Running Time for Merge-Sort

Implementation

- Divide $A[a, b]$ by $q=\lfloor(a+b) / 2\rfloor: A[a, q]$ and $A[q+1, b]$; or $A[a, q-1]$ and $A[q, b]$?
- Speed-up: avoid the constant copying from one layer to another and backward
- Speed-up: stop the dividing process when the sequence sizes fall below constant

Running Time for Merge-Sort

Implementation

- Divide $A[a, b]$ by $q=\lfloor(a+b) / 2\rfloor: A[a, q]$ and $A[q+1, b]$; or $A[a, q-1]$ and $A[q, b]$?
- Speed-up: avoid the constant copying from one layer to another and backward
- Speed-up: stop the dividing process when the sequence sizes fall below constant

Stable sorting algorithm

- Stable sorting algorithm has the property that equal items will appear in the final sorted list in the same relative order that they appeared in the initial input.

Running Time for Merge-Sort Using Recurrence

- $T(n)=$ running time for sorting n numbers, then

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n) & \text { if } n \geq 2\end{cases}
$$

Running Time for Merge-Sort Using Recurrence

- $T(n)=$ running time for sorting n numbers, then

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n) & \text { if } n \geq 2\end{cases}
$$

- With some tolerance of informality:

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ 2 T(n / 2)+O(n) & \text { if } n \geq 2\end{cases}
$$

Running Time for Merge-Sort Using Recurrence

- $T(n)=$ running time for sorting n numbers, then

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n) & \text { if } n \geq 2\end{cases}
$$

- With some tolerance of informality:

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ 2 T(n / 2)+O(n) & \text { if } n \geq 2\end{cases}
$$

- Even simpler: $T(n)=2 T(n / 2)+O(n)$. (Implicit assumption: $T(n)=O(1)$ if n is at most some constant.)

Running Time for Merge-Sort Using Recurrence

- $T(n)=$ running time for sorting n numbers, then

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n) & \text { if } n \geq 2\end{cases}
$$

- With some tolerance of informality:

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ 2 T(n / 2)+O(n) & \text { if } n \geq 2\end{cases}
$$

- Even simpler: $T(n)=2 T(n / 2)+O(n)$. (Implicit assumption: $T(n)=O(1)$ if n is at most some constant.)
- Solving this recurrence, we have $T(n)=O(n \lg n)$ (we shall show how later)

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem

4 Polynomial Multiplication
(3) Other Classic Algorithms using Divide-and-Conquer
(6) Solving Recurrences
(9) Computing n-th Fibonacci Number

Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i<j$ and $A[i]>A[j]$.

Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i<j$ and $A[i]>A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i<j$ and $A[i]>A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

8
15
9
12

Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i<j$ and $A[i]>A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

9
12

8
9
10
12
15

Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i<j$ and $A[i]>A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i<j$ and $A[i]>A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

- 4 inversions (for convenience, using numbers, not indices): $(10,8),(10,9),(15,9),(15,12)$

Naive Algorithm for Counting Inversions

count-inversions (A, n)

1: $c \leftarrow 0$
2: for every $i \leftarrow 1$ to $n-1$ do
3: \quad for every $j \leftarrow i+1$ to n do
4: \quad if $A[i]>A[j]$ then $c \leftarrow c+1$
5: return c

Divide-and-Conquer

A:

- $p=\lfloor n / 2\rfloor, B=A[1 . . p], C=A[p+1 . . n]$
- $\quad \# \operatorname{invs}(A)=\# \operatorname{invs}(B)+\# \operatorname{invs}(C)+m$

$$
m=|\{(i, j): B[i]>C[j]\}|
$$

Q: How fast can we compute m, via trivial algorithm?

A: $O\left(n^{2}\right)$

- Can not improve the $O\left(n^{2}\right)$ time for counting inversions.

Divide-and-Conquer

A:

- $p=\lfloor n / 2\rfloor, B=A[1 . . p], C=A[p+1 . . n]$

$$
\begin{aligned}
\# \operatorname{invs}(A) & =\# \operatorname{invs}(B)+\# \operatorname{invs}(C)+m \\
m & =|\{(i, j): B[i]>C[j]\}|
\end{aligned}
$$

Lemma If both B and C are sorted, then we can compute m in $O(n)$ time!

