Running Time for Merge-Sort

Implementation

e Divide Afa,b] by ¢ = [(a +b)/2]: Ala,q] and A[g+ 1,b]; or
Ala,q — 1] and Alq, b]?

@ Speed-up: avoid the constant copying from one layer to another
and backward

@ Speed-up: stop the dividing process when the sequence sizes fall
below constant
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@ Speed-up: stop the dividing process when the sequence sizes fall
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Stable sorting algorithm

@ Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.
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Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
EANT(n/2)) + T(Tn)2]) + On)  ifn>2

e With some tolerance of informality:

T(n) = O(1) ifn=1
= o (n/2) + O(m)  ifn>2

e Even simpler: T'(n) = 27'(n/2) + O(n). (Implicit assumption:
T(n) = O(1) if n is at most some constant.)

@ Solving this recurrence, we have T'(n) = O(nlgn) (we shall show
how later)



© Counting Inversions



Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j]. J
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Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].
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Counting Inversions
Input: an sequence A of n numbers
Output: number of inversions in A

Example:
1 1 12

10 12 15




Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: an sequence A of n numbers
Output: number of inversions in A

Example:
1 1 12

10 12 15

@ 4 inversions (for convenience, using numbers, not indices):
(10,8),(10,9),(15,9), (15,12)




Naive Algorithm for Counting Inversions

count-inversions(A, n)

1: ¢+ 0

2: for every i< 1ton—1do

3 for every j «— i+ 1 ton do

4: if Afi] > A[j] then c<+c+1
5

. return ¢




Divide-and-Conquer

p

i

A: B C

e p=(n/2],B=A[l..p],C = Alp+1..n]

° #invs(A ) = #invs(B ) + #invs( )+m

= |{(i.j) - Bli] > C[jl}|
Q: How fast can we compute m, via trivial algorithm? J
A: O(n?) |

e Can not improve the O(n?) time for counting inversions.



Divide-and-Conquer

p

i

A: B C

e p=(n/2],B=A[l..p],C = Alp+1..n]
° #invs(A ) #invs(B ) #invs( ) +m
= [{.5)  Bli] > Cljl}|

Lemma |If both B and C' are sorted, then we can compute m in
O(n) time! J
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Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

8

12

20

32

48

25

29

+0

+2

total= 2



Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 1220|3248
D 912529
+0 +2

3 7|8

total= 2
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Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32|48 total= 18

C:15] 7192529

+0 +2  +3+3 +5 +5
3|5 | 78|9]12[20(25(29|32|48




Count Inversions between B and C

@ Procedure that merges B and C and counts inversions between B
and C at the same time

merge-and-count(B, C, ny,ns)
count < 0;
A<+ array of size ny +no; i+ 1; j+ 1
while : < n; or j <n, do
if j > ny or (¢ <ny and B[i] < C[j]) then
Ali+j—1]« Bfil; i+ i+1
count < count + (j — 1)
else
Ali+j -1« Cljl;j«j+1
return (A, count)

© O XN Wb




Sort and Count Inversions in A

@ A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)

1. if n =1 then

2: return (A,0)

3: else

4: (B,my) < sort-and-count (A[l..Ln/QH, Ln/2j>

5: (C,m2) < sort-and-count (A[[n/?j +1.n], fn/ﬂ)
(A, m3) < merge-and-count(B, C, |n/2], [n/2])

7: return (A, m; + my + mg3)




Sort and Count Inversions in A

@ A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n) o Divide: trivial
1: if n =1 then o Conquer: 4,5
2: return (A,0) e Combine: 6, 7
3: else

4: (B, my) < sort-and-count (A[l..Ln/QH, Ln/2]>

5: (C,m2) < sort-and-count (A[[n/?j +1.n], fn/ﬂ)
(A, m3) < merge-and-count(B, C, |n/2], [n/2])
7: return (A, m; + my + mg3)




sort-and-count(A, n)

1: if n =1 then

2: return (A,0)

3: else

4: (B,my) <+ sort-and-count (A[l [n/2]], n/2J>
(Cymg) sort—and—count(AHn /2] + 1.n], [n/ﬂ)
6: (A, m3) < merge-and-count(B, C, [n/2], [n/2])
7: return (A, m; + mg + ms)
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@ Recurrence for the running time: T'(n) = 27 (n/2) + O(n)



sort-and-count(A, n)

1: if n =1 then

2: return (A,0)

3: else

4: (B,my) <+ sort-and-count (A[l [n/2]], n/2J>
(Cymg) sort—and—count(AHn /2] + 1.n], [n/ﬂ)
6: (A, m3) < merge-and-count(B, C, [n/2], [n/2])
7: return (A, m; + mg + ms)

S

@ Recurrence for the running time: T'(n) = 27 (n/2) + O(n)
@ Running time = O(nlgn)



