P5 5
P4: | 3|8
P5: | 25|11

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1: |1 [10 priority queue
e [ol G
P3: | 6|9 |12 Pl 10
P5 5
P4: | 3|8 P4 8
P5: | 25|11

v

time |0 |1|2]3 ‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1: |1 [10 priority queue
ok e G
P3: | 6|9 |12 Pl 10
P5 5
P4: | 3|8 P4 8
P5: | 2|5 |11

v

time |0 |1|2]3 ‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1: |1 [10 priority queue
. qoes | Priority
P2 [4]7 pag values
P3: | 619 |12
P5)

P5: | 2|5 |11

v

time |0 |1|2]3 ‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1: |1 [10 priority queue
o [e G
P3: | 6|9 |12 P2 7
P5 5
P4: | 3|8 P4 8
P5: | 2|5 |11

time |0 |1|2]3 ‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1: |1 [10 priority queue
o [e G
P3: | 6|9 |12 P2 7
P5 5
P4: | 3|8 P4 8
P5: | 2|5 |11

time |0|1|23 |4 ‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1: |1 [10 priority queue
o [e G
P3: | 6|9 |12 P2 7
P5 11
P4: | 3|8 P4 8
P5: | 2|5 |11

time |0|1|23 |4 ‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
p1: |1 [10 priority queue
o [e G
P3: | 6|9 |12 P2 7
P5 11
P4: | 3|8 P4 8
P5: | 2|5 |11

time |0|1|23 |4 ‘5‘6‘7‘8‘9‘10‘11‘12‘

pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X

P1: | 110 priority queue

o [e G

P3: | 6|9 |12 P2 7

P4: | 3|8 P4 8

P5: | 2|5 |11

time |0|1|23 |4 ‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
P1: | 110 priority queue
o [e G
P3: | 69|12 P2 7
P3 9
P4: | 3|8 P4 8
P5: | 2|5 |11

v

time |0|1|23 |4 ‘5‘6‘7‘8‘9‘10‘11‘12‘
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
X
P1: | 110 priority queue
o [e G
P3: | 69|12 P2 7
P3 9
P4: | 3|8 P4 8
P5: | 2|5 |11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
p1: |1 [10 priority queue
o [a]7 ol G
P3: | 69|12 P2 o0
P3 9
P4: | 3|8 P4 8
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
p1: |1 [10 priority queue
o [a]7 ol G
P3: | 69|12 P2 o0
P3 9
P4: | 3|8 P4 8
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
P1: | 1110 priority queue
o [a]7 ol G
P3: | 69|12 P2 >0
P3 9
P4: | 3|8 P4 00
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
P1: | 1110 priority queue
o [a]7 ol G
P3: | 69|12 P2 >0
P3 9
P4: | 3|8 P4 00
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
P1: | 1110 priority queue
o [a]7 ol G
P3: | 69|12 P2 >0
P3 12
P4: | 3|8 P4 00
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
P1: | 1110 priority queue
o [a]7 ol G
P3: | 69|12 P2 >0
P3 12
P4: | 3|8 P4 00
P5: | 25|11

v

time012\3\4\5\6\7\8\9\10\11\12\
pages | |p] P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV XV
P1: | 1110 priority queue
o [a]7 e G
P3: | 69|12
P3 12
P4: | 3|8 P4 00
P5: | 25|11

time

v

3\4\5\6\7\8\9\10\11\12\

pages

P1:

P2:

P3:

P4:

P5:

P1

10

12

11

P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXV XVVVK
priority queue
pages priority

values
P1 o0
P3 12
P4 o0

time

v

3\4\5\6\7\8\9\10\11\12\

pages

P1:

P2:

P3:

P4:

P5:

P1

10

12

11

P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXV XVVVK
priority queue
pages priority

values
P1 o0
P3 12
P4 o0

time

v

3\4\5\6\7\8\9\10\11\12\

pages

P1:

P2:

P3:

P4:

P5:

P1

10

12

11

P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXV XVVVK
priority queue
pages priority

values
P3 12
P4 o0

time

v

3\4\5\6\7\8\9\10\11\12\

pages

P1:

P2:

P3:

P4:

P5:

P1

P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXVXVVV XX
10 priority queue
priority

7 Pages values

9 |12 P5 0
P3 12

8 P4 0

5 11

time

v

3\4\5\6\7\8\9\10\11\12\

pages

P1:

P2:

P3:

P4:

P5:

P1

P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXVXVVV XX
10 priority queue
priority

7 Pages values

9 |12 P5 0
P3 12

8 P4 0

5 11

v

time | 0] 12 3\4\5\6\7\8\9\10\11\12\

pages | |P1|P5 P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXY XV VYV KKV

P1: | 1110 priority queue
. ages | priority
P2 [4]7 pag values
P3: | 69|12 P5 o
P3 o0

P5: | 21511

1: for every p < 1 ton do

0

O NGO R W

10:
11:
12:

13:

times[p] < array of times in which p is requested, in
increasing order > put oo at the end of array
pointer|[p| « 1
() < empty priority queue
for every t < 1 to T do
pointer|p;] « pointer[p,] + 1
if p, € Q then
Q.increase-key(py, times|p;, pointer|p]]), print “hit”,
continue
if Q).size() < k then
print “load p; to an empty page "
else
p < Q.extract-max(), print “evict p and load p,"

Q.insert(py, times|py, pointer(p]]) > add p; to @ with key
value times|p;, pointer|p|]|

v

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

@ Let V be a ground set of size n.

Def. A priority queue is an abstract data structure that maintains a

set U C V of elements, each with an associated key value, and

supports the following operations:

@ insert(v, key_value): insert an element v € V' \ U, with associated
key value key_value.

o decrease key(v, new_key value): decrease the key value of an
element v € U to new_key_value

@ extract_min(): return and remove the element in U with the
smallest key value

Simple Implementations for Priority Queue

@ n = size of ground set V

data structures | insert | extract_min | decrease_key
array
sorted array

Simple Implementations for Priority Queue

@ n = size of ground set V

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array

Simple Implementations for Priority Queue

@ n = size of ground set V

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)

Simple Implementations for Priority Queue

@ n = size of ground set V

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)
heap O(lgn) O(lgn) O(lgn)

The elements in a heap is organized using a complete binary tree:

@ Nodes are indexed as {1,2,3,--- ,s}
e Parent of node i: [i/2]

@ Left child of node i: 27

@ Right child of node 7: 20 + 1

A heap H contains the following fields

@ s: size of U (number of elements in the heap)

e Ali],1 <i < s: the element at node i of the tree
@ p[v],v € U: the index of node containing v

@ keylv],v € U: the key value of element v

=(‘f.g,c, e, D)
° [T=1,plg]=2p[c]=3,
pl'e’] =4,p[b’] =5

The following heap property is satisfied:

e for any two nodes 4, j such that ¢ is the parent of j, we have
key[ALi]] < key[AL]]

A heap. Numbers in the circles denote key values of elements.

insert(v, key value)

insert(v, key value)

insert(v, key value)

insert(v, key value)

insert(v, key value)

heapify-up(7)

insert(v, key value) 1: while i > 1 do

s+ s+1 20§« |i/2]
2: Als] v 3: if key|Ali]] < key[A[j]] then
3: plv] + s 4: swap A[i] and Alj]
4: keylv] < key_value 5: plA[i]] < i, p[Alj]] « Jj
5: heapify_up(s) 6: i

7: else break

