Greedy Algorithm for Interval Scheduling

$\mathsf{Schedule}(s, f, n)$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$$

2: while $A \neq \emptyset$ do

3:
$$j \leftarrow \arg \min_{j' \in A} f_{j'}$$

4:
$$S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$$

5: return S

Running time of algorithm?

• Naive implementation: $O(n^2)$ time

Greedy Algorithm for Interval Scheduling

$\mathsf{Schedule}(s, f, n)$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$$

2: while $A \neq \emptyset$ do

3:
$$j \leftarrow \arg \min_{j' \in A} f_{j'}$$

4:
$$S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$$

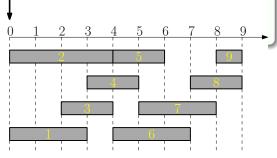
5: return S

Running time of algorithm?

- Naive implementation: $O(n^2)$ time
- Clever implementation: $O(n\lg n)$ time

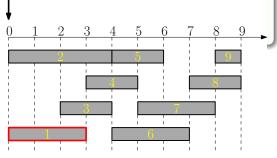
$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: for every $j \in [n]$ according to non-decreasing order of f_j do
- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- $6: t \leftarrow f_j$
- 7: return S



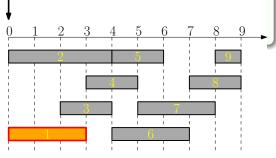
$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: for every $j \in [n]$ according to non-decreasing order of f_j do
- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- $6: t \leftarrow f_j$
- 7: return S



$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: for every $j \in [n]$ according to non-decreasing order of f_j do
- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- $6: t \leftarrow f_j$
- 7: return S

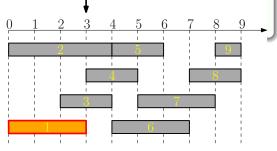


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

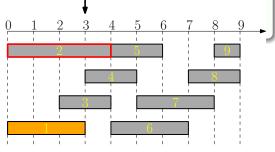


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

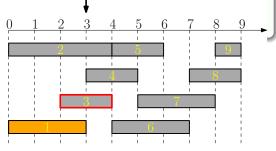


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

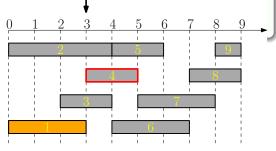


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

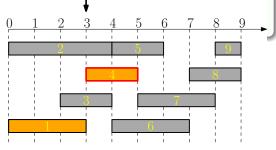


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

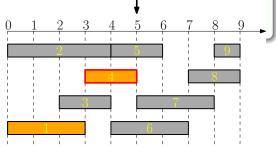


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

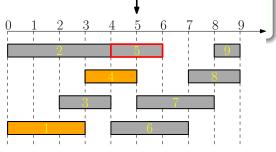


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

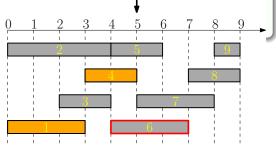


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

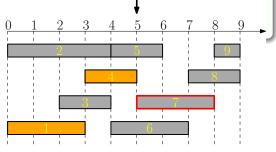


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

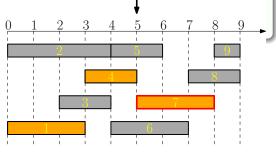


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

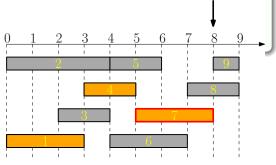


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

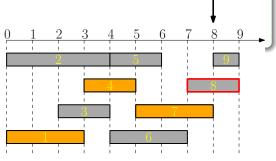


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

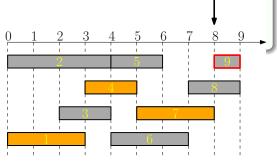


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

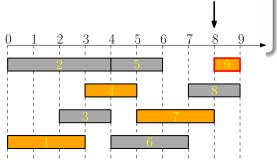


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$

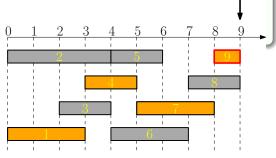


$\mathsf{Schedule}(s, f, n)$

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$

3: for every $j \in [n]$ according to non-decreasing order of f_j do

- 4: **if** $s_j \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$



Outline

Toy Example: Box Packing

Interval SchedulingInterval Partitioning

3 Offline Caching

- Heap: Concrete Data Structure for Priority Queue
- 4 Data Compression and Huffman Code

