Knapsack Problem

Input: an integer bound $W > 0$

- a set of n items, each with an integer weight $w_i > 0$
- a value $v_i > 0$ for each item i

Output: a subset S of items that

maximizes $\sum_{i \in S} v_i$ s.t. $\sum_{i \in S} w_i \leq W$.

Motivation: you have budget W, and want to buy a subset of items of maximum total value.
Knapsack Problem

Input: an integer bound $W > 0$

a set of n items, each with an integer weight $w_i > 0$

a value $v_i > 0$ for each item i

Output: a subset S of items that

maximizes $\sum_{i \in S} v_i$ \quad s.t. $\sum_{i \in S} w_i \leq W$.

- Motivation: you have budget W, and want to buy a subset of items of maximum total value
DP for Knapsack Problem

- $opt[i, W']$: the optimum value when budget is W' and items are \{1, 2, 3, \ldots , i\}.
- If $i = 0$, $opt[i, W'] = 0$ for every $W' = 0, 1, 2, \ldots , W$.

\[
opt[i, W'] = \begin{cases}
 & i = 0 \\
 & i > 0, w_i > W' \\
 & i > 0, w_i \leq W'
\end{cases}
\]
DP for Knapsack Problem

- $opt[i, W']$: the optimum value when budget is W' and items are $\{1, 2, 3, \ldots, i\}$.
- If $i = 0$, $opt[i, W'] = 0$ for every $W' = 0, 1, 2, \ldots, W$.

$$
opt[i, W'] = \begin{cases}
0 & i = 0 \\
& i > 0, w_i > W' \\
& i > 0, w_i \leq W'
\end{cases}
$$
DP for Knapsack Problem

- \(opt[i, W'] \): the optimum value when budget is \(W' \) and items are \(\{1, 2, 3, \cdots, i\} \).
- If \(i = 0 \), \(opt[i, W'] = 0 \) for every \(W' = 0, 1, 2, \cdots, W \).

\[
\begin{align*}
\text{opt}[i, W'] &= \begin{cases}
0 & i = 0 \\
\text{opt}[i - 1, W'] & i > 0, w_i > W' \\
\text{opt}[i - 1, W'] & i > 0, w_i \leq W'
\end{cases}
\end{align*}
\]
DP for Knapsack Problem

- \(\text{opt}[i, W'] \): the optimum value when budget is \(W' \) and items are \(\{1, 2, 3, \ldots, i\} \).
- If \(i = 0 \), \(\text{opt}[i, W'] = 0 \) for every \(W' = 0, 1, 2, \ldots, W \).

\[
\text{opt}[i, W'] = \begin{cases}
0 & \text{if } i = 0 \\
\text{opt}[i - 1, W'] & \text{if } i > 0, w_i > W' \\
\max \left\{ \text{opt}[i - 1, W'], \text{opt}[i - 1, W' - w_i] + v_i \right\} & \text{if } i > 0, w_i \leq W'
\end{cases}
\]
Exercise: Items with 3 Parameters

Input: integer bounds $W > 0$, $Z > 0$,
a set of n items, each with an integer weight $w_i > 0$
a size $z_i > 0$ for each item i
a value $v_i > 0$ for each item i

Output: a subset S of items that

\[
\text{maximizes } \sum_{i \in S} v_i \quad \text{s.t.} \\
\sum_{i \in S} w_i \leq W \text{ and } \sum_{i \in S} z_i \leq Z
\]
Outline

1 Weighted Interval Scheduling
2 Subset Sum Problem
3 Knapsack Problem
4 Longest Common Subsequence
 • Longest Common Subsequence in Linear Space
5 Shortest Paths in Directed Acyclic Graphs
6 Matrix Chain Multiplication
7 Optimum Binary Search Tree
8 Summary
Subsequence

- $A = bacdca$
- $C = adca$
Subsequence

- $A = bacdca$
- $C = adca$
- C is a subsequence of A
Subsequence

- \(A = bacdca \)
- \(C = adca \)
- \(C \) is a subsequence of \(A \)

Def. Given two sequences \(A[1 .. n] \) and \(C[1 .. t] \) of letters, \(C \) is called a subsequence of \(A \) if there exists integers \(1 \leq i_1 < i_2 < i_3 < \ldots < i_t \leq n \) such that \(A[i_j] = C[j] \) for every \(j = 1, 2, 3, \ldots, t \).
Subsequence

- $A = bacdca$
- $C = adca$
- C is a subsequence of A

Def. Given two sequences $A[1 \ldots n]$ and $C[1 \ldots t]$ of letters, C is called a **subsequence** of A if there exists integers $1 \leq i_1 < i_2 < i_3 < \ldots < i_t \leq n$ such that $A[i_j] = C[j]$ for every $j = 1, 2, 3, \ldots, t$.

