# Running Time for Merge-Sort

#### Implementation

- Divide A[a,b] by  $q=\lfloor (a+b)/2 \rfloor$ : A[a,q] and A[q+1,b]; or A[a,q-1] and A[q,b]?
- Speed-up: avoid the constant copying from one layer to another and backward
- Speed-up: stop the dividing process when the sequence sizes fall below constant

# Running Time for Merge-Sort

#### Implementation

- Divide A[a,b] by  $q=\lfloor (a+b)/2 \rfloor$ : A[a,q] and A[q+1,b]; or A[a,q-1] and A[q,b]?
- Speed-up: avoid the constant copying from one layer to another and backward
- Speed-up: stop the dividing process when the sequence sizes fall below constant

#### Stable sorting algorithm

• Stable sorting algorithm has the property that equal items will appear in the final sorted list in the same relative order that they appeared in the initial input.

• T(n) =running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

 $\bullet \ T(n) = {\rm running \ time \ for \ sorting \ } n \ {\rm numbers, then}$ 

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{2} + O(n) & \text{if } n \ge 2 \end{cases}$$

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{2} + O(n) & \text{if } n \ge 2 \end{cases}$$

• Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)

 $\bullet \ T(n) = {\rm running \ time \ for \ sorting \ } n \ {\rm numbers, then}$ 

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{2} + O(n) & \text{if } n \ge 2 \end{cases}$$

- Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)
- Solving this recurrence, we have  $T(n) = O(n \lg n)$  (we shall show how later)

## Outline

#### Divide-and-Conquer

- 2 Counting Inversions
- 3 Quicksort and Selection
  - Quicksort
  - Lower Bound for Comparison-Based Sorting Algorithms
  - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

#### **Counting Inversions**

**Input:** an sequence A of n numbers

#### Counting Inversions

**Input:** an sequence A of n numbers

| Example: |   |    |   |    |
|----------|---|----|---|----|
| 10       | 8 | 15 | 9 | 12 |

#### Counting Inversions

**Input:** an sequence A of n numbers

| Example: |    |     |    |    |
|----------|----|-----|----|----|
| 10       | 8  | 15  | 9  | 12 |
|          |    |     |    |    |
|          |    |     |    |    |
| 8        | 9  | 10  | 12 | 15 |
|          | Ū. | _ 0 |    |    |
|          |    |     |    |    |
|          |    |     |    |    |

#### **Counting Inversions**

**Input:** an sequence A of n numbers



#### Counting Inversions

**Input:** an sequence A of n numbers

**Output:** number of inversions in *A* 



• 4 inversions (for convenience, using numbers, not ind (10,8), (10,9), (15,9), (15,12)

#### count-inversions(A, n)

1: 
$$c \leftarrow 0$$

2: for every 
$$i \leftarrow 1$$
 to  $n-1$  do

3: for every 
$$j \leftarrow i+1$$
 to  $n$  do

4: **if** 
$$A[i] > A[j]$$
 then  $c \leftarrow c+1$ 

5: return c

## Divide-and-Conquer



• 
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$
  
•  $\#invs(A) = \#invs(B) + \#invs(C) + m$   
 $m = |\{(i, j) : B[i] > C[j]\}|$ 

**Q:** How fast can we compute m, via trivial algorithm?

**A:**  $O(n^2)$ 

• Can not improve the  $O(n^2)$  time for counting inversions.

## Divide-and-Conquer



• 
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$
  
•  $\#invs(A) = \#invs(B) + \#invs(C) + m$   
 $m = |\{(i, j) : B[i] > C[j]\}|$ 

**Lemma** If both B and C are sorted, then we can compute m in O(n) time!

$$B: \begin{bmatrix} 3 & 8 & 12 & 20 & 32 & 48 \end{bmatrix}$$

$$total = 0$$

$$C:$$
 5 7 9 25 29



























Count pairs i, j such that B[i] > C[j]: 3 B: 8 12 20 32 48 total = 137 C: 9 25 29 5 +2 +3 +3+5+0<u>9 12 20 25 29 32</u> 5 7 8 3

Count pairs i, j such that B[i] > C[j]: 3 B: 8 12 20 32 48 total = 187 C: 9 25 29 +2 +3 +3+5 +5+0**9** 12 20 **25** 29 32 5 7 8 48 3



 $\bullet\,$  Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count
$$(B, C, n_1, n_2)$$
  
1: count  $\leftarrow 0$ ;  
2:  $A \leftarrow \text{array of size } n_1 + n_2; i \leftarrow 1; j \leftarrow 1$   
3: while  $i \leq n_1$  or  $j \leq n_2$  do  
4: if  $j > n_2$  or  $(i \leq n_1 \text{ and } B[i] \leq C[j])$  then  
5:  $A[i+j-1] \leftarrow B[i]; i \leftarrow i+1$   
6: count  $\leftarrow$  count +  $(j-1)$   
7: else  
8:  $A[i+j-1] \leftarrow C[j]; j \leftarrow j+1$   
9: return  $(A, count)$ 

• A procedure that returns the sorted array of A and counts the number of inversions in A:

sort-and-count(A, n)

1: if n = 1 then

2: **return** 
$$(A, 0)$$

3: **else** 

4: 
$$(B, m_1) \leftarrow \text{sort-and-count} \left( A \left[ 1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$$

- 5:  $(C, m_2) \leftarrow \text{sort-and-count}\left(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil\right)$
- 6:  $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
- 7: return  $(A, m_1 + m_2 + m_3)$

## Sort and Count Inversions in A

• A procedure that returns the sorted array of A and counts the number of inversions in A:

| sort-and-count(A,n)                                                                           | <ul> <li>Divide: trivial</li> </ul>                                             |  |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| 1: if $n = 1$ then                                                                            | • Conquer: 4, 5                                                                 |  |  |  |
| 2: <b>return</b> $(A, 0)$                                                                     | • Combine: 6, 7                                                                 |  |  |  |
| 3: else                                                                                       |                                                                                 |  |  |  |
| 4: $(B, m_1) \leftarrow \text{sort-and}$                                                      | -count $\left(A\left[1\lfloor n/2\rfloor\right],\lfloor n/2\rfloor\right)$      |  |  |  |
| 5: $(C, m_2) \leftarrow \text{sort-and-}$                                                     | -count $\left(A\left[\lfloor n/2 \rfloor + 1n\right], \lceil n/2 \rceil\right)$ |  |  |  |
| 6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$ |                                                                                 |  |  |  |
| 7: <b>return</b> $(A, m_1 + m_2)$                                                             | $(2 + m_3)$                                                                     |  |  |  |

#### sort-and-count(A, n)

- 1: if n = 1 then
- 2: **return** (A, 0)
- 3: **else**

4:  $(B, m_1) \leftarrow \text{sort-and-count} \left( A \left[ 1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$ 

- 5:  $(C, m_2) \leftarrow \text{sort-and-count} \left( A \left[ \lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right)$
- 6:  $(A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

7: return 
$$(A, m_1 + m_2 + m_3)$$

• Recurrence for the running time: T(n) = 2T(n/2) + O(n)

#### sort-and-count(A, n)

- 1: if n = 1 then
- 2: **return** (A, 0)
- 3: **else**

4:  $(B, m_1) \leftarrow \text{sort-and-count} \left( A \left[ 1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$ 

- 5:  $(C, m_2) \leftarrow \text{sort-and-count} \left( A \left[ \lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right)$
- 6:  $(A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

7: return 
$$(A, m_1 + m_2 + m_3)$$

- Recurrence for the running time: T(n) = 2T(n/2) + O(n)
- Running time =  $O(n \lg n)$