5 Summary

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint



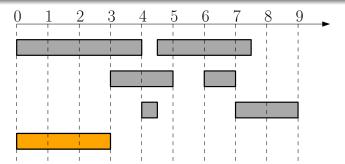
Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint



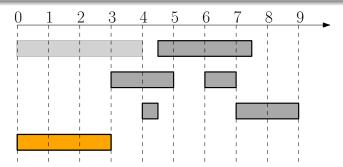
Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint



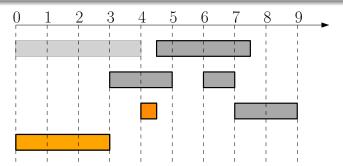
Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint



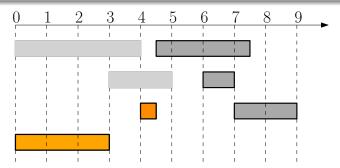
Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint



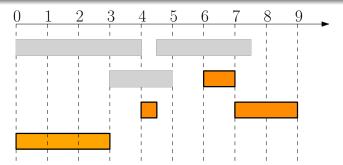
Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint



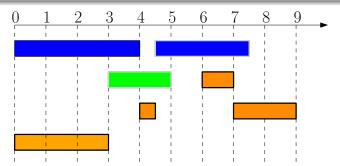
Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint



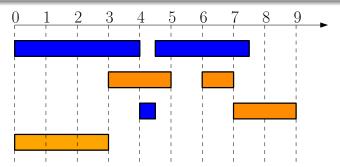
Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint



Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint



Lemma It is safe to schedule the job j with the earliest starting time to a earliest-finished machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on the earliest-finished machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

Lemma It is safe to schedule the job j with the earliest starting time to a earliest-finished machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on the earliest-finished machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

Proof.

• Take an arbitrary optimum solution ${\cal S}$

Lemma It is safe to schedule the job j with the earliest starting time to a earliest-finished machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on the earliest-finished machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

- Take an arbitrary optimum solution ${\cal S}$
- $\bullet~$ If it schedules j to the earliest-finished machine i, done

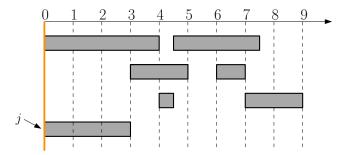
Lemma It is safe to schedule the job j with the earliest starting time to a earliest-finished machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on the earliest-finished machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

- Take an arbitrary optimum solution ${\cal S}$
- $\bullet~$ If it schedules j to the earliest-finished machine i, done

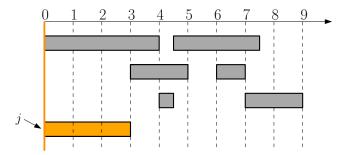
Lemma It is safe to schedule the job j with the earliest starting time to a earliest-finished machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on the earliest-finished machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

- Take an arbitrary optimum solution ${\cal S}$
- $\bullet~$ If it schedules j to the earliest-finished machine i, done
- Otherwise, replace all the jobs scheduled to the earliest-finished machine *i* in *S* with *j* and its subsequent jobs to obtain another optimum schedule *S'*.

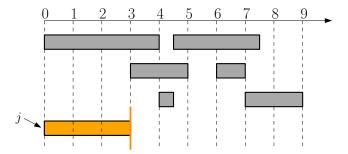
- What is the remaining task after we decided to schedule *j*?
- Is it another instance of interval partitioning problem?



- What is the remaining task after we decided to schedule *j*?
- Is it another instance of interval partitioning problem? Yes!



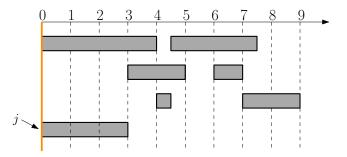
- What is the remaining task after we decided to schedule *j*?
- Is it another instance of interval partitioning problem? Yes!

