Minimum Spanning Tree (MST) Problem

Input: Graph $G=(V, E)$ and edge weights $w: E \rightarrow \mathbb{R}$
Output: the spanning tree T of G with the minimum total weight

Minimum Spanning Tree (MST) Problem

Input: Graph $G=(V, E)$ and edge weights $w: E \rightarrow \mathbb{R}$
Output: the spanning tree T of G with the minimum total weight

Minimum Spanning Tree (MST) Problem

Input: Graph $G=(V, E)$ and edge weights $w: E \rightarrow \mathbb{R}$
Output: the spanning tree T of G with the minimum total weight

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Two Classic Greedy Algorithms for MST

- Kruskal's Algorithm
- Prim's Algorithm

Outline

(1) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
(2) Single Source Shortest Paths
- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

Q: Which edge can be safely included in the MST?

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T
- Assume the lightest edge e^{*} is not in T

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T
- Assume the lightest edge e^{*} is not in T
- There is a unique path in T connecting u and v

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T
- Assume the lightest edge e^{*} is not in T
- There is a unique path in T connecting u and v
- Remove any edge e in the path to obtain tree T^{\prime}

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T
- Assume the lightest edge e^{*} is not in T
- There is a unique path in T connecting u and v
- Remove any edge e in the path to obtain tree T^{\prime}
- $w\left(e^{*}\right) \leq w(e) \Longrightarrow w\left(T^{\prime}\right) \leq w(T): T^{\prime}$ is also a MST

Is the Residual Problem Still a MST Problem?

Is the Residual Problem Still a MST Problem?

- Residual problem: find the minimum spanning tree that contains edge (g, h)

Is the Residual Problem Still a MST Problem?

- Residual problem: find the minimum spanning tree that contains edge (g, h)
- Contract the edge (g, h)

Is the Residual Problem Still a MST Problem?

- Residual problem: find the minimum spanning tree that contains edge (g, h)
- Contract the edge (g, h)
- Residual problem: find the minimum spanning tree in the contracted graph

Contraction of an Edge (u, v)

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}
- Remove all edges (u, v) from E

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to $\left(u^{*}, w\right)$

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to $\left(u^{*}, w\right)$
- For every edge $(v, w) \in E, w \neq u$, change it to $\left(u^{*}, w\right)$

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to $\left(u^{*}, w\right)$
- For every edge $(v, w) \in E, w \neq u$, change it to $\left(u^{*}, w\right)$
- May create parallel edges! E.g. : two edges $\left(i, g^{*}\right)$

Greedy Algorithm

Repeat the following step until G contains only one vertex:
(1) Choose the lightest edge e^{*}, add e^{*} to the spanning tree
(2) Contract e^{*} and update G be the contracted graph

Greedy Algorithm

Repeat the following step until G contains only one vertex:
(1) Choose the lightest edge e^{*}, add e^{*} to the spanning tree
(2) Contract e^{*} and update G be the contracted graph

Q: What edges are removed due to contractions?

Greedy Algorithm

Repeat the following step until G contains only one vertex:
(1) Choose the lightest edge e^{*}, add e^{*} to the spanning tree
(2) Contract e^{*} and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u and v formed by edges we selected

Greedy Algorithm

MST-Greedy (G, w)

1: $F \leftarrow \emptyset$
2: sort edges in E in non-decreasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then
5: $\quad F \leftarrow F \cup\{(u, v)\}$
6: return (V, F)

