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Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting

time to a earliest-finished machine: There exists an optimum solution

where job j with the earliest starting time is scheduled first on the
earliest-finished machine that is compatible with all jobs in that
machine if applicable; otherwise, it can be scheduled by opening a
new machine.

Proof.
@ Take an arbitrary optimum solution S
o If it schedules j to the earliest-finished machine 7, done

@ Otherwise, replace all the jobs scheduled to the earliest-finished
machine ¢ in S with 7 and its subsequent jobs to obtain another
optimum schedule S".

O
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Partition(s, f,n)

1 A« {1,2,--- ,n}, S« {1}, t4 =0

2: while A # () do

3: ] < arg minjleA Sjts Sj < {i/}i’eS,ti/SSj

4: If S; # 0, then schedule j to machine i <— argmingcg, t
and t; = f;

5: Otherwise, schedule j to machine |S|+ 1, S« SU{|S|+ 1}
and t|5| = fj

6: return S )
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Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set.

J

Obs. The number of machines > the depth of the jobs.

J

Obs. Greedy algorithm never schedules two incompatible jobs in the
same machine.

J
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Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.

Let d be the number of machines that greedy algorithm used.

d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job 7, such that job j is incompatible
with all the last scheduled jobs in the d — 1 other machines. In
other words, these d — 1 job each ends after s;.

Observation: all these d — 1 jobs starts earlier than s; because we
schedule the jobs in order of starting time. Thus, we have d jobs

overlapping at time s; + €. The jobs depth > d.

By the Observation in the previous slide, an optimal solution > d.

Thus the greedy algorithm is optimal.
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Partition(s, f,n)

1 A« {1,2,--- ,n}, S« {1}, t4 =0

2: while A # () do

3: j + arg minjleA Sjts Sj — {i/}iles7ti/§5j

4: If S; # 0, then schedule j to machine i <— argmingcg, t
and t; = f;

5: Otherwise, schedule j to machine |S|+ 1, S« SU{|S|+ 1}
and t|5| = fj

6: return S )

Running time of algorithm?
e Naive implementation: O(n?) time
o Clever implementation: O(nlgn) time with Priority Queue.



© Offline Caching
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cache
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@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X ]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [ [5][4]
% [1] 2] [4]
% [1] 2] [5]
- x [1] 2] [3]
v ] [2][3]
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@ Cache hit happens if requested
page already in cache.
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cache

@ Cache that can store k pages SC%??C%CQ% D D D
% [
% [G][]
x 61
% W[ [1]
x [ [2][5]
x [J[2][3]
v WEA
MniBla

misses = 6

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if requested
page already in cache.

@ Goal: minimize the number of
cache misses.
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