
71/88

dynamic-programming(G,w, s)

1: f 0[s] 0 and f
0[v] 1 for any v 2 V \ {s}

2: for ` 1 to n� 1 do

3: copy f
`�1 ! f

`

4: for each (u, v) 2 E do

5: if f
`�1[u] + w(u, v) < f

`[v] then
6: f

`[v] f
`�1[u] + w(u, v)

7: return (fn�1[v])v2V

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n� 1 edges

Proof.
If there is a path containing at least n edges, then it contains a cycle.
Removing the cycle gives a path with the same or smaller length.



72/88

Dynamic Programming with Better Space Usage

dynamic-programming(G,w, s)

1: f old[s] 0 and f
old[v] 1 for any v 2 V \ {s}

2: for ` 1 to n� 1 do

3: copy f
old ! f

new

4: for each (u, v) 2 E do

5: if f
old[u] + w(u, v) < f

new[v] then
6: f

new[v] f
old[u] + w(u, v)

7: copy f
new ! f

old

8: return f
old

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!



72/88

Dynamic Programming with Better Space Usage

dynamic-programming(G,w, s)

1: f old[s] 0 and f
old[v] 1 for any v 2 V \ {s}

2: for ` 1 to n� 1 do

3: copy f
old ! f

new

4: for each (u, v) 2 E do

5: if f
old[u] + w(u, v) < f

new[v] then
6: f

new[v] f
old[u] + w(u, v)

7: copy f
new ! f

old

8: return f
old

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!



72/88

Dynamic Programming with Better Space Usage

dynamic-programming(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: copy f ! f

4: for each (u, v) 2 E do

5: if f [u] + w(u, v) < f [v] then
6: f [v] f [u] + w(u, v)

7: copy f ! f

8: return f

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!



72/88

Dynamic Programming with Better Space Usage

dynamic-programming(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!



72/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!



73/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v



73/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v



73/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v



73/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v



74/88

Bellman-Ford Algorithm

After iteration `:

length of shortest s-v path

 f [v]

 length of shortest s-v path using at most ` edges

Assuming there are no negative cycles:

length of shortest s-v path

= length of shortest s-v path using at most n� 1 edges

So, assuming there are no negative cycles, after iteration n� 1:

f [v] = length of shortest s-v path



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 1 1 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 1 1 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 1 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 1 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 2 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 2 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.



76/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n do

3: updated false
4: for each (u, v) 2 E do

5: if f [u] + w(u, v) < f [v] then
6: f [v] f [u] + w(u, v)
7: updated true

8: if not updated, then return f

9: output “negative cycle exists”

⇡[v]: the parent of v in the shortest path tree

Running time = O(nm)



76/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n do

3: updated false
4: for each (u, v) 2 E do

5: if f [u] + w(u, v) < f [v] then
6: f [v] f [u] + w(u, v), ⇡[v] u

7: updated true

8: if not updated, then return f

9: output “negative cycle exists”

⇡[v]: the parent of v in the shortest path tree

Running time = O(nm)



76/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n do

3: updated false
4: for each (u, v) 2 E do

5: if f [u] + w(u, v) < f [v] then
6: f [v] f [u] + w(u, v), ⇡[v] u

7: updated true

8: if not updated, then return f

9: output “negative cycle exists”

⇡[v]: the parent of v in the shortest path tree

Running time = O(nm)



77/88

Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall



78/88

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V,E),

w : E ! R (can be negative)

Output: shortest path from u to v for every u, v 2 V

1: for every starting point s 2 V do

2: run Bellman-Ford(G,w, s)

Running time = O(n2
m)



78/88

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V,E),

w : E ! R (can be negative)

Output: shortest path from u to v for every u, v 2 V

1: for every starting point s 2 V do

2: run Bellman-Ford(G,w, s)

Running time = O(n2
m)



78/88

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V,E),

w : E ! R (can be negative)

Output: shortest path from u to v for every u, v 2 V

1: for every starting point s 2 V do

2: run Bellman-Ford(G,w, s)

Running time = O(n2
m)



79/88

Summary of Shortest Path Algorithms we learned

algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R�0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs



80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}

For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices



80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices



80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices



80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices



80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices



80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices



80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices


