
28/94

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)
1: A {1, 2, · · · , n}, S ;
2: while A 6= ; do
3: j argminj02A fj0
4: S S [{j}; A {j0 2 A : sj0 � fj}
5: return S

Running time of algorithm?

Naive implementation: O(n2) time

Clever implementation: O(n lg n) time

28/94

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)
1: A {1, 2, · · · , n}, S ;
2: while A 6= ; do
3: j argminj02A fj0
4: S S [{j}; A {j0 2 A : sj0 � fj}
5: return S

Running time of algorithm?

Naive implementation: O(n2) time

Clever implementation: O(n lg n) time

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

t

7

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

7

t

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

7

t

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

7

t

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

7

t

9

29/94

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)
1: sort jobs according to f values
2: t 0, S ;
3: for every j 2 [n] according to non-decreasing order of fj do
4: if sj � t then
5: S S [{j}
6: t fj

7: return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

7

9

t

30/94

Outline

1 Toy Example: Box Packing

2 Interval Scheduling
Interval Partitioning

3 O✏ine Caching
Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Hu↵man Code

5 Summary

31/94

Interval Partitioning
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9

31/94

Interval Partitioning
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9

31/94

Interval Partitioning
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9

31/94

Interval Partitioning
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9

31/94

Interval Partitioning
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9

31/94

Interval Partitioning
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9

31/94

Interval Partitioning
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9

31/94

Interval Partitioning
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9

31/94

Interval Partitioning
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9

32/94

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a earliest-finished machine: There exists an optimum solution
where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.

Take an arbitrary optimum solution S

If it schedules j to the earliest-finished machine i, done

Otherwise, replace all the jobs scheduled to the earliest-finished
machine i in S with j and its subsequent jobs to obtain another
optimum schedule S 0.

32/94

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a earliest-finished machine: There exists an optimum solution
where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.
Take an arbitrary optimum solution S

If it schedules j to the earliest-finished machine i, done

Otherwise, replace all the jobs scheduled to the earliest-finished
machine i in S with j and its subsequent jobs to obtain another
optimum schedule S 0.

32/94

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a earliest-finished machine: There exists an optimum solution
where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.
Take an arbitrary optimum solution S

If it schedules j to the earliest-finished machine i, done

Otherwise, replace all the jobs scheduled to the earliest-finished
machine i in S with j and its subsequent jobs to obtain another
optimum schedule S 0.

32/94

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a earliest-finished machine: There exists an optimum solution
where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.
Take an arbitrary optimum solution S

If it schedules j to the earliest-finished machine i, done

Otherwise, replace all the jobs scheduled to the earliest-finished
machine i in S with j and its subsequent jobs to obtain another
optimum schedule S 0.

32/94

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a earliest-finished machine: There exists an optimum solution
where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.
Take an arbitrary optimum solution S

If it schedules j to the earliest-finished machine i, done

Otherwise, replace all the jobs scheduled to the earliest-finished
machine i in S with j and its subsequent jobs to obtain another
optimum schedule S 0.

33/94

Greedy Algorithm for Interval Partitioning

What is the remaining task after we decided to schedule j?

Is it another instance of interval partitioning problem?

Yes!

0 1 2 3 4 5 6 7 8 9

j

33/94

Greedy Algorithm for Interval Partitioning

What is the remaining task after we decided to schedule j?

Is it another instance of interval partitioning problem? Yes!

0 1 2 3 4 5 6 7 8 9

j

33/94

Greedy Algorithm for Interval Partitioning

What is the remaining task after we decided to schedule j?

Is it another instance of interval partitioning problem? Yes!

0 1 2 3 4 5 6 7 8 9

j

34/94

Greedy Algorithm for Interval Partitioning

Partition(s, f, n)
1: A {1, 2, · · · , n}, S {1}, t1 = 0
2: while A 6= ; do
3: j argminj02A sj0 , Sj {i0}i02S,ti0sj

4: If Sj 6= ;, then schedule j to machine i argmini02Sj ti0
and ti = fj

5: Otherwise, schedule j to machine |S|+ 1, S S [{|S|+ 1}
and t|S| = fj

6: return S

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

35/94

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

j

36/94

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set.

Obs. The number of machines � the depth of the jobs.

Obs. Greedy algorithm never schedules two incompatible jobs in the
same machine.

36/94

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set.

Obs. The number of machines � the depth of the jobs.

Obs. Greedy algorithm never schedules two incompatible jobs in the
same machine.

36/94

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set.

Obs. The number of machines � the depth of the jobs.

Obs. Greedy algorithm never schedules two incompatible jobs in the
same machine.

37/94

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.
Let d be the number of machines that greedy algorithm used.

d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job j, such that job j is incompatible
with all the last scheduled jobs in the d� 1 other machines. In
other words, these d� 1 job each ends after sj.

