Terminologies

When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O\left(n^{2}\right)$
- Cubic time $O\left(n^{3}\right)$
- Polynomial time: $O\left(n^{k}\right)$ for some constant k
- $O(n \log n) \subseteq O\left(n^{1.1}\right)$. So, an $O(n \log n)$-time algorithm is also a polynomial time algorithm.
- Exponential time: $O\left(c^{n}\right)$ for some $c>1$
- Sub-linear time: o(n)
- Sub-quadratic time: o($\left.n^{2}\right)$

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1 n^{2}$ with an algorithm with running time $1000 n$?

Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1 n^{2}$ with an algorithm with running time $1000 n$?

A:

Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1 n^{2}$ with an algorithm with running time $1000 n$?

A:

- Sometimes yes

Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1 n^{2}$ with an algorithm with running time $1000 n$?

A:

- Sometimes yes
- However, when n is big enough, $1000 n<0.1 n^{2}$

Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1 n^{2}$ with an algorithm with running time $1000 n$?

A:

- Sometimes yes
- However, when n is big enough, $1000 n<0.1 n^{2}$
- For "natural" algorithms, constants are not so big!

Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1 n^{2}$ with an algorithm with running time $1000 n$?

A:

- Sometimes yes
- However, when n is big enough, $1000 n<0.1 n^{2}$
- For "natural" algorithms, constants are not so big!
- So, for reasonably large n, algorithm with lower order running time beats algorithm with higher order running time.

CSE 431/531B: Algorithm Analysis and Design (Fall 2023) Graph Basics

Lecturer: Kelin Luo
Department of Computer Science and Engineering
University at Buffalo

Outline

(1) Graphs
(2) Connectivity and Graph Traversal

- Types of Graphs
(3) Bipartite Graphs
- Testing Bipartiteness

4 Topological Ordering

Examples of Graphs

Figure: Road Networks

Figure: Internet

Figure: Transition Graphs

(Undirected) Graph $G=(V, E)$

- E: pairwise relationships among V;
- (undirected) graphs: relationship is symmetric, E contains subsets of size 2

(Undirected) Graph $G=(V, E)$

- V : set of vertices (nodes);
- $V=\{1,2,3,4,5,6,7,8\}$
- E : pairwise relationships among V;
- (undirected) graphs: relationship is symmetric, E contains subsets of size 2
- $E=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\}$, $\{4,5\},\{5,6\},\{7,8\}\}$

Graph $G=(V, E)$

- $V=\{1,2,3,4,5,6,7,8\}$
- E : pairwise relationships among V;
- directed graphs: relationship is asymmetric, E contains ordered pairs

Graph $G=(V, E)$

- $V=\{1,2,3,4,5,6,7,8\}$
- E : pairwise relationships among V;
- directed graphs: relationship is asymmetric, E contains ordered pairs
- $E=\{(1,2),(1,3),(3,2),(4,2),(2,5),(5,3),(3,7),(3,8)$, $(4,5),(5,6),(6,5),(8,7)\}$

Abuse of Notations

- For (undirected) graphs, we often use (i, j) to denote the set $\{i, j\}$.
- We call (i, j) an unordered pair; in this case $(i, j)=(j, i)$.

- $E=\{(1,2),(1,3),(2,3),(2,4),(2,5),(3,5),(3,7),(3,8)$, $(4,5),(5,6),(7,8)\}$
- Social Network: Undirected
- Transition Graph : Directed
- Road Network: Directed or Undirected
- Internet : Directed or Undirected

Representation of Graphs

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 3 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 4 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| 5 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 6 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 8 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |

- Adjacency matrix
- $n \times n$ matrix, $A[u, v]=1$ if $(u, v) \in E$ and $A[u, v]=0$ otherwise
- A is symmetric if graph is undirected

Representation of Graphs

- Adjacency matrix
- $n \times n$ matrix, $A[u, v]=1$ if $(u, v) \in E$ and $A[u, v]=0$ otherwise
- A is symmetric if graph is undirected
- Linked lists
- For every vertex v, there is a linked list containing all neighbors of v.

Representation of Graphs

- Adjacency matrix
- $n \times n$ matrix, $A[u, v]=1$ if $(u, v) \in E$ and $A[u, v]=0$ otherwise
- A is symmetric if graph is undirected
- Linked lists
- For every vertex v, there is a linked list containing all neighbors of v.
- When graph is static, can use array of variant-length arrays.

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage		
time to check $(u, v) \in E$		
time to list all neighbors of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	
time to check $(u, v) \in E$		
time to list all neighbors of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m: number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$		
time to list all neighbors of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m: number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	
time to list all neighbors of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m: number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	$O\left(d_{u}\right)$
time to list all neighbors of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m: number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	$O\left(d_{u}\right)$
time to list all neighbors of v	$O(n)$	

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m: number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	$O\left(d_{u}\right)$
time to list all neighbors of v	$O(n)$	$O\left(d_{v}\right)$

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Types of Graphs

(3) Bipartite Graphs

- Testing Bipartiteness

4 Topological Ordering

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists)
two vertices $s, t \in V$
Output: whether there is a path connecting s to t in G

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists) two vertices $s, t \in V$
Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists) two vertices $s, t \in V$
Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
- Breadth-First Search (BFS)

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists) two vertices $s, t \in V$
Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Implementing BFS using a Queue

BFS (s)

1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: while head \leq tail do
4: $\quad v \leftarrow$ queue[head], head \leftarrow head +1
5: for all neighbors u of v do
6: if u is "unvisited" then
7:
8:
tail \leftarrow tail +1, queue $[$ tail $]=u$
mark u as "visited"

- Running time: $O(n+m)$.

Example of BFS via Queue

