Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

LA+ {1,2,--- ,n}, S0

2: while A # () do

3: J < argminjcga fjr

4: S—Su{jh, A« {jeAl:sy>f;}
5

- return S

Running time of algorithm?

e Naive implementation: O(n?) time

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S« 0

2: while A # () do

3: j(—argminj/EA fj’

4 S—Su{jh, A« {jeAl:sy>f;}
5. return S

Running time of algorithm?
e Naive implementation: O(n?) time

@ Clever implementation: O(nlgn) time

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,50
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« sSu{jt !
t fj l
return S 0

N oakoen

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,50
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« Su{j}
bt fj
return S L2 3 4 5 6 7.8 9,

N oakoen

- —

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,50
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« Su{j}
bt fj
return S L2 3 4 5 6 7.8 9,

N oakoen

- —

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} '

6: %= Jfg l

7: return S 0.1 2 3 4 5 6 7 8 9,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2: 640,50

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« SU{j} t

6: %= Jfg l

7: return S 9‘1‘234‘5‘6‘7‘895

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} '

6: %= Jfg l

7: return S 0.1 2 3 4 5 6 7 8 9,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} '

6: %= Jfg l

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} '

6: %= Jfg l

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S+ Su{j} !

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S+ Su{j} !

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S+ Su{j} !

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S+ Su{j} !

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S+ Su{j} !

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} ¢

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} ¢

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} ¢

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} ¢

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} L

6: %= Jfg l

7: return S 0 1 2 3 4 5 6 7 8 9 ,

© Interval Scheduling
@ Interval Partitioning

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

4 5 6 7 8 9
| |

u
e

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

4 5 6 7 8 9
| |

u
e

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9
[

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9
N

——

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a earliest-finished machine: There exists an optimum solution
where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a earliest-finished machine: There exists an optimum solution
where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.

@ Take an arbitrary optimum solution S

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a earliest-finished machine: There exists an optimum solution
where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.
@ Take an arbitrary optimum solution S
o If it schedules j to the earliest-finished machine 7, done

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a earliest-finished machine: There exists an optimum solution
where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.
@ Take an arbitrary optimum solution S
o If it schedules j to the earliest-finished machine 7, done

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting

time to a earliest-finished machine: There exists an optimum solution

where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.
@ Take an arbitrary optimum solution S
o If it schedules j to the earliest-finished machine 7, done

@ Otherwise, replace all the jobs scheduled to the earliest-finished
machine ¢ in S with 7 and its subsequent jobs to obtain another
optimum schedule S".

O

v

Greedy Algorithm for Interval Partitioning

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval partitioning problem?

Greedy Algorithm for Interval Partitioning

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval partitioning problem? Yes!

Greedy Algorithm for Interval Partitioning

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval partitioning problem? Yes!

Greedy Algorithm for Interval Partitioning

Partition(s, f,n)

1 A« {1,2,--- ,n}, S« {1}, t4 =0

2: while A # () do

3:] < arg minjleA Sjts Sj < {i/}i’eS,ti/SSj

4: If S; # 0, then schedule j to machine i <— argmingcg, t
and t; = f;

5: Otherwise, schedule j to machine |S|+ 1, S« SU{|S|+ 1}
and t|5| = fj

6: return S)

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

E—

/1 /|1 @
n ==

»

—

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

0128 4567589
o == =
- .

»

R

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

—

-
—

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

E—

-
—

Greedy Algorithm for Interval Partitioning
0 1 2 3 4 5 6 7 8 9 ,
o = = .
.

e

Greedy Algorithm for Interval Partitioning
0 1 2 3 4 5 6 7 8 9 ,
S T B N R S
. m

R

Greedy Algorithm for Interval Partitioning
0 1 2 3 4 5 6 7 8 9 ,
o | o
. m

R

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set. J

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set. J

Obs. The number of machines > the depth of the jobs.)

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set.

J

Obs. The number of machines > the depth of the jobs.

J

Obs. Greedy algorithm never schedules two incompatible jobs in the
same machine.

J

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.

@ Let d be the number of machines that greedy algorithm used.

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.

@ Let d be the number of machines that greedy algorithm used.

@ d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job 7, such that job j is incompatible
with all the last scheduled jobs in the d — 1 other machines. In
other words, these d — 1 job each ends after s;.

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.
@ Let d be the number of machines that greedy algorithm used.

@ d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job 7, such that job j is incompatible
with all the last scheduled jobs in the d — 1 other machines. In
other words, these d — 1 job each ends after s;.

@ Observation: all these d — 1 jobs starts earlier than s; because we
schedule the jobs in order of starting time. Thus, we have d jobs
overlapping at time s; + €. The jobs depth > d.

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.

Let d be the number of machines that greedy algorithm used.

d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job 7, such that job j is incompatible
with all the last scheduled jobs in the d — 1 other machines. In
other words, these d — 1 job each ends after s;.

Observation: all these d — 1 jobs starts earlier than s; because we
schedule the jobs in order of starting time. Thus, we have d jobs

overlapping at time s; + €. The jobs depth > d.

