Exercise: Scheduling Problem with Min Weighted

Completion Time

Scheduling Problem
Input: Given are n jobs each i € [n] has a weight (or the
importance) w; and the length (or the time required) I;.
We define the completion time ¢; of job i to be the sum of
the lengths of jobs in the ordering up to and including ;.

Output: An ordering of jobs that minimizes the weighted sum of
completion times Zie[n] W;C;.

@ Example: Given are 5 jobs with the following weights and lengths:
11213 |41]5
weight |2 6| 5 |42
length | 54|10 (8|3

CSE 431/531: Algorithm Analysis and Design (Fall 2023)

Divide-and-Conquer

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Buffalo

@ Divide-and-Conquer

Greedy Algorithm

@ mainly for combinatorial optimization problems
@ trivial algorithm runs in exponential time

@ greedy algorithm gives an efficient algorithm

@ main focus of analysis: correctness of algorithm

Greedy Algorithm

@ mainly for combinatorial optimization problems
@ trivial algorithm runs in exponential time

@ greedy algorithm gives an efficient algorithm

@ main focus of analysis: correctness of algorithm

Divide-and-Conquer

@ not necessarily for combinatorial optimization problems
@ trivial algorithm already runs in polynomial time

@ divide-and-conquer gives a more efficient algorithm

@ main focus of analysis: running time

Divide-and-Conquer

@ Divide: Divide instance into many smaller instances

@ Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Divide-and-Conquer

@ Divide: Divide instance into many smaller instances

@ Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Running time analysis
@ recursive programs: recurrence

merge-sort(A, n)
1. if n =1 then
2: return A
3: else

4: B+ merge—sort(A[l..Ln/ZJ], Ln/2j>
5: C + merge—sort(AHn/ZJ + 1.n], [n/ﬂ)
6: return merge(B, C, [n/2], [n/2])

merge-sort(A, n)
1: if n =1 then
2: return A

3: else
4: B+ merge—sort(A[l..Ln/ZJ], Ln/2j>

5: C + merge—sort(AHn/ZJ + 1.n], [n/ﬂ)
6: return merge(B, C, [n/2], [n/2])

@ Divide: trivial
e Conquer: 4,5
@ Combine: 6

merge-sort()

7T 2 6

T~

(8 53 4 1 72 6|

Eo)

\85341726\

\85341726\

N
(6]
(6]

~

3 4
\
\3
“

\85341726\

0

8
/
N

\85341726\

\85341726\

[2 6]

34”17\

\@ GA@
W R .
= “NFY

1/-
/!l ai=
- “\
S Vg
/e /-\l
/ 5/“
=

\85341726\

=
o
oo
A
= .

2.6 7

1

Running Time for Merge-Sort

‘ AL ‘

‘A[l..Z]‘ ‘A[B.A]‘ ‘A[S..fi}‘ J(LX[?..S] \

Al|LARIAB] A Af]| | Al6]] | A[7]] A8

@ Each level takes running time O(n)
@ There are O(Ign) levels
@ Running time = O(nlgn)

@ Better than insertion sort

Running Time for Merge-Sort

Implementation

e Divide Afa,b] by ¢ = [(a +b)/2]: Ala,q] and A[g+ 1,b]; or
Ala,q — 1] and Alq, b]?

Running Time for Merge-Sort

Implementation

@ Divide Ala,b] by ¢ = |(a+b)/2]: Ala,q] and Alg + 1,b]; or
Ala,q — 1] and Alq, b]?

@ Speed-up: avoid the constant copying from one layer to another
and backward

Running Time for Merge-Sort

Implementation

e Divide Afa,b] by ¢ = [(a +b)/2]: Ala,q] and A[g+ 1,b]; or
Ala,q — 1] and Alq, b]?

@ Speed-up: avoid the constant copying from one layer to another
and backward

@ Speed-up: stop the dividing process when the sequence sizes fall
below constant