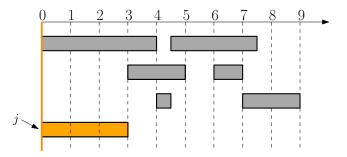


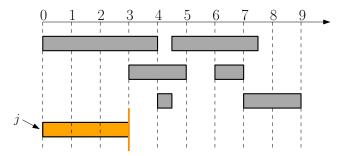
$\mathsf{Partition}(s, f, n)$

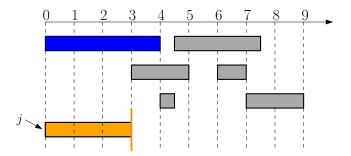
1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \{1\}, t_1 = 0$$

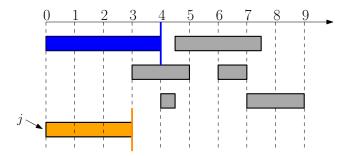
- 2: while $A \neq \emptyset$ do
- 3: $j \leftarrow \arg\min_{j' \in A} s_{j'}, S_j \leftarrow \{i'\}_{i' \in S, t_{i'} \leq s_j}$
- 4: If $S_j \neq \emptyset$, then schedule j to machine $i \leftarrow \arg \min_{i' \in S_j} t_{i'}$ and $t_i = f_j$
- 5: Otherwise, schedule j to machine $|S|+1,~S \leftarrow S \cup \{|S|+1\}$ and $t_{|S|} = f_j$
- 6: return S

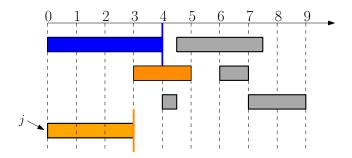


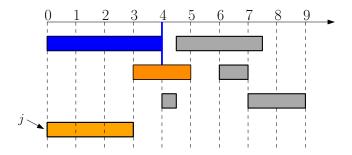


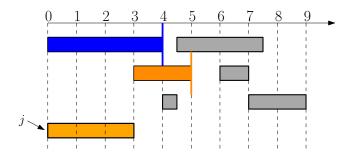


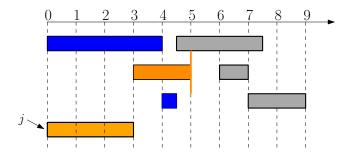


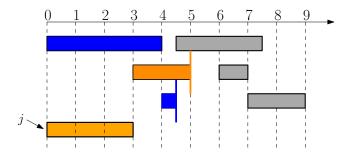


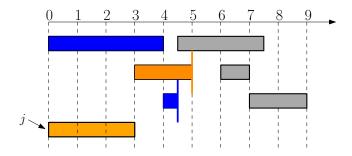


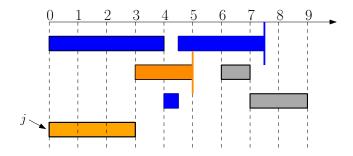


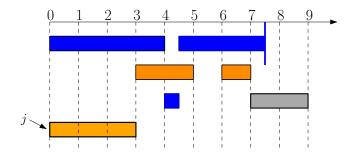


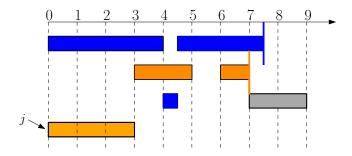


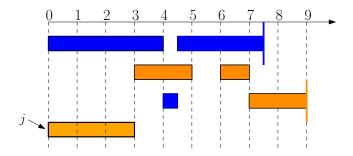












Def. The **depth** of a set of jobs is the maximum number of overlapping jobs at any point within the given set.

Def. The **depth** of a set of jobs is the maximum number of overlapping jobs at any point within the given set.

Obs. The number of machines \geq the depth of the jobs.

Def. The **depth** of a set of jobs is the maximum number of overlapping jobs at any point within the given set.

Obs. The number of machines \geq the depth of the jobs.

Obs. Greedy algorithm never schedules two incompatible jobs in the same machine.

