Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 1=
w(i, j) = { weight of edge (i, /) i # j,(i,j) € E
50 i) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: f[i,] is length of shortest path from i to j

@ Issue: do not know in which order we compute f[i, j]'s

e f*[i,7]: length of shortest path from i to j that only uses vertices
{1,2,3,--- ,k} as intermediate vertices

Example for Definition of f*[i, j]'s

1 4] =00

FH1,4] = o0

fP1,4] =140 (1 —2—4)
1,4 =9 (1—=3—=2—4)
1,4 =90 (1 —=3—=2-—4)
1,4 =60 (1 —=3—=5-—4)

0 1=
w(i,j) = ¢ weight of edge (i,7) i # j,(i,j) € E
00 i#5,(6,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--- ,k} as intermediate vertices

0 1=
w(i,j) = ¢ weight of edge (i,7) i # j,(i,j) € E
00 i#5,(6,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--- ,k} as intermediate vertices

Mgl =

0 1=
w(i,j) = ¢ weight of edge (i,7) i # j,(i,j) € E
00 i#5,(6,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--- ,k} as intermediate vertices

w(i,) k=0
frlis gl =

0 i=j
w(i,j) = ¢ weight of edge (i,7) i # j,(i,j) € E
00 i#5,(6,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--- ,k} as intermediate vertices

kr: 1 _
Fial = min{ k=1,2,---,n

0 i=j
w(i,j) = ¢ weight of edge (i,7) i # j,(i,j) € E
00 i#5,(6,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--- ,k} as intermediate vertices

fMidl=4 { 470 d)

0 i=j
w(i,j) = ¢ weight of edge (i,7) i # j,(i,j) € E
00 i#5,(6,5) ¢ E

o f¥[i,j]: length of shortest path from i to j that only uses vertices
{1,2,3,--- ,k} as intermediate vertices
w(i,) k=0

Plial=1 #4104 L
m{ Pk g TR

Floyd-Warshall(G, w)

1: fo —w

2: for k< 1tondo
3 copy fFt = fF

4 for i < 1 ton do

5: for j < 1 ton do

6 if fR7Li k] + Rk, 4] < f*i, 4] then
7 FF, 3] = 7, k] 4 fR R, 5]

Floyd-Warshall(G, w)

1: f°|d — w

2: for k< 1tondo
3 copy fold N fnew

4 for i< 1tondo

5: for j < 1ton do

6 if ol k] + ok, 5] < fV[i, j] then
7 £ i, 5] = £, k] + f R, 5]

Floyd-Warshall(G, w)

L f7—w

2: for k< 1tondo

3 copy 1 = f

4 for i< 1tondo

5: for j < 1ton do

6 if foOl k] + f [k,] < fi, 7] then
7 Sl] < Fo0le k) + R g

Floyd-Warshall(G, w)

I f+w
2: for k< 1tondo
3: copy f — f
for i < 1 ton do
for j < 1 ton do
if fli,k]+ flk,j] < fli, 7] then
Fli,g] < Fli k] + fk,]

No a9 s

Floyd-Warshall(G, w)

I f+w
2: for k< 1tondo
&k for i < 1 ton do
for j < 1 ton do
if fli, k] + flk,j] < f[i,] then
fli 31« fli, k] + [k, 5]

2 & 52

Floyd-Warshall(G, w)

I f+w
2: for k< 1tondo
3: for i < 1 ton do
for j < 1ton do
if fli,k]+ flk,j] < fli, 7] then
Flis gl < Fli k] + flk, J]

2 & 52

Lemma Assume there are no negative cycles in GG. After iteration k,
fori,j € V, fli,] is exactly the length of shortest path from i to j
that only uses vertices in {1,2,3,--- ,k} as intermediate vertices.

v

Floyd-Warshall(G, w)

I f+w
2: for k< 1tondo
3: for i < 1 ton do
for j < 1ton do
if fli,k]+ flk,j] < fli, 7] then
Flis gl < Fli k] + flk, J]

2 & 52

Lemma Assume there are no negative cycles in GG. After iteration k,
fori,j € V, fli,] is exactly the length of shortest path from i to j
that only uses vertices in {1,2,3,--- ,k} as intermediate vertices.

v

@ Running time = O(n?).