Exercise: how to check if sequence C is a subsequence of A?
Common subsequence

Def. Given two sequences $A[1 \ldots n]$ and $B[1 \ldots m]$ of letters, C is called a **common subsequence** of A and B if C is a subsequence of A and also a subsequence of B.
Def. Given two sequences $A[1 \ldots n]$ and $B[1 \ldots m]$ of letters, C is called a common subsequence of A and B if C is a subsequence of A and also a subsequence of B.

Example: $A = adecaf$ and $B = caefcad$
Def. Given two sequences $A[1 .. n]$ and $B[1 .. m]$ of letters, C is called a common subsequence of A and B if C is a subsequence of A and also a subsequence of B.

- Example: $A = adecadf$ and $B = caefcad$
- Common subsequence: $C = adcaf$
Common subsequence

Def. Given two sequences $A[1 \ldots n]$ and $B[1 \ldots m]$ of letters, C is called a common subsequence of A and B if C is a subsequence of A and also a subsequence of B.

- Example: $A = adecadf$ and $B = caefcad$
- Common subsequence: $C = adcaf$?
- Common subsequence: $C = aead$?
Common subsequence

Def. Given two sequences $A[1 .. n]$ and $B[1 .. m]$ of letters, C is called a **common subsequence** of A and B if C is a subsequence of A and also a subsequence of B.

- Example: $A = adecadf$ and $B = caefcad$
 - Common subsequence: $C = adcaf$
 - Common subsequence: $C = aead$
 - Common subsequence: $C = acad$
Edit distance with two operations (insertions and deletions)

Def. Given two sequences $A[1..n]$ and $B[1..m]$ of letters, $d(A, B)$ is called a edit distance with insert and delete operations of A and B if $d(A, B)$ is the minimum number of edit operations needed to transform A into B, where possible operations are:

- insert a character
- delete a character

Example: $A = \text{abc}$ and $B = \text{adef}$

Distance $d(A, B) = 5$: delete b, delete c, insert d, insert e, and insert f.
Def. Given two sequences $A[1..n]$ and $B[1..m]$ of letters, $d(A, B)$ is called a edit distance with insert and delete operations of A and B if $d(A, B)$ is the minimum number of edit operations needed to transform A into B, where possible operations are:

- insert a character
- delete a character

Example: $A = abc$ and $B = adef$
Def. Given two sequences $A[1..n]$ and $B[1..m]$ of letters, $d(A, B)$ is called a edit distance with insert and delete operations of A and B if $d(A, B)$ is the minimum number of edit operations needed to transform A into B, where possible operations are:

- insert a character
- delete a character

Example: $A = abc$ and $B = adef$

Distance $d(A, B) = 5$: delete b, delete c, insert d, insert e, and insert f.
Edit distance with three operations (insertions, deletions and replacing)

Def. Given two sequences $A[1 .. n]$ and $B[1 .. m]$ of letters, $d(A, B)$ is called a edit distance of A and B if $d(A, B)$ is the minimum number of edit operations needed to transform A into B, where possible operations are:

- insert a character
- delete a character
- modify (or replace) a character

Example: $A = abc$ and $B = adef$.

Distance $d(A, B) = 3$: replace b to d, replace c to e, and insert character f.

Edit distance with three operations (insertions, deletions and replacing)

Def. Given two sequences $A[1..n]$ and $B[1..m]$ of letters, $d(A, B)$ is called an edit distance of A and B if $d(A, B)$ is the minimum number of edit operations needed to transform A into B, where possible operations are:

- insert a character
- delete a character
- modify (or replace) a character

Example: $A = abc$ and $B = adef$
Edit distance with three operations (insertions, deletions and replacing)

Def. Given two sequences $A[1..n]$ and $B[1..m]$ of letters, $d(A, B)$ is called a **edit distance** of A and B if $d(A, B)$ is the minimum number of edit operations needed to transform A into B, where possible operations are:

- insert a character
- delete a character
- modify (or replace) a character

Example: $A = abc$ and $B = adef$

Distance $d(A, B) = 3$: replace b to d, replace c to e, and insert character f.
Quiz 5 on Ublearns

- Questions about subsequence, common subsequence, and edit distance
- Deadline: 25 Wed 2023, 11:59PM