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Running Time for Merge-Sort

Implementation
Divide A[a, b] by q = b(a+ b)/2c: A[a, q] and A[q + 1, b]; or
A[a, q � 1] and A[q, b]?

Speed-up: avoid the constant copying from one layer to another
and backward

Speed-up: stop the dividing process when the sequence sizes fall
below constant

Stable sorting algorithm
Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.
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Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

(
O(1) if n = 1

T (bn/2c) + T (dn/2e) +O(n) if n � 2

With some tolerance of informality:

T (n) =

(
O(1) if n = 1

2T (n/2) +O(n) if n � 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n lg n) (we shall show
how later)
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number
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Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)
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Naive Algorithm for Counting Inversions

count-inversions(A, n)
1: c 0
2: for every i 1 to n� 1 do

3: for every j  i+ 1 to n do

4: if A[i] > A[j] then c c+ 1

5: return c
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Divide-and-Conquer

B CA:

p

p = bn/2c, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
���(i, j) : B[i] > C[j]

 ��

Q: How fast can we compute m, via trivial algorithm?

A: O(n2)

Can not improve the O(n2) time for counting inversions.



14/75

Divide-and-Conquer

B CA:

p

p = bn/2c, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
���(i, j) : B[i] > C[j]

 ��

Lemma If both B and C are sorted, then we can compute m in
O(n) time!
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

total= 0B:

C:
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Count Inversions between B and C

Procedure that merges B and C and counts inversions between B

and C at the same time

merge-and-count(B,C, n1, n2)
1: count 0;
2: A array of size n1 + n2; i 1; j  1
3: while i  n1 or j  n2 do

4: if j > n2 or (i  n1 and B[i]  C[j]) then
5: A[i+ j � 1] B[i]; i i+ 1
6: count count+ (j � 1)
7: else

8: A[i+ j � 1] C[j]; j  j + 1

9: return (A, count)
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Sort and Count Inversions in A

A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)
1: if n = 1 then

2: return (A, 0)
3: else

4: (B,m1) sort-and-count
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: (C,m2) sort-and-count
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: (A,m3) merge-and-count(B,C, bn/2c, dn/2e)
7: return (A,m1 +m2 +m3)

Divide: trivial

Conquer: 4, 5

Combine: 6, 7
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sort-and-count(A, n)
1: if n = 1 then

2: return (A, 0)
3: else
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6: (A,m3) merge-and-count(B,C, bn/2c, dn/2e)
7: return (A,m1 +m2 +m3)

Recurrence for the running time: T (n) = 2T (n/2) +O(n)

Running time = O(n lg n)



18/75

sort-and-count(A, n)
1: if n = 1 then

2: return (A, 0)
3: else

4: (B,m1) sort-and-count
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: (C,m2) sort-and-count
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: (A,m3) merge-and-count(B,C, bn/2c, dn/2e)
7: return (A,m1 +m2 +m3)

Recurrence for the running time: T (n) = 2T (n/2) +O(n)

Running time = O(n lg n)


