Computing F_{n} : Stupid Divide-and-Conquer Algorithm

$\operatorname{Fib}(n)$
1: if $n=0$ return 0
2: if $n=1$ return 1
3: return $\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n ?

A: Exponential

- Running time is at least $\Omega\left(F_{n}\right)$
- F_{n} is exponential in n

Computing F_{n} : Reasonable Algorithm

Fib (n)
1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $\quad F[i] \leftarrow F[i-1]+F[i-2]$
5: return $F[n]$

- Dynamic Programming

Computing F_{n} : Reasonable Algorithm

Fib (n)
1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $\quad F[i] \leftarrow F[i-1]+F[i-2]$
5: return $F[n]$

- Dynamic Programming
- Running time $=$?

Computing F_{n} : Reasonable Algorithm

$\operatorname{Fib}(n)$
1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $\quad F[i] \leftarrow F[i-1]+F[i-2]$
5: return $F[n]$

- Dynamic Programming
- Running time $=O(n)$

Computing F_{n} : Even Better Algorithm

$$
\begin{aligned}
\binom{F_{n}}{F_{n-1}} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{F_{n-1}}{F_{n-2}} \\
\binom{F_{n}}{F_{n-1}} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{2}\binom{F_{n-2}}{F_{n-3}} \\
& \ldots \\
\binom{F_{n}}{F_{n-1}} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n-1}\binom{F_{1}}{F_{0}}
\end{aligned}
$$

power (n)

1: if $n=0$ then return $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
2: $R \leftarrow \operatorname{power}(\lfloor n / 2\rfloor)$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
5: return R

Fib (n)

1: if $n=0$ then return 0
2: $M \leftarrow \operatorname{power}(n-1)$
3: return $M[1][1]$

power (n)

1: if $n=0$ then return $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
2: $R \leftarrow \operatorname{power}(\lfloor n / 2\rfloor)$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
5: return R

$\operatorname{Fib}(n)$

1: if $n=0$ then return 0
2: $M \leftarrow \operatorname{power}(n-1)$
3: return $M[1][1]$

- Recurrence for running time?

power (n)

1: if $n=0$ then return $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
2: $R \leftarrow \operatorname{power}(\lfloor n / 2\rfloor)$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
5: return R

$\operatorname{Fib}(n)$

1: if $n=0$ then return 0
2: $M \leftarrow \operatorname{power}(n-1)$
3: return $M[1][1]$

- Recurrence for running time? $T(n)=T(n / 2)+O(1)$

power (n)

1: if $n=0$ then return $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
2: $R \leftarrow \operatorname{power}(\lfloor n / 2\rfloor)$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
5: return R
$\operatorname{Fib}(n)$
1: if $n=0$ then return 0
2: $M \leftarrow \operatorname{power}(n-1)$
3: return $M[1][1]$

- Recurrence for running time? $T(n)=T(n / 2)+O(1)$
- $T(n)=O(\lg n)$

Running time $=O(\lg n)$: We Cheated!

Running time $=O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

Running time $=O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

Running time $=O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time

Running time $=O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(\lg n)$

Running time $=O(\lg n):$ We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(\lg n)$

Fixing the Problem

To compute F_{n}, we need $O(\lg n)$ basic arithmetic operations on integers

Summary: Divide-and-Conquer

- Divide: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- Combine: Combine solutions to small instances to obtain a solution for the original big instance

Summary: Divide-and-Conquer

- Divide: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- Combine: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem

Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots : $T(n)=2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \lg n)$

Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots :

$$
T(n)=2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \lg n)
$$

- Integer Multiplication:

$$
T(n)=3 T(n / 2)+O(n) \Rightarrow T(n)=O\left(n^{\lg _{2} 3}\right)
$$

Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots :

$$
T(n)=2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \lg n)
$$

- Integer Multiplication:

$$
T(n)=3 T(n / 2)+O(n) \Rightarrow T(n)=O\left(n^{\lg _{2} 3}\right)
$$

- Matrix Multiplication:

$$
T(n)=7 T(n / 2)+O\left(n^{2}\right) \Rightarrow T(n)=O\left(n^{\lg _{2} 7}\right)
$$

Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots :

$$
T(n)=2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \lg n)
$$

- Integer Multiplication:

$$
T(n)=3 T(n / 2)+O(n) \Rightarrow T(n)=O\left(n^{\lg _{2} 3}\right)
$$

- Matrix Multiplication:
$T(n)=7 T(n / 2)+O\left(n^{2}\right) \Rightarrow T(n)=O\left(n^{\lg _{2} 7}\right)$
- To improve running time, design better algorithm for "combine" step, or reduce number of recursions, ...

CSE 431/531: Algorithm Analysis and Design (Fall 2023) Dynamic Programming

Lecturer: Kelin Luo
Department of Computer Science and Engineering
University at Buffalo

Paradigms for Designing Algorithms

Greedy algorithm

- Make a greedy choice
- Prove that the greedy choice is safe
- Reduce the problem to a sub-problem and solve it iteratively
- Usually for optimization problems

Divide-and-conquer

- Break a problem into many independent sub-problems
- Solve each sub-problem separately
- Combine solutions for sub-problems to form a solution for the original one
- Usually used to design more efficient algorithms

Paradigms for Designing Algorithms

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Recall: Computing the n-th Fibonacci Number

- $F_{0}=0, F_{1}=1$
- $F_{n}=F_{n-1}+F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: $0,1,1,2,3,5,8,13,21,34,55,89, \cdots$

$\operatorname{Fib}(n)$

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $\quad F[i] \leftarrow F[i-1]+F[i-2]$
5: return $F[n]$

Recall: Computing the n-th Fibonacci Number

- $F_{0}=0, F_{1}=1$
- $F_{n}=F_{n-1}+F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: $0,1,1,2,3,5,8,13,21,34,55,89, \cdots$

$\operatorname{Fib}(n)$

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $\quad F[i] \leftarrow F[i-1]+F[i-2]$
5: return $F[n]$

- Store each $F[i]$ for future use.

Outline

(1) Weighted Interval Scheduling

2 Subset Sum Problem
(3) Knapsack Problem
a Longest Common Subsequence

- Longest Common Subsequence in Linear Space
(5) Shortest Paths in Directed Acyclic Graphs

6. Matrix Chain Multiplication
(7) Optimum Binary Search Tree

8 Summary

Recall: Interval Schduling

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: a maximum-size subset of mutually compatible jobs

Recall: Interval Schduling

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: a maximum-size subset of mutually compatible jobs

Weighted Interval Scheduling

Input: n jobs, job i with start time s_{i} and finish time f_{i}
each job has a weight (or value) $v_{i}>0$
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: a maximum-weight subset of mutually compatible jobs

Weighted Interval Scheduling

Input: n jobs, job i with start time s_{i} and finish time f_{i}
each job has a weight (or value) $v_{i}>0$
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: a maximum-weight subset of mutually compatible jobs

Weighted Interval Scheduling

Input: n jobs, job i with start time s_{i} and finish time f_{i}
each job has a weight (or value) $v_{i}>0$
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: a maximum-weight subset of mutually compatible jobs

Optimum value $=220$

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

- Job with the earliest finish time?

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

- Job with the earliest finish time? No, we are ignoring weights

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

- Job with the earliest finish time? No, we are ignoring weights
- Job with the largest weight?

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

- Job with the earliest finish time? No, we are ignoring weights
- Job with the largest weight? No, we are ignoring times

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

- Job with the earliest finish time? No, we are ignoring weights
- Job with the largest weight? No, we are ignoring times
- Job with the largest $\frac{\text { weight }}{\text { length }}$?

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

- Job with the earliest finish time? No, we are ignoring weights
- Job with the largest weight? No, we are ignoring times
- Job with the largest $\frac{\text { weight }}{\text { length }}$?

No, when weights are equal, this is the shortest job

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

- Job with the earliest finish time? No, we are ignoring weights
- Job with the largest weight? No, we are ignoring times
- Job with the largest $\frac{\text { weight }}{\text { length }}$?

No, when weights are equal, this is the shortest job