Kruskal's Algorithm: Example

Sets: $\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g\},\{h\},\{i\}$

Kruskal's Algorithm: Example

Sets: $\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g\},\{h\},\{i\}$

Kruskal's Algorithm: Example

Sets: $\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g, h\},\{i\}$

Kruskal's Algorithm: Example

Sets: $\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g, h\},\{i\}$

Kruskal's Algorithm: Example

Sets: $\{a\},\{b\},\{c, i\},\{d\},\{e\},\{f\},\{g, h\}$

Kruskal's Algorithm: Example

Sets: $\{a\},\{b\},\{c, i\},\{d\},\{e\},\{f\},\{g, h\}$

Kruskal's Algorithm: Example

Sets: $\{a\},\{b\},\{c, i\},\{d\},\{e\},\{f, g, h\}$

Kruskal's Algorithm: Example

Sets: $\{a\},\{b\},\{c, i\},\{d\},\{e\},\{f, g, h\}$

Kruskal's Algorithm: Example

Sets: $\{a\},\{b\},\{c, i, f, g, h\},\{d\},\{e\}$

Kruskal's Algorithm: Example

Sets: $\{a\},\{b\},\{c, i, f, g, h\},\{d\},\{e\}$

Kruskal's Algorithm: Example

Sets: $\{a, b\},\{c, i, f, g, h\},\{d\},\{e\}$

Kruskal's Algorithm: Example

Sets: $\{a, b\},\{c, i, f, g, h\},\{d\},\{e\}$

Kruskal's Algorithm: Example

Sets: $\{a, b, c, i, f, g, h\},\{d\},\{e\}$

Kruskal's Algorithm: Example

Sets: $\{a, b, c, i, f, g, h\},\{d\},\{e\}$

Kruskal's Algorithm: Example

Sets: $\{a, b, c, i, f, g, h\},\{d, e\}$

Kruskal's Algorithm: Example

Sets: $\{a, b, c, i, f, g, h\},\{d, e\}$

Kruskal's Algorithm: Example

Sets: $\{a, b, c, i, f, g, h, d, e\}$

Kruskal's Algorithm: Efficient Implementation of Greedy Algorithm

MST-Kruskal (G, w)

1: $F \leftarrow \emptyset$
2: $\mathcal{S} \leftarrow\{\{v\}: v \in V\}$
3: sort the edges of E in non-decreasing order of weights w
4: for each edge $(u, v) \in E$ in the order do
5: $\quad S_{u} \leftarrow$ the set in \mathcal{S} containing u
6: $\quad S_{v} \leftarrow$ the set in \mathcal{S} containing v
7: \quad if $S_{u} \neq S_{v}$ then
8: $\quad F \leftarrow F \cup\{(u, v)\}$
9: $\quad \mathcal{S} \leftarrow \mathcal{S} \backslash\left\{S_{u}\right\} \backslash\left\{S_{v}\right\} \cup\left\{S_{u} \cup S_{v}\right\}$
10: return (V, F)

Running Time of Kruskal's Algorithm

MST-Kruskal (G, w)

1: $F \leftarrow \emptyset$
2: $\mathcal{S} \leftarrow\{\{v\}: v \in V\}$
3: sort the edges of E in non-decreasing order of weights w
4: for each edge $(u, v) \in E$ in the order do
5: $\quad S_{u} \leftarrow$ the set in \mathcal{S} containing u
6: $\quad S_{v} \leftarrow$ the set in \mathcal{S} containing v
7: if $S_{u} \neq S_{v}$ then
8: $\quad F \leftarrow F \cup\{(u, v)\}$
9: $\quad \mathcal{S} \leftarrow \mathcal{S} \backslash\left\{S_{u}\right\} \backslash\left\{S_{v}\right\} \cup\left\{S_{u} \cup S_{v}\right\}$
10: return (V, F)
Use union-find data structure to support 2, 5, 6, 7, 9.

Union-Find Data Structure

- V : ground set
- We need to maintain a partition of V and support following operations:
- Check if u and v are in the same set of the partition
- Merge two sets in partition
- $V=\{1,2,3, \cdots, 16\}$
- Partition: $\{2,3,5,9,10,12,15\},\{1,7,13,16\},\{4,8,11\},\{6,14\}$

- par $[i]$: parent of i, (par $[i]=\perp$ if i is a root $)$.