20
20

0o | 00
50
70

10

30

90

10

10
60

20

20
20

oo | 00
50
70

10

30

90

10

10
60

0i=2Fk=1j=3

20
20

oo | 00
50
70

10

30

40

90

10

10
60

0i=2Fk=1j=3

20
20

oo | 00
50
70

10

30
40

90

10

10
60

oi=1k=2j=4

20
20

140

50
70

10

30
40

90

10

10
60

oi=1k=2j=4

20
20

140 | c©

50
70

10

30
40

90

10

10
60

0i=3k=2j=1,

WIBI8IRI]|e
o
TIFSIBRIeS
DR IF|e|38]| 8
NRo|=8|3
IS ARSI RS
— ANM < |LO
o
A

0i=3k=2j=1,

20
20

140 | c©

50
70

10

30
40

90

10

10
20

0i=3k=2j=4

20
20

140 | c©

50
60

10

30
40

90

10

10
20

0i=3k=2j=4

20
20

140 | c©

50
60

10

30
40

90

10

10
20

0oi=1k=3 j=2

20
20

140 | c©

50
60

10

30
40

40

10

10
20

0oi=1k=3 j=2

Recovering Shortest Paths

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j eV
2: for k<1 ton do
3: for i < 1 ton do
for j « 1 ton do
if fli, k| + flk,j] < f[i, j] then
fli, 5] < fli, Kl + flk, 5], 7l j] < &

& & 55

Recovering Shortest Paths

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j eV
2: for k<1 ton do
3: for i <+ 1 ton do
for j < 1ton do
if fli, k| + flk,j] < f[i, j] then
fli, 5] < fli, Kl + flk, 5], 7l j] < &

& & 55

print-path(7, 7)
if 7[i, j] = L then then
if i # j then print(i,",")
else
print—path(i,w[i,j]), print_path<ﬂ-[i7j]7j)

Rl A

Detecting Negative Cycles

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k< 1tondo
3: for i < 1 ton do
for j < 1tondo
if f[i, k] + f[k,j] < fli, j] then
flis] < fli. k] + flk, 5], wli, 5] < &

2 & g2

Detecting Negative Cycles

Floyd-Warshall(G, w)

1 f« w, 7[i,j] < L foreveryi,j €V
2: for k < 1 ton do
for i < 1 ton do
for j < 1tondo
if f[i, k] + f[k,j] < fli, j] then
F,5) « fli K] + flk, g, =i, j] < k
: for k< 1tondo
for i < 1 ton do
for j < 1ton do
10: if fli, k] + f[k,j] < f[i,j] then
11: report “negative cycle exists” and exit

© N o0 s w

Summary of Shortest Path Algorithms

algorithm ‘ graph ‘ weights ‘ SS? ‘ running time
Simple DP DAG R SS O(n +m)
Dijkstra U/D | Rsg SS | O(nlogn +m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

U = undirected D = directed

@ DAG = directed acyclic graph
@ SS = single source AP = all pairs

CSE 431/531: Algorithm Analysis and Design (Fall 2023)

NP-Completeness

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Buffalo

NP-Completeness Theory

@ The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results? J

NP-Completeness Theory

@ The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results? J

@ A given problem X cannot be solved in polynomial time.

e Without knowing it, you will have to keep trying to find polynomial
time algorithm for solving X. All our efforts are doomed!

Efficient = Polynomial Time

@ Polynomial time: O(n*) for any constant k > 0
e Example: O(n),0(n?), O(n*logn), O(n'®)
e Not polynomial time: O(2"), O(n'°&™)

Efficient = Polynomial Time

@ Polynomial time: O(n*) for any constant k > 0
e Example: O(n),0(n?), O(n*logn), O(n'®)
e Not polynomial time: O(2"), O(n'°&™)

@ Almost all algorithms we learnt so far run in polynomial time

Efficient = Polynomial Time

@ Polynomial time: O(n*) for any constant k > 0
e Example: O(n),0(n?), O(n*logn), O(n'®)
e Not polynomial time: O(2"), O(n'°&™)

@ Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time
e For natural problems, if there is an O(n*)-time algorithm, then k&
is small, say 4

@ A good cut separating problems: for most natural problems, either
we have a polynomial time algorithm, or the best algorithm runs
in time Q(2™) for some ¢

@ Do not need to worry about the computational model

@ Some Hard Problems

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C'in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C'in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)
Output: whether GG contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

@ The graph is called the Petersen Graph. It has no HC.

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

@ Running time: O(n!m) = 20(lem
@ Better algorithm: 20

e Far away from polynomial time

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 20(len)
Better algorithm: 20
Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

