Analysis of Greedy Algorithm - Safety: Prove that the reasonable strategy is "safe" (key) - Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy) **Lemma** Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. There is an optimum solution in which p^* is evicted at time 1. 4 ? ? ? 1 2 ? 3 $S: \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ - $oldsymbol{0}$ S: any optimum solution - ② p^* : page in cache not requested until furthest in the future. - In the example, $p^* = 3$. - $oldsymbol{0}$ S: any optimum solution - ② p^* : page in cache not requested until furthest in the future. - In the example, $p^* = 3$. - **3** Assume S evicts some $p' \neq p^*$ at time 1; otherwise done. - In the example, p'=2. 02/9 - $oldsymbol{0}$ S: any optimum solution - ② p^* : page in cache not requested until furthest in the future. - In the example, $p^* = 3$. - **3** Assume S evicts some $p' \neq p^*$ at time 1; otherwise done. - In the example, p'=2.)Z/9 | Proof. | | | | |--------|--|--|--| • Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. • Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3). - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - **1** From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3). - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3). - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3). - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3). - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3). - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3). - From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3). - **1** From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains $p^*(=3)$. - **1** From now on, S' will "copy" S. - Create S'. S' evicts $p^*(=3)$ instead of p'(=2) at time 1. - **③** After time 1, cache status of S and that of S' differ by only 1 page. S' contains p'(=2) and S contains p^* (=3). - From now on, S' will "copy" S. • If S evicted the page p^* , S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S and S' will be exactly the same from now on. - ① If S evicted the page p^* , S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S and S' will be exactly the same from now on. - **3** Assume S did not evict $p^*(=3)$ before we see p'(=2). - If S evicted the page p^* , S' will evict the page p'. Then, the cache status of S and that of S' will be the same. S and S' will be exactly the same from now on. - **3** Assume S did not evict $p^*(=3)$ before we see p'(=2). - **1** If S evicts $p^*(=3)$ for p'(=2), then S won't be optimum. Assume otherwise. - $oldsymbol{0}$ So far, S' has 1 less page-miss than S does. - If S evicts $p^*(=3)$ for p'(=2), then S won't be optimum. Assume otherwise. - \odot So far, S' has 1 less page-miss than S does. - f 0 The status of S' and that of S only differ by 1 page. $\ensuremath{\text{@}}$ We can then guarantee that S' make at most the same number of page-misses as S does. - We can then guarantee that S' make at most the same number of page-misses as S does. - Idea: if S has a page-hit and S' has a page-miss, we use the opportunity to make the status of S' the same as that of S. \bullet Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved **Lemma** Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. There is an optimum solution in which p^* is evicted at time 1. \bullet Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved **Lemma** Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1. \bullet Thus, we have shown how to create another solution S' with the same number of page-misses as that of the optimum solution S. Thus, we proved **Lemma** Assume at time 1 a page fault happens and there are no empty pages in the cache. Let p^* be the page in cache that is not requested until furthest in the future. It is safe to evict p^* at time 1. **Theorem** The furthest-in-future strategy is optimum. ``` 1: for t \leftarrow 1 to T do 2: if \rho_t is in cache then do nothing 3: else if there is an empty page in cache then 4: evict the empty page and load \rho_t in cache 5: else 6: p^* \leftarrow page in cache that is not used furthest in the future evict p^* and load \rho_t in cache ``` A: • The running time can be made to be $O(n + T \log k)$. #### A: - The running time can be made to be $O(n + T \log k)$. - For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested. #### A: - The running time can be made to be $O(n + T \log k)$. - For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested. - We can find the next time a page is requested easily. #### A: - The running time can be made to be $O(n + T \log k)$. - For each page p, use a linked list (or an array with dynamic size) to store the time steps in which p is requested. - We can find the next time a page is requested easily. - Use a priority queue data structure to hold all the pages in cache, so that we can easily find the page that is requested furthest in the future. | time | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | |-------|---|----|----|----|----|----|----|----|----|----|----|----|----|--| | pages | | P1 | P5 | P4 | P2 | P5 | Р3 | P2 | P4 | Р3 | P1 | P5 | P3 | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: | 2 | 5 | 11 | pages | priority values | |-------|-----------------| | | | | | | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | | | | | | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | | | | | | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | 10 | | | | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | 10 | | | | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | 10 | | P5 | 5 | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | 10 | | P5 | 5 | | | | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | 10 | | P5 | 5 | | P4 | 8 | P1: P3: P4: P5: | pages | priority values | |-------|-----------------| | P1 | 10 | | P5 | 5 | | P4 | 8 | P1: P3: P4: P5: | pages | priority values | |-------|-----------------| | | | | P5 | 5 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | 7 | | P5 | 5 | | P4 | 8 | P1: P2: P3: P4: P5: | pages | priority values | |-------|-----------------| | P2 | 7 | | P5 | 5 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | 7 | | P5 | 11 | | P4 | 8 | P1: P2: P3: P4: P5: | pages | priority values | |-------|-----------------| | P2 | 7 | | P5 | 11 | | P4 | 8 | P1: P2: P3: P4: P5: | pages | priority values | |-------|-----------------| | P2 | 7 | | | | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | 7 | | Р3 | 9 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | 7 | | Р3 | 9 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 9 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 9 | | P4 | 8 | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 9 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 9 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: | 6 | 9 | 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P2 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | | | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: | 6 | 9 | 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: | 6 | 9 | 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P1 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | | | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: | 6 | 9 | 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P5 | ∞ | | Р3 | 12 | | P4 | ∞ | P2: 4 7 P3: | 6 | 9 | 12 P4: 3 8 P5: 2 5 11 | pages | priority values | |-------|-----------------| | P5 | ∞ | | Р3 | 12 | | P4 | ∞ | P1: 1 10 P2: 4 7 P3: 6 9 12 P4: 3 8 P5: 2 5 11 #### priority queue | pages | priority values | |-------|-----------------| | P5 | ∞ | | Р3 | ∞ | | P4 | ∞ | ``` 1: for every p \leftarrow 1 to n do ``` 2: $times[p] \leftarrow \text{array of times in which } p \text{ is requested, in increasing order} \qquad \qquad \triangleright \text{ put } \infty \text{ at the end of array}$ ``` 3: pointer[p] \leftarrow 1 ``` 4: $Q \leftarrow$ empty priority queue 5: **for** every $t \leftarrow 1$ to T **do** 6: $$pointer[\rho_t] \leftarrow pointer[\rho_t] + 1$$ 7: if $\rho_t \in Q$ then 8: Q.increase-key $(\rho_t, times[\rho_t, pointer[\rho_t]])$, **print** "hit", ### continue 9: **if** Q.size() < k **then** 10: **print** "load ρ_t to an empty page" 11: **else** 12: $p \leftarrow Q.\text{extract-max}(), \text{ print "evict } p \text{ and load } \rho_t$ " 13: $Q.\mathsf{insert}(\rho_t, times[\rho_t, pointer[\rho_t]]) ightharpoonup \mathsf{add} \ \rho_t \ \mathsf{to} \ Q \ \mathsf{with} \ \mathsf{key}$ value $times[\rho_t, pointer[\rho_t]]$ #### Outline - Toy Example: Box Packing - 2 Interval Scheduling - Interval Partitioning - Offline Caching - Heap: Concrete Data Structure for Priority Queue - 4 Data Compression and Huffman Code - Summary • Let V be a ground set of size n. **Def.** A priority queue is an abstract data structure that maintains a set $U \subseteq V$ of elements, each with an associated key value, and supports the following operations: - insert (v, key_value) : insert an element $v \in V \setminus U$, with associated key value key_value . - \bullet decrease_key(v, new_key_value): decrease the key value of an element $v \in U$ to new_key_value - \bullet extract_min(): return and remove the element in U with the smallest key value - <u>。 . . .</u> ullet n= size of ground set V | data structures | insert | extract_min | decrease_key | |-----------------|--------|-------------|--------------| | array | | | | | sorted array | | | | | | | | | ullet n= size of ground set V | data structures | insert | extract_min | decrease_key | |-----------------|--------|-------------|--------------| | array | O(1) | O(n) | O(1) | | sorted array | | | | | | | | | \bullet n =size of ground set V | data structures | insert | extract_min | decrease_key | |-----------------|--------|-------------|--------------| | array | O(1) | O(n) | O(1) | | sorted array | O(n) | O(1) | O(n) | | | | | | ullet n= size of ground set V | data structures | insert | extract_min | decrease_key | |-----------------|------------|-------------|--------------| | array | O(1) | O(n) | O(1) | | sorted array | O(n) | O(1) | O(n) | | heap | $O(\lg n)$ | $O(\lg n)$ | $O(\lg n)$ | ### Heap The elements in a heap is organized using a complete binary tree: - Nodes are indexed as $\{1, 2, 3, \cdots, s\}$ - Parent of node i: $\lfloor i/2 \rfloor$ - Left child of node i: 2i - Right child of node i: 2i + 1 ### Heap A heap H contains the following fields - s: size of U (number of elements in the heap) - $A[i], 1 \le i \le s$: the element at node i of the tree - $p[v], v \in U$: the index of node containing v - $key[v], v \in U$: the key value of element v ### Heap The following heap property is satisfied: • for any two nodes i, j such that i is the parent of j, we have $key[A[i]] \le key[A[j]]$. A heap. Numbers in the circles denote key values of elements. - 1: $s \leftarrow s + 1$ 2: $A[s] \leftarrow v$ - 3: $p[v] \leftarrow s$ - 4: $key[v] \leftarrow key_value$ - 5: heapify_up(s) #### heapify-up(i) - 1: **while** i > 1 **do** - $: \quad j \leftarrow \lfloor i/2 \rfloor$ - 3: if key[A[i]] < key[A[j]] then - 4: swap A[i] and A[j] - 5: $p[A[i]] \leftarrow i, p[A[i]] \leftarrow i$ - 6: $i \leftarrow j$ - 7: **else** break