dynamic-programming (G, w, s)
1: fOs] - 0 and fO[v] + oo for any v € V'\ {s}
2: for { <~ 1ton—1do
3. copy f&:l— f*
4 for each (u,v) € E do
5: if £ u] + w(u,v) < fv] then
6 Fi) = £ u] + wlu, v)
7

- return (f"7Hv)])yey

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges

Proof.

If there is a path containing at least n edges, then it contains a cycle.
Removing the cycle gives a path with the same or smaller length. [

Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

1. fols] <= 0 and f°[v] < oo for any v € V' \ {s}
2. for (< 1ton—1do

3 copy fold N fnew

4 for each (u,v) € E do

5 if fou] + w(u,v) < f"[v] then

6: o] < o] + w(u,v)
7

8

copy fnew — fold
. return f°¢

e f* only depends on f*~!: only need 2 vectors

Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

1: f7[s] <= 0and f""[v] < oo for any v € V' \ {s}
2. for{ <+ 1ton—1do

3: copy f' = f

4 for each (u,v) € E do

5 if 7 [u] +w(u,v) < f"[v] then
6: ol = 0 [u] 4 w(u, v)

7 copy f'' = f

8: return f

e f* only depends on f*~!: only need 2 vectors

@ only need 1 vector!

Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)
1: f[s] <= 0 and f[v] <= oo for any v € V' \ {s}
2: for { <~ 1ton—1do

copy f = f

4 for each (u,v) € E do

5 if flu] +w(u,v) < flv] then

6: flv] < flu] + w(u,v)

7

8:

copy f — f
return f

o f* only depends on f*~': only need 2 vectors

@ only need 1 vector!

Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

. f[s] <=0 and f[v] <= oo for any v € V'\ {s}
2: for { <~ 1ton—1do

3 for each (u,v) € E do

4; if flu] +w(u,v) < flv] then

5

6

[y

t
flv] « flu] + w(u,v)
: return f

o f* only depends on f~!: only need 2 vectors
@ only need 1 vector!

Bellman-Ford(G, w, s)

1. f[s] + 0 and f[v] < oo for any v € V' \ {s}
2: for (< 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < f[v] then

5 flv] < flu] + w(u,v)

6

: return f

o f* only depends on f~!: only need 2 vectors
@ only need 1 vector!

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for { <~ 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < flv] then

5 flv] < flu] + w(u,v)

6: return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for (< 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < flv] then

5 flv] < flu] + w(u,v)

6

. return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration

@ This is OK: it can only “accelerate” the process!

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for (< 1ton—1do

3: for each (u,v) € E do

4: if flu] +w(u,v) < flv] then

5: flv] « flu] +w(u,v)

6: return f)

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration
@ This is OK: it can only “accelerate” the process!

@ After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] < oo for any v € V' \ {s}
2: for (< 1ton—1do

3 for each (u,v) € E do

4: if flu] +w(u,v) < flv] then

5 flv] < flu] + w(u,v)

6

. return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration
@ This is OK: it can only “accelerate” the process!

@ After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges
e f[v] is always the length of some path from s to v

Bellman-Ford Algorithm

@ After iteration /¢:

length of shortest s-v path
< f[v]
< length of shortest s-v path using at most ¢ edges
@ Assuming there are no negative cycles:
length of shortest s-v path
= length of shortest s-v path using at most n — 1 edges
@ So, assuming there are no negative cycles, after iteration n — 1:

f[v] = length of shortest s-v path

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b c d
fol0foo]oofoo] oo

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b c d
fol0foo]oofoo] oo

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b c d
f o 10[6 |oofoo]oo

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b c d
fol0of[6 |oofoo]oo

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b | ¢ | d
folof 6] 7 [oo]oo

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b | ¢ | d
folof6] 7 [oo]oo

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

S a b | ¢ | d
folof6] 7 [oo]oo

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

s | a| b ¢ | d
folofe] 7]2]o0

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘ ‘ ‘

s | a| b ¢ | d
folofe]7]2]o0

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folofe 7274

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c.d), (d,a)

vertices‘s‘a‘b‘c‘d
folofe 7274

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folofe 7274

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0,2, 7, 2, 4

@ order in which we consider edges:

(s.a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0,2, 7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0,2, 7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0,2, 7, 2, 4

