dynamic-programming (G, w, s)

$$
\begin{aligned}
& \text { 1: } f^{0}[s] \leftarrow 0 \text { and } f^{0}[v] \leftarrow \infty \text { for any } v \in V \backslash\{s\} \\
& \text { 2: for } \ell \leftarrow 1 \text { to } n-1 \text { do } \\
& \text { 3: copy } f^{\ell-1} \rightarrow f^{\ell} \\
& \text { 4: } \quad \text { for each }(u, v) \in E \text { do } \\
& \text { 5: } \quad \text { if } f^{\ell-1}[u]+w(u, v)<f^{\ell}[v] \text { then } \\
& \text { 6: } \quad f^{\ell}[v] \leftarrow f^{\ell-1}[u]+w(u, v) \\
& \text { 7: return }\left(f^{n-1}[v]\right)_{v \in V}
\end{aligned}
$$

Obs. Assuming there are no negative cycles, then a shortest path contains at most $n-1$ edges

Proof.

If there is a path containing at least n edges, then it contains a cycle. Removing the cycle gives a path with the same or smaller length.

Dynamic Programming with Better Space Usage

dynamic-programming (G, w, s)

1: $f^{\text {old }}[s] \leftarrow 0$ and $f^{\text {old }}[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: \quad copy $f^{\text {old }} \rightarrow f^{\text {new }}$
4: \quad for each $(u, v) \in E$ do
5: \quad if $f^{\text {old }}[u]+w(u, v)<f^{\text {new }}[v]$ then
6: $\quad f^{\text {new }}[v] \leftarrow f^{\text {old }}[u]+w(u, v)$
7: \quad copy $f^{\text {new }} \rightarrow f^{\text {old }}$
8: return $f^{\text {old }}$

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors

Dynamic Programming with Better Space Usage

dynamic-programming (G, w, s)

1: $f^{\text {old }}[s] \leftarrow 0$ and $f^{\text {old }}[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: \quad copy $f^{\text {old }} \rightarrow f^{\text {new }}$
4: \quad for each $(u, v) \in E$ do
5: \quad if $f^{\text {old }}[u]+w(u, v)<f^{\text {new }}[v]$ then
6: $\quad f^{\text {new }}[v] \leftarrow f^{\text {old }}[u]+w(u, v)$
7: \quad copy $f^{\text {new }} \rightarrow f^{\text {old }}$
8: return $f^{\text {old }}$

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Dynamic Programming with Better Space Usage

dynamic-programming (G, w, s)
1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: \quad copy $f \rightarrow f$
4: for each $(u, v) \in E$ do
5: \quad if $f[u]+w(u, v)<f[v]$ then
6:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

7: \quad copy $f \rightarrow f$

8: return f

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Dynamic Programming with Better Space Usage

dynamic-programming (G, w, s)
1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5: $\quad f[v] \leftarrow f[u]+w(u, v)$
6: return f

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: \quad for each $(u, v) \in E$ do
4: if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- Issue: when we compute $f[u]+w(u, v), f[u]$ may be changed since the end of last iteration

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- Issue: when we compute $f[u]+w(u, v), f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- Issue: when we compute $f[u]+w(u, v), f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration $\ell, f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- Issue: when we compute $f[u]+w(u, v), f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration $\ell, f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges
- $f[v]$ is always the length of some path from s to v

Bellman-Ford Algorithm

- After iteration ℓ :
length of shortest $s-v$ path
$\leq f[v]$
\leq length of shortest s - v path using at most ℓ edges
- Assuming there are no negative cycles:
length of shortest $s-v$ path
$=$ length of shortest $s-v$ path using at most $n-1$ edges
- So, assuming there are no negative cycles, after iteration $n-1$:

$$
f[v]=\text { length of shortest } s-v \text { path }
$$

- order in which we consider edges:

$$
\left.\begin{aligned}
& \begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
& \text { vertices } \\
& \hline f
\end{aligned} \right\rvert\, \begin{array}{c|c|c|c|c}
\\
\hline f & 0 & \infty & \infty & \infty \\
\hline
\end{array}
$$

- order in which we consider edges:

$$
(s, a),(s, b),(a, b),(a, c),(b, d)
$$

$$
(c, d),(d, a)
$$

vertices	s	a	b	c	d
f	0	∞	∞	∞	∞

- order in which we consider edges:

$$
(s, a),(s, b),(a, b),(a, c),(b, d)
$$

$$
(c, d),(d, a)
$$

vertices	s	a	b	c	d
f	0	6	∞	∞	∞

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \\
& (c, d),(d, a)
\end{aligned}
$$

vertices	s	a	b	c	d
f	0	6	∞	∞	∞

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \\
& (c, d),(d, a)
\end{aligned}
$$

vertices	s	a	b	c	d
f	0	6	7	∞	∞

- order in which we consider edges:

$$
\left.\left.\begin{array}{l}
\begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
\text { vertices } \\
\hline f
\end{array} \right\rvert\, \begin{array}{c|c|c|c|c}
\\
\hline f & 0 & 6 & 7 & \infty
\end{array}\right) \infty
$$

