dynamic-programming(G, w, s)

1:
$$f^0[s] \leftarrow 0$$
 and $f^0[v] \leftarrow \infty$ for any $v \in V \setminus \{s \\ 2:$ for $\ell \leftarrow 1$ to $n-1$ do
3: copy $f^{\ell-1} \rightarrow f^{\ell}$
4: for each $(u,v) \in E$ do
5: if $f^{\ell-1}[u] + w(u,v) < f^{\ell}[v]$ then
6: $f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)$

7: return
$$(f^{n-1}[v])_{v \in V}$$

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

Proof.

If there is a path containing at least n edges, then it contains a cycle. Removing the cycle gives a path with the same or smaller length. $\hfill\square$

dynamic-programming(G, w, s)

1:
$$f^{\text{old}}[s] \leftarrow 0$$
 and $f^{\text{old}}[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: copy $f^{\text{old}} \rightarrow f^{\text{new}}$
4: for each $(u, v) \in E$ do
5: if $f^{\text{old}}[u] + w(u, v) < f^{\text{new}}[v]$ then
6: $f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u, v)$
7: copy $f^{\text{new}} \rightarrow f^{\text{old}}$
8: return f^{old}

• f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors

dynamic-programming(G, w, s)

1:
$$f^{\text{old}}[s] \leftarrow 0$$
 and $f^{\text{old}}[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

2: for
$$\ell \leftarrow 1$$
 to $n-1$ do

3:
$$\operatorname{copy} f^{\operatorname{old}} \to f^{\operatorname{new}}$$

4: for each
$$(u, v) \in E$$
 do

5: **if**
$$f^{\text{old}}[u] + w(u, v) < f^{\text{new}}[v]$$
 then
6: $f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u, v)$

6:
$$f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u, v)$$

7:
$$\operatorname{copy} f^{\operatorname{new}} \to f^{\operatorname{old}}$$

8: return f^{old}

• f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors

only need 1 vector!

dynamic-programming(G, w, s)

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

2: for
$$\ell \leftarrow 1$$
 to $n-1$ do

3:
$$\operatorname{copy} f \to f$$

4: for each
$$(u, v) \in E$$
 do

5: **if**
$$f[u] + w(u, v) < f[v]$$
 then

6:
$$f[v] \leftarrow f[u] + w(u, v)$$

7:
$$\operatorname{copy} f \to f$$

8: return f

• f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors

• only need 1 vector!

dynamic-programming(G, w, s)

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to n-1 do
- 3: for each $(u, v) \in E$ do

4: **if**
$$f[u] + w(u, v) < f[v]$$
 then

5:
$$f[v] \leftarrow f[u] + w(u, v)$$

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

$\mathsf{Bellman}\operatorname{\mathsf{-Ford}}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to n-1 do
- 3: for each $(u, v) \in E$ do

4: **if**
$$f[u] + w(u, v) < f[v]$$
 then

5:
$$f[v] \leftarrow f[u] + w(u, v)$$

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

$\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to n-1 do
- 3: for each $(u, v) \in E$ do

4: **if**
$$f[u] + w(u, v) < f[v]$$
 then

5:
$$f[v] \leftarrow f[u] + w(u, v)$$

6: **return** *f*

 \bullet Issue: when we compute $f[u]+w(u,v),\ f[u]$ may be changed since the end of last iteration

$\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to n-1 do
- 3: for each $(u, v) \in E$ do

4: **if**
$$f[u] + w(u, v) < f[v]$$
 then

5:
$$f[v] \leftarrow f[u] + w(u, v)$$

- $\bullet\,$ Issue: when we compute $f[u]+w(u,v),\,f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!

$\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to n-1 do
- 3: for each $(u, v) \in E$ do

4: **if**
$$f[u] + w(u, v) < f[v]$$
 then

5:
$$f[v] \leftarrow f[u] + w(u, v)$$

- \bullet Issue: when we compute $f[u]+w(u,v),\ f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges

$\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to n-1 do
- 3: for each $(u, v) \in E$ do

4: **if**
$$f[u] + w(u, v) < f[v]$$
 then

5:
$$f[v] \leftarrow f[u] + w(u, v)$$

- \bullet Issue: when we compute $f[u]+w(u,v),\ f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges
- f[v] is always the length of some path from s to v

• After iteration ℓ :

length of shortest s-v path $\leq f[v] \\ \leq \text{length of shortest } s\text{-}v \text{ path using at most } \ell \text{ edges}$

