When we talk about upper bound on running time:

- **Logarithmic time:** $O(\log n)$
- **Linear time:** $O(n)$
- **Quadratic time** $O(n^2)$
- **Cubic time** $O(n^3)$
- **Polynomial time:** $O(n^k)$ for some constant k

 - $O(n \log n) \subseteq O(n^{1.1})$. So, an $O(n \log n)$-time algorithm is also a polynomial time algorithm.
- **Exponential time:** $O(c^n)$ for some $c > 1$
- **Sub-linear time:** $o(n)$
- **Sub-quadratic time:** $o(n^2)$
Goal of Algorithm Design

Design algorithms to minimize the order of the running time.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.

- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time \(0.1n^2\) with an algorithm with running time \(1000n\)?

A:
- Sometimes yes
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
- So, for reasonably large n, algorithm with lower order running time beats algorithm with higher order running time.
Graph Basics

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Types of Graphs

3. Bipartite Graphs
 - Testing Bipartiteness

4. Topological Ordering
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph $G = (V, E)$

- V: set of vertices (nodes);
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
(Undirected) Graph \(G = (V, E) \)

- **\(V \):** set of vertices (nodes);
 \[V = \{1, 2, 3, 4, 5, 6, 7, 8\} \]

- **\(E \):** pairwise relationships among \(V \);
 - (undirected) graphs: relationship is symmetric, \(E \) contains subsets of size 2
 \[E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\} \]
Directed Graph $G = (V, E)$

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - directed graphs: relationship is asymmetric, E contains ordered pairs
Directed Graph $G = (V, E)$

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - directed graphs: relationship is asymmetric, E contains ordered pairs
 - $E = \{(1, 2), (1, 3), (3, 2), (4, 2), (2, 5), (5, 3), (3, 7), (3, 8), (4, 5), (5, 6), (6, 5), (8, 7)\}$
Abuse of Notations

- For (undirected) graphs, we often use \((i, j)\) to denote the set \(\{i, j\}\).
- We call \((i, j)\) an unordered pair; in this case \((i, j) = (j, i)\).

\[E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\} \]
- Social Network: Undirected
- Transition Graph: Directed
- Road Network: Directed or Undirected
- Internet: Directed or Undirected
Adjacency matrix
- \(n \times n \) matrix, \(A[u, v] = 1 \) if \((u, v) \in E\) and \(A[u, v] = 0 \) otherwise
- \(A \) is symmetric if graph is undirected
Representation of Graphs

Adjacency matrix
- \(n \times n \) matrix, \(A[u, v] = 1 \) if \((u, v) \in E\) and \(A[u, v] = 0\) otherwise
- \(A \) is symmetric if graph is undirected

Linked lists
- For every vertex \(v \), there is a linked list containing all neighbors of \(v \).
Representation of Graphs

- Adjacency matrix
 - $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise
 - A is symmetric if graph is undirected

- Linked lists
 - For every vertex v, there is a linked list containing all neighbors of v.
 - When graph is static, can use array of variant-length arrays.
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to list all neighbors of (v)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- d_v: number of neighbors of v

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td></td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to list all neighbors of v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to list all neighbors of (v)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- d_v: number of neighbors of v

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td>$O(1)$</td>
<td></td>
</tr>
<tr>
<td>time to list all neighbors of v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td>(O(1))</td>
<td>(O(d_u))</td>
</tr>
<tr>
<td>time to list all neighbors of (v)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td>(O(1))</td>
<td>(O(d_u))</td>
</tr>
<tr>
<td>time to list all neighbors of (v)</td>
<td>(O(n))</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- d_v: number of neighbors of v

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>time to check $(u,v) \in E$</td>
<td>$O(1)$</td>
<td>$O(d_u)$</td>
</tr>
<tr>
<td>time to list all neighbors of v</td>
<td>$O(n)$</td>
<td>$O(d_v)$</td>
</tr>
</tbody>
</table>
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)
 two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)

 two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \ldots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \ldots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Breadth-First Search (BFS)

- **Build layers** $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Implementing BFS using a Queue

BFS(s)

1. \(head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s \)
2. mark \(s \) as “visited” and all other vertices as “unvisited”
3. while \(head \leq tail \) do
4. \(v \leftarrow queue[head], head \leftarrow head + 1 \)
5. for all neighbors \(u \) of \(v \) do
6. if \(u \) is “unvisited” then
7. \(tail \leftarrow tail + 1, queue[tail] = u \)
8. mark \(u \) as “visited”

- Running time: \(O(n + m) \).
Example of BFS via Queue

![BFS via Queue Diagram]

The diagram on the left illustrates a graph with nodes labeled from 1 to 8, connecting with edges to form a network. The node v is highlighted, indicating the starting point for a Breadth-First Search (BFS) traversal. The diagram on the right shows a queue representation with elements 1, 2, and 3, illustrating the order in which nodes are processed during the BFS. The queue is marked with 'head' at the top and 'tail' at the bottom, depicting the insertion and removal of nodes.
Example of BFS via Queue

Graph:
- Nodes: 1, 2, 3, 4, 5, 6, 7, 8
- Edges: 1-2, 1-3, 2-3, 2-4, 2-5, 3-7, 5-8

Queue:
- Head
- Tail

Algorithm:
1. Enqueue node v
2. Dequeue node from queue
3. Process node
4. Enqueue all unvisited neighbors of dequeued node
5. Repeat until queue is empty

Example:
- Start with node v
- Enqueue v
- Dequeue v
- Process v
- Enqueue neighbors of v
- Repeat until all nodes are processed
Example of BFS via Queue

![Graph and Queue Diagram]
Example of BFS via Queue
Example of BFS via Queue