By the Observation in the previous slide, an optimal solution > d.

Thus the greedy algorithm is optimal.

O

Greedy Algorithm for Interval Partitioning

Partition(s, f,n)

1 A« {1,2,--- ,n}, S« {1}, t4 =0

2: while A # () do

3:] < arg minjleA Sjts Sj < {i/}i’eS,tilgs]-

4: If S; # 0, then schedule j to machine i <— argmingcg, t
and t; = f;

5: Otherwise, schedule j to machine |S|+ 1, S« SU{|S|+ 1}
and t|5| = fj

6: return S)

Running time of algorithm?

Greedy Algorithm for Interval Partitioning

Partition(s, f,n)

1 A« {1,2,--- ,n}, S« {1}, t4 =0

2: while A # () do

3:] < arg minjleA Sjts Sj < {i/}i’eS,tilgs]-

4: If S; # 0, then schedule j to machine i <— argmingcg, t
and t; = f;

5: Otherwise, schedule j to machine |S|+ 1, S« SU{|S|+ 1}
and t|5| = fj

6: return S)

Running time of algorithm?

e Naive implementation: O(n?) time

Greedy Algorithm for Interval Partitioning

Partition(s, f,n)

1 A« {1,2,--- ,n}, S« {1}, t4 =0

2: while A # () do

3: j + arg minjleA Sjts Sj — {i/}iles7ti/§5j

4: If S; # 0, then schedule j to machine i <— argmingcg, t
and t; = f;

5: Otherwise, schedule j to machine |S|+ 1, S« SU{|S|+ 1}
and t|5| = fj

6: return S)

Running time of algorithm?
e Naive implementation: O(n?) time
o Clever implementation: O(nlgn) time with Priority Queue.

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

Offline Caching

@ Cache that can store k£ pages

@ Sequence of page requests

Offline Caching

cache

page
@ Cache that can store k pages sequence! .

@ Sequence of page requests

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! .

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! .
X

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache

page
@ Cache that can store k pages sequence; .

x [0

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! .
@ Sequence of page requests X N

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

X

=] o] [[=]] (=] [[=]

Offline Caching

cache

page
@ Cache that can store k pages sequence | D D D
@ Sequence of page requests X LI
x [5][]

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing

page if necessary.

=] o] (2] [=] [] [=] [=]

Offline Caching

cache

page
@ Cache that can store k pages sequence | D D D
@ Sequence of page requests X LI
x [5][]
X

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] (2] [=] [] [=] [=]

Offline Caching

cache

page
@ Cache that can store k pages sequence; .

@ Sequence of page requests X L]
e Cache miss happens if X]
requested page not in cache. X

We need bring the page into
cache, and evict some existing

page if necessary.

=] o] [=2] [=] [] [=]

Offline Caching

cache

@ Cache that can store k pages SC%??C%CQ% D D D
x [1[]
% W[5 []
x5
- X

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache

@ Cache that can store k pages SC%?%%CQ .
x [1[]
x [5][]
% [1][5] [4]
% [1] 2] [4]

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache

@ Cache that can store k pages SC%?%%CQ .
x [1[]
x [5][]
% [1][5] [4]
% [1] 2] [4]
X

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [1][5] [4]
% [1] 2] [4]
% [1] 2] [5]

=] o] [[=]] (=] [[=]

Offline Caching

cache

page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X LI
@ Cache miss happens if X]
\r/t:/quested page not in ca_che. X

e need bring the page into ;
cache, and evict some existing X
page if necessary. X

X
‘

Offline Caching

cache

@ Cache that can store k pages SC%igC(ilcci I
@ Sequence of page requests X HiN
@ Cache miss happens if X]
e o n e
cache, and evict some existing X
page if necessary. X
x

‘

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [[5][4]
% [1] 2] [4]
% [1] 2] [5]
x [1][2] [3]

v

@ Cache hit happens if requested
page already in cache.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X LI
o Cache miss happens if X]
requested page not in ca_che. X
We need bring the page into ;
cache, and evict some existing X
page if necessary. X
@ Cache hit happens if requested %
page already in cache. 3
v

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X LI
o Cache miss happens if X]
requested page not in ca_che. X
We need bring the page into ;
cache, and evict some existing X
page if necessary. X
@ Cache hit happens if requested %
page already in cache. 3
v
v

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [[5][4]
% [1] 2] [4]
% [1] 2] [5]
- x [1] 2] [3]
v] [2][3]
REEE

@ Cache hit happens if requested
page already in cache.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [[5][4]
% [1] 2] [4]
% [1] 2] [5]
- x [1] 2] [3]
v] [2][3]
REEE

misses = 6

@ Cache hit happens if requested
page already in cache.

=] o] [[=]] (=] [[=]

Offline Caching

cache

@ Cache that can store k pages SC%??C%CQ% D D D
% [
% [G][]
x 61
% W[[1]
x [[2][5]
x [J[2][3]
v WEA
MniBla

misses = 6

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if requested
page already in cache.

@ Goal: minimize the number of
cache misses.

=] o] [[=]] (=] [[=]