• Assuming there are no negative cycles:

length of shortest s-v path

= length of shortest s-v path using at most n-1 edges

• So, assuming there are no negative cycles, after iteration n-1:

f[v] =length of shortest s-v path

vertices	s	a	b	c	d
f	0	∞	∞	∞	∞

vertices	s	a	b	c	d
f	0	∞	∞	∞	∞

vertices	s	a	b	c	d
f	0	6	∞	∞	∞

vertices	s	a	b	c	d
f	0	6	∞	∞	∞

vertices	s	a	b	c	d
f	0	6	7	∞	∞

vertices	s	a	b	c	d
f	0	6	7	∞	∞

vertices	s	a	b	c	d
f	0	6	7	∞	∞

vertices	s	a	b	c	d
f	0	6	7	2	∞

vertices	s	a	b	c	d
f	0	6	7	2	∞

vertices	s	a	b	c	d
f	0	6	7	2	4

vertices	s	a	b	c	d
f	0	6	7	2	4

vertices	s	a	b	c	d
f	0	6	7	2	4

vertices	s	a	b	c	d
f	0	2	7	2	4

vertices	s	a	b	c	d
f	0	2	7	2	4

vertices
$$s$$
 a b c d f 02724

vertices
$$s$$
 a b c d f 0 2 7 2 4

vertices
$$s$$
 a b c d f 02724

vertices
$$s$$
 a b c d f 02724

vertices
$$s$$
 a b c d f 027-24

vertices	s	a	b	c	d
f	0	2	7	-2	4

end of iteration 1: 0, 2, 7, 2, 4
end of iteration 2: 0, 2, 7, -2, 4

vertices	s	a	b	c	d
f	0	2	7	-2	4

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2, 4
- end of iteration 3: 0, 2, 7, -2, 4

vertices	s	a	b	c	d
f	0	2	7	-2	4

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2, 4
- end of iteration 3: 0, 2, 7, -2, 4
- Algorithm terminates in 3 iterations, instead of 4.

Bellman-Ford Algorithm

$\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to n do
- 3: $updated \leftarrow \mathsf{false}$
- 4: for each $(u, v) \in E$ do

5: **if**
$$f[u] + w(u, v) < f[v]$$
 then

6:
$$f[v] \leftarrow f[u] + w(u, v)$$

7:
$$updated \leftarrow true$$

8: if not
$$updated$$
, then return f

9: output "negative cycle exists"

Bellman-Ford Algorithm

$\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to $n \ \mathbf{do}$
- 3: $updated \leftarrow false$
- 4: for each $(u, v) \in E$ do

5: **if**
$$f[u] + w(u, v) < f[v]$$
 then

- 6: $f[v] \leftarrow f[u] + w(u, v), \ \pi[v] \leftarrow u$
- 7: $updated \leftarrow true$
- 8: if not updated, then return f

9: output "negative cycle exists"

• $\pi[v]$: the parent of v in the shortest path tree

Bellman-Ford Algorithm

$\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to $n \ \mathbf{do}$
- 3: $updated \leftarrow \mathsf{false}$
- 4: for each $(u, v) \in E$ do

5: **if**
$$f[u] + w(u, v) < f[v]$$
 then

- 6: $f[v] \leftarrow f[u] + w(u, v), \ \pi[v] \leftarrow u$
- 7: $updated \leftarrow true$
- 8: if not updated, then return f

9: output "negative cycle exists"

• $\pi[v]$: the parent of v in the shortest path tree

• Running time =
$$O(nm)$$

Outline

1 Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest Paths
 Dijkstra's Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

All Pair Shortest Paths

Input: directed graph
$$G = (V, E)$$
,

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

All Pair Shortest Paths

Input: directed graph
$$G = (V, E)$$
,

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- 1: for every starting point $s \in V$ do
- 2: run Bellman-Ford(G, w, s)

All Pair Shortest Paths

Input: directed graph
$$G = (V, E)$$
,

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- 1: for every starting point $s \in V$ do
- 2: run Bellman-Ford(G, w, s)
- Running time = $O(n^2m)$

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- $\bullet \ \mathsf{DAG} = \mathsf{directed} \ \mathsf{acyclic} \ \mathsf{graph} \quad \mathsf{U} = \mathsf{undirected} \quad \mathsf{D} = \mathsf{directed}$
- SS = single source AP = all pairs

• It is convenient to assume $V=\{1,2,3,\cdots,n\}$

- It is convenient to assume $V=\{1,2,3,\cdots,n\}$
- \bullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

- It is convenient to assume $V=\{1,2,3,\cdots,n\}$
- \bullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

- It is convenient to assume $V=\{1,2,3,\cdots,n\}$
- For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- It is convenient to assume $V=\{1,2,3,\cdots,n\}$
- For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

• First try: f[i, j] is length of shortest path from i to j

- It is convenient to assume $V=\{1,2,3,\cdots,n\}$
- For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: f[i, j] is length of shortest path from i to j
- Issue: do not know in which order we compute f[i, j]'s

- It is convenient to assume $V=\{1,2,3,\cdots,n\}$
- \bullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: f[i, j] is length of shortest path from i to j
- Issue: do not know in which order we compute f[i, j]'s
- $f^k[i, j]$: length of shortest path from i to j that only uses vertices $\{1, 2, 3, \cdots, k\}$ as intermediate vertices