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Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
To sort, we are only allowed to compare two elements

We can not use “internal structures” of the elements
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Lemma The (worst-case) running time of any comparison-based
sorting algorithm is ⌦(n lg n).

Bob has one number x in his hand, x 2 {1, 2, 3, · · · , N}.
You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: dlog2 Ne.
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Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation ⇡ over {1, 2, 3, · · · , n} in his hand.

You can ask Bob “yes/no” questions about ⇡.

Q: How many questions do you need to ask in order to get the
permutation ⇡?

A: log2 n! = ⇥(n lg n)
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Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation ⇡ over {1, 2, 3, · · · , n} in his hand.

You can ask Bob questions of the form “does i appear before j in
⇡?”

Q: How many questions do you need to ask in order to get the
permutation ⇡?

A: At least log2 n! = ⇥(n lg n)
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Selection Problem
Input: a set A of n numbers, and 1  i  n

Output: the i-th smallest number in A

Sorting solves the problem in time O(n lg n).

Our goal: O(n) running time
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Recall: Quicksort with Median Finder

quicksort(A, n)
1: if n  1 then return A

2: x lower median of A
3: AL  elements in A that are less than x . Divide
4: AR  elements in A that are greater than x . Divide
5: BL  quicksort(AL, AL.size) . Conquer
6: BR  quicksort(AR, AR.size) . Conquer
7: t number of times x appear A
8: return the array obtained by concatenating BL, the array

containing t copies of x, and BR
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Selection Algorithm with Median Finder

selection(A, n, i)
1: if n = 1 then return A

2: x lower median of A
3: AL  elements in A that are less than x . Divide
4: AR  elements in A that are greater than x . Divide
5: if i  AL.size then

6: return selection(AL, AL.size, i) . Conquer
7: else if i > n� AR.size then

8: return selection(AR, AR.size, i� (n� AR.size)) . Conquer
9: else

10: return x

Recurrence for selection: T (n) = T (n/2) +O(n)

Solving recurrence: T (n) = O(n)
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Randomized Selection Algorithm

selection(A, n, i)
1: if n = 1 thenreturn A

2: x random element of A (called pivot)
3: AL  elements in A that are less than x . Divide
4: AR  elements in A that are greater than x . Divide
5: if i  AL.size then

6: return selection(AL, AL.size, i) . Conquer
7: else if i > n� AR.size then

8: return selection(AR, AR.size, i� (n� AR.size)) . Conquer
9: else

10: return x

expected running time = O(n)
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Polynomial Multiplication
Input: two polynomials of degree n� 1

Output: product of two polynomials

Example:

(3x3 + 2x2 � 5x+ 4)⇥ (2x3 � 3x2 + 6x� 5)

= 6x6 � 9x5 + 18x4 � 15x3

+ 4x5 � 6x4 + 12x3 � 10x2

� 10x4 + 15x3 � 30x2 + 25x

+ 8x3 � 12x2 + 24x� 20

= 6x6 � 5x5 + 2x4 + 20x3 � 52x2 + 49x� 20

Input: (4,�5, 2, 3), (�5, 6,�3, 2)
Output: (�20, 49,�52, 20, 2,�5, 6)
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Näıve Algorithm

polynomial-multiplication(A,B, n)
1: let C[k] 0 for every k = 0, 1, 2, · · · , 2n� 2
2: for i 0 to n� 1 do

3: for j  0 to n� 1 do

4: C[i+ j] C[i+ j] + A[i]⇥ B[j]

5: return C

Running time: O(n2)
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Divide-and-Conquer for Polynomial Multiplication

p(x) = 3x3 + 2x2 � 5x+ 4 = (3x+ 2)x2 + (�5x+ 4)

q(x) = 2x3 � 3x2 + 6x� 5 = (2x� 3)x2 + (6x� 5)

p(x): degree of n� 1 (assume n is even)

p(x) = pH(x)xn/2 + pL(x),

pH(x), pL(x): polynomials of degree n/2� 1.

pq =
�
pHx

n/2 + pL

��
qHx

n/2 + qL

�

= pHqHx
n +

�
pHqL + pLqH

�
x
n/2 + pLqL
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