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

$$
B: \begin{array}{|l|l|l|l|l|l|}
\hline 3 & 8 & 12 & 20 & 32 & 48 \\
\hline
\end{array} \quad \text { total }=0
$$

$C:$| 5 | 7 | 9 | 25 | 29 |
| :--- | :--- | :--- | :--- | :--- |

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

$$
\text { total }=5
$$

$$
C:
$$

$$
\begin{aligned}
& \\
&
\end{aligned}
$$

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

\[

\]

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

\[

\]

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

\[

\]

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

$$
\begin{aligned}
& +0 \quad+2 \quad+3+3 \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 \\
\hline
\end{array}
\end{aligned}
$$

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

$$
\begin{aligned}
& +0 \quad+2 \quad+3+3 \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 \\
\hline
\end{array}
\end{aligned}
$$

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

$$
\begin{aligned}
& +0 \quad+2 \quad+3+3 \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\hline
\end{array}
\end{aligned}
$$

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

$$
\begin{aligned}
& +0 \quad+2 \quad+3+3 \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\hline
\end{array}
\end{aligned}
$$

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

$$
\begin{aligned}
& +0 \quad+2 \quad+3+3 \quad+5 \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 \\
\hline
\end{array}
\end{aligned}
$$

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

$$
\begin{aligned}
& +0 \quad+2 \quad+3+3 \quad+5 \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 \\
\hline
\end{array}
\end{aligned}
$$

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

\[

\]

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

\[

\]

Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count $\left(B, C, n_{1}, n_{2}\right)$

1: count $\leftarrow 0$;
2: $A \leftarrow$ array of size $n_{1}+n_{2} ; i \leftarrow 1 ; j \leftarrow 1$
3: while $i \leq n_{1}$ or $j \leq n_{2}$ do
4: \quad if $j>n_{2}$ or $\left(i \leq n_{1}\right.$ and $\left.B[i] \leq C[j]\right)$ then
5: $\quad A[i+j-1] \leftarrow B[i] ; i \leftarrow i+1$
6: \quad count \leftarrow count $+(j-1)$
7: else
8:

$$
A[i+j-1] \leftarrow C[j] ; j \leftarrow j+1
$$

9: return (A, count)

Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A :

sort-and-count (A, n)

1: if $n=1$ then
2: return $(A, 0)$
3: else
4: $\quad\left(B, m_{1}\right) \leftarrow$ sort-and-count $(A[1 . .\lfloor n / 2\rfloor\rfloor,\lfloor n / 2\rfloor)$
5: $\quad\left(C, m_{2}\right) \leftarrow$ sort-and-count $(A[\lfloor n / 2\rfloor+1 . . n],\lceil n / 2\rceil)$
6: $\quad\left(A, m_{3}\right) \leftarrow$ merge-and-count $(B, C,\lfloor n / 2\rfloor,\lceil n / 2\rceil)$
7: \quad return $\left(A, m_{1}+m_{2}+m_{3}\right)$

Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A :

```
sort-and-count(A,n)
- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
2: return \((A, 0)\)
3: else
4: \(\quad\left(B, m_{1}\right) \leftarrow\) sort-and-count \((A[1 . .\lfloor n / 2\rfloor\rfloor,\lfloor n / 2\rfloor)\)
5: \(\quad\left(C, m_{2}\right) \leftarrow\) sort-and-count \((A[\lfloor n / 2\rfloor+1 . . n],\lceil n / 2\rceil)\)
6: \(\quad\left(A, m_{3}\right) \leftarrow\) merge-and-count \((B, C,\lfloor n / 2\rfloor,\lceil n / 2\rceil)\)
7: \(\quad\) return \(\left(A, m_{1}+m_{2}+m_{3}\right)\)
```

```
sort-and-count( }A,n
    1: if }n=1\mathrm{ then
2: return ( }A,0\mathrm{ )
3: else
4: }\quad(B,\mp@subsup{m}{1}{})\leftarrow\mathrm{ sort-and-count }(A[1..\lfloorn/2\rfloor],\lfloorn/2\rfloor
5: }\quad(C,\mp@subsup{m}{2}{})\leftarrow\mathrm{ sort-and-count }(A[\lfloorn/2\rfloor+1..n],\lceiln/2\rceil
6: }\quad(A,\mp@subsup{m}{3}{})\leftarrow\mathrm{ merge-and-count }(B,C,\lfloorn/2\rfloor,\lceiln/2\rceil
7: return (A,m, m}\mp@subsup{m}{2}{}+\mp@subsup{m}{3}{}
```

- Recurrence for the running time: $T(n)=2 T(n / 2)+O(n)$

sort-and-count (A, n)

1: if $n=1$ then
2: return $(A, 0)$
3: else
4: $\quad\left(B, m_{1}\right) \leftarrow$ sort-and-count $(A[1 . .\lfloor n / 2\rfloor],\lfloor n / 2\rfloor)$
5: $\quad\left(C, m_{2}\right) \leftarrow$ sort-and-count $(A[\lfloor n / 2\rfloor+1 . . n],\lceil n / 2\rceil)$
6: $\quad\left(A, m_{3}\right) \leftarrow$ merge-and-count $(B, C,\lfloor n / 2\rfloor,\lceil n / 2\rceil)$
7: \quad return $\left(A, m_{1}+m_{2}+m_{3}\right)$

- Recurrence for the running time: $T(n)=2 T(n / 2)+O(n)$
- Running time $=O(n \lg n)$