@ order in which we consider edges:

(s,a), (s,0), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices‘s‘a‘b‘c‘d
folof2]7[2]4

@ end of iteration 1: 0,2, 7, 2, 4

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27214

@ end of iteration 1: 0,2, 7, 2, 4

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27]-2]4

@ end of iteration 1: 0,2, 7, 2, 4

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c.d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27]-2]4

@ end of iteration 1: 0,2, 7, 2, 4

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27]-2]4

@ end of iteration 1: 0,2, 7, 2, 4

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27]-2]4

@ end of iteration 1: 0,2, 7, 2, 4
@ end of iteration 2: 0, 2, 7, -2, 4

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),

(c;d), (d,a)
vertices ‘ s a b c d
f 0 2 7 -2 4

@ end of iteration 1: 0,2, 7, 2, 4
@ end of iteration 2: 0, 2, 7, -2, 4
@ end of iteration 3: 0, 2, 7, -2, 4

@ order in which we consider edges:

(s,a), (s,b), (a,b), (a,c), (b,d),
(c,d), (d,a)

vertices ‘ ‘ ‘

S a b c‘d
folol 27]-2]4

@ end of iteration 1: 0,2, 7, 2, 4

@ end of iteration 2: 0, 2, 7, -2, 4

@ end of iteration 3: 0, 2, 7, -2, 4

@ Algorithm terminates in 3 iterations,
instead of 4.

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] - oo for any v € V' \ {s}
2: for { <+ 1 tondo
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then

flv] < flu] + w(u,v)

updated < true
if not updated, then return f

© o N s w

output “negative cycle exists”

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] - oo for any v € V' \ {s}
2: for { <1 ton do
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then
flv] < flu] + w(u,v), 7[v] < u
updated < true
if not updated, then return f

© o N s w

output “negative cycle exists”

@ m[v]: the parent of v in the shortest path tree

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: f[s] <= 0 and f[v] - oo for any v € V' \ {s}
2: for { <1 ton do
updated < false
for each (u,v) € E do
if flu] +w(u,v) < flv] then
flv] < flu] + w(u,v), 7[v] < u
updated < true
if not updated, then return f

© o N s w

output “negative cycle exists”

@ m[v]: the parent of v in the shortest path tree

@ Running time = O(nm)

@ All-Pair Shortest Paths and Floyd-Warshall

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w : E — R (can be negative)
Output: shortest path from u to v for every u,v € V

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w : E — R (can be negative)
Output: shortest path from u to v for every u,v € V

1: for every starting point s € V do
% run Bellman-Ford(G, w, s)

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w : E — R (can be negative)
Output: shortest path from u to v for every u,v € V

1: for every starting point s € V do
% run Bellman-Ford(G, w, s)

@ Running time = O(n%m)

Summary of Shortest Path Algorithms we learned

algorithm ‘ graph ‘ weights ‘ SS? ‘ running time
Simple DP DAG R SS O(n +m)
Dijkstra U/D | Rsg SS | O(nlogn +m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

U = undirected D = directed

@ DAG = directed acyclic graph
@ SS = single source AP = all pairs

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 1=
w(i, j) = { weight of edge (i, /) i # j,(i,j) € E
50 i) ¢ E

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 1=
w(i, j) = { weight of edge (i, /) i # j,(i,j) € E
50 i) ¢ E

@ For now assume there are no negative cycles

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 1=
w(i, j) = { weight of edge (i, /) i # j,(i,j) € E
50 i) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 1=
w(i, j) = { weight of edge (i, /) i # j,(i,j) € E
50 i) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: f[i,] is length of shortest path from i to j

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 1=
w(i, j) = { weight of edge (i, /) i # j,(i,j) € E
50 i) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: f[i,] is length of shortest path from i to j

@ Issue: do not know in which order we compute f[i, j]'s

Design a Dynamic Programming Algorithm

@ It is convenient to assume V' ={1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 1=
w(i, j) = { weight of edge (i, /) i # j,(i,j) € E
50 i) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: f[i,] is length of shortest path from i to j

@ Issue: do not know in which order we compute f[i, j]'s

e f*[i,7]: length of shortest path from i to j that only uses vertices
{1,2,3,--- ,k} as intermediate vertices

