Running Time for Merge-Sort

Implementation

e Divide Afa,b] by ¢ = [(a +b)/2]: Ala,q] and A[g+ 1,b]; or
Ala,q — 1] and Alq, b]?

@ Speed-up: avoid the constant copying from one layer to another
and backward

@ Speed-up: stop the dividing process when the sequence sizes fall
below constant

Running Time for Merge-Sort

Implementation

e Divide Afa,b] by ¢ = [(a +b)/2]: Ala,q] and A[g+ 1,b]; or
Ala,q — 1] and Alq, b]?

@ Speed-up: avoid the constant copying from one layer to another
and backward

@ Speed-up: stop the dividing process when the sequence sizes fall
below constant

Stable sorting algorithm

@ Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.

Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
EANT(n/2)) + T(Tn)2]) + On) ifn>2

Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
EANT(n/2)) + T(Tn)2]) + On) ifn>2

e With some tolerance of informality:

T(n) = O(1) ifn=1
= o (n/2) + O(m) ifn>2

Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
EANT(n/2)) + T(Tn)2]) + On) ifn>2

e With some tolerance of informality:

T(n) = O(1) ifn=1
= o (n/2) + O(m) ifn>2

e Even simpler: T'(n) = 27'(n/2) + O(n). (Implicit assumption:
T(n) = O(1) if n is at most some constant.)

Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
EANT(n/2)) + T(Tn)2]) + On) ifn>2

e With some tolerance of informality:

T(n) = O(1) ifn=1
= o (n/2) + O(m) ifn>2

e Even simpler: T'(n) = 27'(n/2) + O(n). (Implicit assumption:
T(n) = O(1) if n is at most some constant.)

@ Solving this recurrence, we have T'(n) = O(nlgn) (we shall show
how later)

© Counting Inversions

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j]. J

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: an sequence A of n numbers
Output: number of inversions in A

Example:
10 8 15 9 12

Def. Given an array A of n integers, an inversion in A is a pair (4, j)

of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:
10 8 15
8 9 10

12

12

15

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: an sequence A of n numbers
Output: number of inversions in A

Example:
1 1 12

10 12 15

Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: an sequence A of n numbers
Output: number of inversions in A

Example:
1 1 12

10 12 15

@ 4 inversions (for convenience, using numbers, not indices):
(10,8),(10,9),(15,9), (15,12)

Naive Algorithm for Counting Inversions

count-inversions(A, n)

1: ¢+ 0

2: for every i< 1ton—1do

3 for every j «— i+ 1 ton do

4: if Afi] > A[j] then c<+c+1
5

. return ¢

Divide-and-Conquer

p

i

A: B C

e p=(n/2],B=A[l..p],C = Alp+1..n]

° #invs(A) = #invs(B) + #invs()+m

= |{(i.j) - Bli] > C[jl}|
Q: How fast can we compute m, via trivial algorithm? J
A: O(n?) |

e Can not improve the O(n?) time for counting inversions.

Divide-and-Conquer

p

i

A: B C

e p=(n/2],B=A[l..p],C = Alp+1..n]
° #invs(A) #invs(B) #invs() +m
= [{.5) Bli] > Cljl}|

Lemma |If both B and C' are sorted, then we can compute m in
O(n) time! J

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

12

20

32

48

25

29

total= 0

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

12

20

32

48

v

25

29

total= 0

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

12

20

32

48

v

25

29

+0

total= 0

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

8

12

20

32

48

25

29

+0

total= 0

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

8

12

20

32

48

25

29

+0

total= 0

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

12

20

32

48

¢
:

25

29

+0

total= 0

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

12

20

32

48

¢
:

25

29

+0

total= 0

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

8

12

20

32

48

25

29

+0

total= 0

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

8

12

20

32

48

25

29

+0

+2

total= 2

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 1220|3248
D 912529
+0 +2

3 7|8

total= 2

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 1220|3248
D 912529
+0 +2

3 71819

total= 2

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 1220|3248
D 912529
+0 +2

3 71819

total= 2

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= b5

+0 +2 43

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= b5

v

C:15] 7192529

+0 +2 43

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= 8

v

C:15] 7192529

+0 +2 +3+3

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= 8

+0 +2 +3+3

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= 8

+0 +2 +3+3

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= 8

v

C:15] 7192529

+0 +2 +3+3

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= 8

v

C:15] 7192529

+0 +2 +3+3

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= 8

+0 +2 +3+3

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32|48 total= 13

+0 +2 +3+3 +5

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32|48 total= 13

v

+0 +2 +3+3 +5

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32|48 total= 18

v

C:15] 7192529

+0 +2 +3+3 +5 +5
3|5 | 78|9]12[20(25(29|32|48

Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32|48 total= 18

C:15] 7192529

+0 +2 +3+3 +5 +5
3|5 | 78|9]12[20(25(29|32|48

Count Inversions between B and C

@ Procedure that merges B and C and counts inversions between B
and C at the same time

merge-and-count(B, C, ny,ns)
count < 0;
A<+ array of size ny +no; i+ 1; j+ 1
while : < n; or j <n, do
if j > ny or (¢ <ny and B[i] < C[j]) then
Ali+j—1]« Bfil; i+ i+1
count < count + (j — 1)
else
Ali+j -1« Cljl;j«j+1
return (A, count)

© O XN Wb

Sort and Count Inversions in A

@ A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)

1. if n =1 then

2: return (A,0)

3: else

4: (B,my) < sort-and-count (A[l..Ln/QH, Ln/2j>

5: (C,m2) < sort-and-count (A[[n/?j +1.n], fn/ﬂ)
(A, m3) < merge-and-count(B, C, |n/2], [n/2])

7: return (A, m; + my + mg3)

Sort and Count Inversions in A

@ A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n) o Divide: trivial
1: if n =1 then o Conquer: 4,5
2: return (A,0) e Combine: 6, 7
3: else

4: (B, my) < sort-and-count (A[l..Ln/QH, Ln/2]>

5: (C,m2) < sort-and-count (A[[n/?j +1.n], fn/ﬂ)
(A, m3) < merge-and-count(B, C, |n/2], [n/2])
7: return (A, m; + my + mg3)

sort-and-count(A, n)

1: if n =1 then

2: return (A,0)

3: else

4: (B,my) <+ sort-and-count (A[l [n/2]], n/2J>
(Cymg) sort—and—count(AHn /2] + 1.n], [n/ﬂ)
6: (A, m3) < merge-and-count(B, C, [n/2], [n/2])
7: return (A, m; + mg + ms)

S

@ Recurrence for the running time: T'(n) = 27 (n/2) + O(n)

sort-and-count(A, n)

1: if n =1 then

2: return (A,0)

3: else

4: (B,my) <+ sort-and-count (A[l [n/2]], n/2J>
(Cymg) sort—and—count(AHn /2] + 1.n], [n/ﬂ)
6: (A, m3) < merge-and-count(B, C, [n/2], [n/2])
7: return (A, m; + mg + ms)

S

@ Recurrence for the running time: T'(n) = 27 (n/2) + O(n)
@ Running time = O(nlgn)

