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Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices
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Example for Definition of fk[i, j]’s
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f
0[1, 4] =1

f
1[1, 4] =1

f
2[1, 4] = 140 (1! 2! 4)

f
3[1, 4] = 90 (1! 3! 2! 4)

f
4[1, 4] = 90 (1! 3! 2! 4)

f
5[1, 4] = 60 (1! 3! 5! 4)
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w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

f
k[i, j] =

8
><

>:

w(i, j)

k = 0

min

(

f
k�1[i, j]

f
k�1[i, k] + f

k�1[k, j]

k = 1, 2, · · · , n
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Floyd-Warshall(G,w)

1: f 0  w

2: for k  1 to n do

3: copy f
k�1 ! f

k

4: for i 1 to n do

5: for j  1 to n do

6: if f
k�1[i, k] + f

k�1[k, j] < f
k[i, j] then

7: f
k[i, j] f

k�1[i, k] + f
k�1[k, j]
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Floyd-Warshall(G,w)

1: f old  w

2: for k  1 to n do

3: copy f
old ! f

new

4: for i 1 to n do

5: for j  1 to n do

6: if f
old[i, k] + f

old[k, j] < f
new[i, j] then

7: f
new[i, j] f

old[i, k] + f
old[k, j]

Lemma Assume there are no negative cycles in G. After iteration k,
for i, j 2 V , f [i, j] is exactly the length of shortest path from i to j

that only uses vertices in {1, 2, 3, · · · , k} as intermediate vertices.

Running time = O(n3).
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Recovering Shortest Paths

Floyd-Warshall(G,w)
1: f  w, ⇡[i, j] ? for every i, j 2 V

2: for k  1 to n do

3: for i 1 to n do

4: for j  1 to n do

5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j] f [i, k] + f [k, j], ⇡[i, j] k

print-path(i, j)
1: if ⇡[i, j] = ? then then
2: if i 6= j then print(i,“,”)

3: else

4: print-path(i, ⇡[i, j]), print-path(⇡[i, j], j)
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Detecting Negative Cycles

Floyd-Warshall(G,w)
1: f  w, ⇡[i, j] ? for every i, j 2 V

2: for k  1 to n do

3: for i 1 to n do

4: for j  1 to n do

5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j] f [i, k] + f [k, j], ⇡[i, j] k
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Detecting Negative Cycles

Floyd-Warshall(G,w)
1: f  w, ⇡[i, j] ? for every i, j 2 V

2: for k  1 to n do

3: for i 1 to n do

4: for j  1 to n do

5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j] f [i, k] + f [k, j], ⇡[i, j] k

7: for k  1 to n do

8: for i 1 to n do

9: for j  1 to n do

10: if f [i, k] + f [k, j] < f [i, j] then
11: report “negative cycle exists” and exit
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Summary of Shortest Path Algorithms

algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R�0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs
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NP-Completeness Theory

The topics we discussed so far are positive results: how to design
e�cient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems can
not be solved e�ciently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find polynomial
time algorithm for solving X. All our e↵orts are doomed!
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E�cient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for E�cient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k

is small, say 4

A good cut separating problems: for most natural problems, either
we have a polynomial time algorithm, or the best algorithm runs
in time ⌦(2n

c
) for some c

Do not need to worry about the computational model
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Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary
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Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle
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Example: Hamiltonian Cycle Problem

The graph is called the Petersen Graph. It has no HC.
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Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.
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