Observation: all these d� 1 jobs starts earlier than sj because we
schedule the jobs in order of starting time. Thus, we have d jobs
overlapping at time sj + ✏. The jobs depth � d.

By the Observation in the previous slide, an optimal solution � d.
Thus the greedy algorithm is optimal.

37/94

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.
Let d be the number of machines that greedy algorithm used.

d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job j, such that job j is incompatible
with all the last scheduled jobs in the d� 1 other machines. In
other words, these d� 1 job each ends after sj.

Observation: all these d� 1 jobs starts earlier than sj because we
schedule the jobs in order of starting time. Thus, we have d jobs
overlapping at time sj + ✏. The jobs depth � d.

By the Observation in the previous slide, an optimal solution � d.
Thus the greedy algorithm is optimal.

37/94

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.
Let d be the number of machines that greedy algorithm used.

d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job j, such that job j is incompatible
with all the last scheduled jobs in the d� 1 other machines. In
other words, these d� 1 job each ends after sj.

Observation: all these d� 1 jobs starts earlier than sj because we
schedule the jobs in order of starting time. Thus, we have d jobs
overlapping at time sj + ✏. The jobs depth � d.

By the Observation in the previous slide, an optimal solution � d.
Thus the greedy algorithm is optimal.

37/94

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.
Let d be the number of machines that greedy algorithm used.

d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job j, such that job j is incompatible
with all the last scheduled jobs in the d� 1 other machines. In
other words, these d� 1 job each ends after sj.

Observation: all these d� 1 jobs starts earlier than sj because we
schedule the jobs in order of starting time. Thus, we have d jobs
overlapping at time sj + ✏. The jobs depth � d.

By the Observation in the previous slide, an optimal solution � d.
Thus the greedy algorithm is optimal.

38/94

Greedy Algorithm for Interval Partitioning

Partition(s, f, n)
1: A {1, 2, · · · , n}, S {1}, t1 = 0
2: while A 6= ; do
3: j argminj02A sj0 , Sj {i0}i02S,ti0sj

4: If Sj 6= ;, then schedule j to machine i argmini02Sj ti0
and ti = fj

5: Otherwise, schedule j to machine |S|+ 1, S S [{|S|+ 1}
and t|S| = fj

6: return S

Running time of algorithm?

Naive implementation: O(n2) time

Clever implementation: O(n lg n) time with Priority Queue.

38/94

Greedy Algorithm for Interval Partitioning

Partition(s, f, n)
1: A {1, 2, · · · , n}, S {1}, t1 = 0
2: while A 6= ; do
3: j argminj02A sj0 , Sj {i0}i02S,ti0sj

4: If Sj 6= ;, then schedule j to machine i argmini02Sj ti0
and ti = fj

5: Otherwise, schedule j to machine |S|+ 1, S S [{|S|+ 1}
and t|S| = fj

6: return S

Running time of algorithm?

Naive implementation: O(n2) time

Clever implementation: O(n lg n) time with Priority Queue.

38/94

Greedy Algorithm for Interval Partitioning

Partition(s, f, n)
1: A {1, 2, · · · , n}, S {1}, t1 = 0
2: while A 6= ; do
3: j argminj02A sj0 , Sj {i0}i02S,ti0sj

4: If Sj 6= ;, then schedule j to machine i argmini02Sj ti0
and ti = fj

5: Otherwise, schedule j to machine |S|+ 1, S S [{|S|+ 1}
and t|S| = fj

6: return S

Running time of algorithm?

Naive implementation: O(n2) time

Clever implementation: O(n lg n) time with Priority Queue.

39/94

Outline

1 Toy Example: Box Packing

2 Interval Scheduling
Interval Partitioning

3 O✏ine Caching
Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Hu↵man Code

5 Summary

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

51

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

51

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

1

51

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

1

51

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

1

51

1 4

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

1

51

1 4

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

1

51

1 4

1

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

1

51

1 4

1

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

2

1

51

1 4

1

1 3

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

2

1

51

1 4

1

1 3

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

2

2 3

1

51

1 4

1

1 3

1

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

2

2 3

1

51

1 4

1

1 3

1

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

2

2 3

1 2 3

1

51

1 4

1

1 3

1

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

2

2 3

1 2 3

misses = 6

1

51

1 4

1

1 3

1

40/94

O✏ine Caching

Cache that can store k pages

Sequence of page requests

Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

Cache hit happens if requested
page already in cache.

Goal: minimize the number of
cache misses.

page

1

5

4

2

5

3

2

1

sequence

cache

1

5

4

2

2 5

2

2 3

1 2 3

misses = 6

1

51

1 4

1

1 3

1