Theorem Greedy algorithm is optimal.

Proof.

• Let d be the number of machines that greedy algorithm used.

Theorem Greedy algorithm is optimal.

Proof.

- $\bullet\,$ Let d be the number of machines that greedy algorithm used.
- d-th machine is opened because the greedy algorithm need to schedule a job, wlog, say job j, such that job j is incompatible with all the last scheduled jobs in the d-1 other machines. In other words, these d-1 job each ends after s_j .

Theorem Greedy algorithm is optimal.

Proof.

- Let d be the number of machines that greedy algorithm used.
- d-th machine is opened because the greedy algorithm need to schedule a job, wlog, say job j, such that job j is incompatible with all the last scheduled jobs in the d-1 other machines. In other words, these d-1 job each ends after s_j .
- Observation: all these d − 1 jobs starts earlier than s_j because we schedule the jobs in order of starting time. Thus, we have d jobs overlapping at time s_j + ε. The jobs depth ≥ d.

Theorem Greedy algorithm is optimal.

Proof.

- Let d be the number of machines that greedy algorithm used.
- d-th machine is opened because the greedy algorithm need to schedule a job, wlog, say job j, such that job j is incompatible with all the last scheduled jobs in the d-1 other machines. In other words, these d-1 job each ends after s_j .
- Observation: all these d − 1 jobs starts earlier than s_j because we schedule the jobs in order of starting time. Thus, we have d jobs overlapping at time s_j + ε. The jobs depth ≥ d.
- By the Observation in the previous slide, an optimal solution $\geq d$. Thus the greedy algorithm is optimal.

$\mathsf{Partition}(s, f, n)$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \{1\}, t_1 = 0$$

- 2: while $A \neq \emptyset$ do
- 3: $j \leftarrow \arg\min_{j' \in A} s_{j'}, S_j \leftarrow \{i'\}_{i' \in S, t_{i'} \leq s_j}$
- 4: If $S_j \neq \emptyset$, then schedule j to machine $i \leftarrow \arg \min_{i' \in S_j} t_{i'}$ and $t_i = f_j$
- 5: Otherwise, schedule j to machine $|S|+1,~S \leftarrow S \cup \{|S|+1\}$ and $t_{|S|} = f_j$
- 6: return S

Running time of algorithm?

$\mathsf{Partition}(s, f, n)$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \{1\}, t_1 = 0$$

- 2: while $A \neq \emptyset$ do
- 3: $j \leftarrow \arg\min_{j' \in A} s_{j'}, S_j \leftarrow \{i'\}_{i' \in S, t_{i'} \leq s_j}$
- 4: If $S_j \neq \emptyset$, then schedule j to machine $i \leftarrow \arg \min_{i' \in S_j} t_{i'}$ and $t_i = f_j$
- 5: Otherwise, schedule j to machine $|S|+1,~S \leftarrow S \cup \{|S|+1\}$ and $t_{|S|} = f_j$
- 6: return S

Running time of algorithm?

• Naive implementation: ${\cal O}(n^2)$ time

$\mathsf{Partition}(s, f, n)$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \{1\}, t_1 = 0$$

- 2: while $A \neq \emptyset$ do
- 3: $j \leftarrow \arg\min_{j' \in A} s_{j'}, S_j \leftarrow \{i'\}_{i' \in S, t_{i'} \leq s_j}$
- 4: If $S_j \neq \emptyset$, then schedule j to machine $i \leftarrow \arg \min_{i' \in S_j} t_{i'}$ and $t_i = f_j$
- 5: Otherwise, schedule j to machine $|S|+1,~S \leftarrow S \cup \{|S|+1\}$ and $t_{|S|} = f_j$
- 6: return S

Running time of algorithm?

- Naive implementation: ${\cal O}(n^2)$ time
- Clever implementation: $O(n \lg n)$ time with Priority Queue.