- order in which we consider edges:

$$
\left.\begin{aligned}
& \begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
& \text { vertices } \\
& \hline f
\end{aligned} \right\rvert\, \begin{array}{c|c|c|c|c}
\\
\hline f & 0 & 6 & 7 & \infty \\
\infty
\end{array}
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- order in which we consider edges:

$$
\left.\left.\begin{array}{l}
\begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
\text { vertices } \\
\hline f
\end{array} \right\rvert\, \begin{array}{c|c|c|c|c}
& a & b & c & d \\
\hline f & 0 & 6 & 7 & 2
\end{array}\right) \infty
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& \begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
& \text { vertices } \\
& \hline f
\end{aligned}\left|\begin{array}{c|c|c|c|c}
\\
\hline f & 0 & 2 & 7 & 2
\end{array}\right| 4
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& \begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
& \text { vertices } \\
& \hline f
\end{aligned}\left|\begin{array}{c|c|c|c|c}
\\
\hline f & 0 & 2 & 7 & 2
\end{array}\right| 4
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& \begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
& \text { vertices } \\
& \hline f
\end{aligned}\left|\begin{array}{c|c|c|c|c}
\\
\hline f & 0 & 2 & 7 & 2
\end{array}\right| 4
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: $0,2,7,-2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- end of iteration 2: $0,2,7,-2,4$
- end of iteration 3: 0, 2, 7, -2, 4
- order in which we consider edges:
 $(s, a),(s, b),(a, b),(a, c),(b, d)$, $(c, d),(d, a)$

vertices	s	a	b	c	d
f	0	2	7	-2	4

- end of iteration 1: $0,2,7,2,4$
- end of iteration 2: $0,2,7,-2,4$
- end of iteration 3: $0,2,7,-2,4$
- Algorithm terminates in 3 iterations, instead of 4.

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to n do
3: \quad updated \leftarrow false
4: \quad for each $(u, v) \in E$ do
5: \quad if $f[u]+w(u, v)<f[v]$ then
6: $f[v] \leftarrow f[u]+w(u, v)$
7: updated \leftarrow true
8: if not updated, then return f
9: output "negative cycle exists"

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to n do
3: updated \leftarrow false
4: \quad for each $(u, v) \in E$ do
5: \quad if $f[u]+w(u, v)<f[v]$ then
6: $\quad f[v] \leftarrow f[u]+w(u, v), \pi[v] \leftarrow u$
7: \quad updated \leftarrow true
8: if not updated, then return f
9: output "negative cycle exists"

- $\pi[v]$: the parent of v in the shortest path tree

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to n do
3: \quad updated \leftarrow false
4: \quad for each $(u, v) \in E$ do
5: \quad if $f[u]+w(u, v)<f[v]$ then
6: $\quad f[v] \leftarrow f[u]+w(u, v), \pi[v] \leftarrow u$
7: \quad updated \leftarrow true
8: if not updated, then return f
9: output "negative cycle exists"

- $\pi[v]$: the parent of v in the shortest path tree
- Running time $=O(n m)$

Outline

(1) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
(2) Single Source Shortest Paths
- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph $G=(V, E)$,

$$
w: E \rightarrow \mathbb{R} \text { (can be negative) }
$$

Output: shortest path from u to v for every $u, v \in V$

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph $G=(V, E)$,

$$
w: E \rightarrow \mathbb{R} \text { (can be negative) }
$$

Output: shortest path from u to v for every $u, v \in V$
1: for every starting point $s \in V$ do
2: run Bellman-Ford (G, w, s)

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph $G=(V, E)$,

$$
w: E \rightarrow \mathbb{R} \text { (can be negative) }
$$

Output: shortest path from u to v for every $u, v \in V$
1: for every starting point $s \in V$ do
2: run Bellman-Ford (G, w, s)

- Running time $=O\left(n^{2} m\right)$

Summary of Shortest Path Algorithms we learned

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	$O(n+m)$
Dijkstra	U / D	$\mathbb{R}_{\geq 0}$	SS	$O(n \log n+m)$
Bellman-Ford	U / D	\mathbb{R}	SS	$O(n m)$
Floyd-Warshall	U/D	\mathbb{R}	AP	$O\left(n^{3}\right)$

- DAG $=$ directed acyclic graph $\quad \mathrm{U}=$ undirected $\quad \mathrm{D}=$ directed
- $\mathrm{SS}=$ single source $\quad \mathrm{AP}=$ all pairs

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- For now assume there are no negative cycles

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: $f[i, j]$ is length of shortest path from i to j

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: $f[i, j]$ is length of shortest path from i to j
- Issue: do not know in which order we compute $f[i, j]$'s

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: $f[i, j]$ is length of shortest path from i to j
- Issue: do not know in which order we compute $f[i, j]$'s
- $f^{k}[i, j]$: length of shortest path from i to j that only uses vertices $\{1,2,3, \cdots, k\}$ as intermediate vertices

