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Exercise: Scheduling Problem with Min Weighted
Completion Time

Scheduling Problem
Input: Given are n jobs each i 2 [n] has a weight (or the

importance) wi and the length (or the time required) li.
We define the completion time ci of job i to be the sum of
the lengths of jobs in the ordering up to and including li.

Output: An ordering of jobs that minimizes the weighted sum of
completion times

P
i2[n] wici.

Example: Given are 5 jobs with the following weights and lengths:

1 2 3 4 5
weight 2 6 5 4 2
length 5 4 10 8 3
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number
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Greedy Algorithm
mainly for combinatorial optimization problems

trivial algorithm runs in exponential time

greedy algorithm gives an e�cient algorithm

main focus of analysis: correctness of algorithm

Divide-and-Conquer
not necessarily for combinatorial optimization problems

trivial algorithm already runs in polynomial time

divide-and-conquer gives a more e�cient algorithm

main focus of analysis: running time



3/75

Greedy Algorithm
mainly for combinatorial optimization problems

trivial algorithm runs in exponential time

greedy algorithm gives an e�cient algorithm

main focus of analysis: correctness of algorithm

Divide-and-Conquer
not necessarily for combinatorial optimization problems

trivial algorithm already runs in polynomial time

divide-and-conquer gives a more e�cient algorithm

main focus of analysis: running time



4/75

Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Running time analysis
recursive programs: recurrence
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merge-sort(A, n)
1: if n = 1 then

2: return A

3: else

4: B  merge-sort
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: C  merge-sort
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: return merge(B,C, bn/2c, dn/2e)

Divide: trivial

Conquer: 4, 5

Combine: 6
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8 5 3 4 1 7 2 6
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merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

5 8 3 4 1 7 2 6

3 4 5 8 1 2 6 7

1 2 3 4 5 6 7 8
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Running Time for Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(lg n) levels

Running time = O(n lg n)

Better than insertion sort
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Running Time for Merge-Sort

Implementation
Divide A[a, b] by q = b(a+ b)/2c: A[a, q] and A[q + 1, b]; or
A[a, q � 1] and A[q, b]?

Speed-up: avoid the constant copying from one layer to another
and backward

Speed-up: stop the dividing process when the sequence sizes fall
below constant

Stable sorting algorithm
Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.
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