Outline

Toy Example: Box Packing

Interval Scheduling
Interval Partitioning

3 Offline Caching

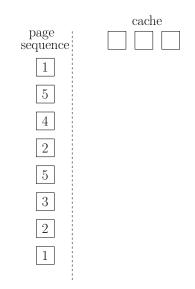
• Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Huffman Code

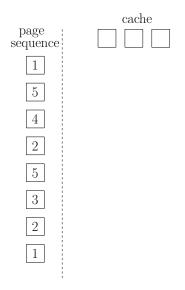
5 Summary

- Cache that can store \boldsymbol{k} pages
- Sequence of page requests

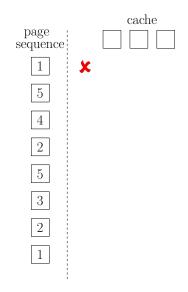
- $\bullet\,$ Cache that can store k pages
- Sequence of page requests



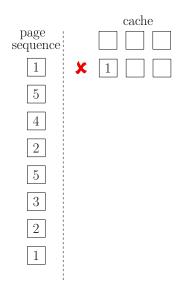
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.



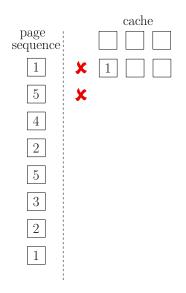
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.



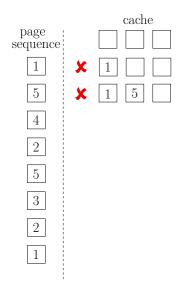
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.



- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.



- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.



- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.

		cache		
page sequence				
1	X	1		
5	x	1	5	
4	X			
2				
5				
3				
2				
1				

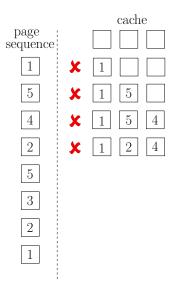
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.

		cache		
page sequence				
1	X	1		
5	X	1	5	
4	X	1	5	4
2				
5				
3				
2				
1				

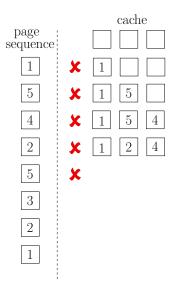
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.

page sequence			cach	e
1	X	1		
5	x	1	5	
4	x	1	5	4
2	x			
5				
3				
2				
1				

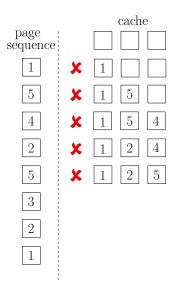
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.



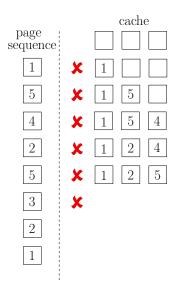
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.



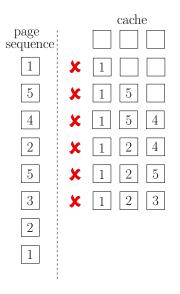
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.



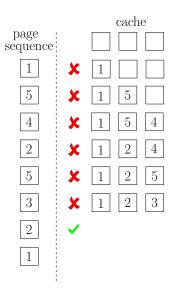
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.



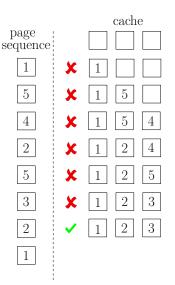
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.



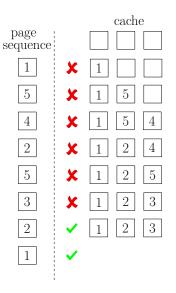
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.



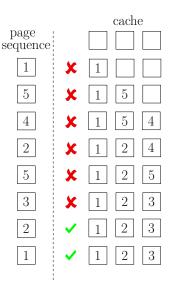
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.



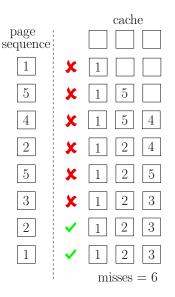
- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.



- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

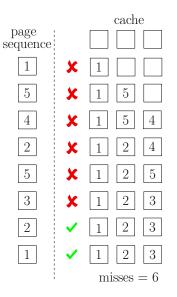


- Cache that can store \boldsymbol{k} pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.



40/94

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.
- Goal: minimize the number of cache misses.



40/94