Union-Find Data Structure

Union-Find Data Structure

- Q: how can we check if u and v are in the same set?

Union-Find Data Structure

- Q: how can we check if u and v are in the same set?
- A: Check if $\operatorname{root}(u)=\operatorname{root}(v)$.

Union-Find Data Structure

- Q: how can we check if u and v are in the same set?
- A: Check if $\operatorname{root}(u)=\operatorname{root}(v)$.
- root (u) : the root of the tree containing u

Union-Find Data Structure

- Q: how can we check if u and v are in the same set?
- A: Check if $\operatorname{root}(u)=\operatorname{root}(v)$.
- root (u) : the root of the tree containing u
- Merge the trees with root r and $r^{\prime}: \operatorname{par}[r] \leftarrow r^{\prime}$.

Union-Find Data Structure

- Q: how can we check if u and v are in the same set?
- A: Check if $\operatorname{root}(u)=\operatorname{root}(v)$.
- root (u) : the root of the tree containing u
- Merge the trees with root r and $r^{\prime}: \operatorname{par}[r] \leftarrow r^{\prime}$.

Union-Find Data Structure

```
root(v)
```



```
    2: return v
    3: else
    4: return root(par[v])
```


Union-Find Data Structure

```
root(v)
    1: if par [v]=\perp then
    2: return v
    3: else
    4: return root(par[v])
```

- Problem: the tree might too deep; running time might be large

Union-Find Data Structure

$\operatorname{root}(v)$
1: if $\operatorname{par}[v]=\perp$ then
2: \quad return v
3: else
4: \quad return $\operatorname{root}(\operatorname{par}[v])$

- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

Union-Find Data Structure

$$
\begin{array}{l|l}
& \operatorname{root}(v) \\
\operatorname{root}(v) & \text { 1: if } \operatorname{par}[v]=\perp \text { then } \\
\text { 1: if } \operatorname{par}[v]=\perp \text { then } & \text { 2: return } v \\
\text { 2: return } v & \text { 3: else } \\
\text { 3: else } & \text { 4: } \operatorname{par}[v] \leftarrow \operatorname{root}(\operatorname{par}[v]) \\
\text { 4: } \quad \text { return } \operatorname{root}(\operatorname{par}[v]) & \text { 5: return } \operatorname{par}[v]
\end{array}
$$

- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

Union-Find Data Structure

```
root(v)
    1: if }\operatorname{par}[v]=\perp\mathrm{ then
    2: return v
    3: else
    4: }\quad\operatorname{par}[v]\leftarrow\operatorname{root}(\operatorname{par}[v]
    5: return par[v]
```


Union-Find Data Structure

```
root(v)
    1: if }\operatorname{par}[v]=\perp\mathrm{ then
    2: return v
    3: else
    4: }\quad\operatorname{par}[v]\leftarrow\operatorname{root}(\operatorname{par}[v]
    5: return par[v]
```


MST-Kruskal (G, w)

1: $F \leftarrow \emptyset$
2: $\mathcal{S} \leftarrow\{\{v\}: v \in V\}$
3: sort the edges of E in non-decreasing order of weights w
4: for each edge $(u, v) \in E$ in the order do
5: $\quad S_{u} \leftarrow$ the set in \mathcal{S} containing u
6: $\quad S_{v} \leftarrow$ the set in \mathcal{S} containing v
7: if $S_{u} \neq S_{v}$ then
8: $\quad F \leftarrow F \cup\{(u, v)\}$
9: $\quad \mathcal{S} \leftarrow \mathcal{S} \backslash\left\{S_{u}\right\} \backslash\left\{S_{v}\right\} \cup\left\{S_{u} \cup S_{v}\right\}$
10: return (V, F)

MST-Kruskal (G, w)

1: $F \leftarrow \emptyset$
2: for every $v \in V$ do: $\operatorname{par}[v] \leftarrow \perp$
3: sort the edges of E in non-decreasing order of weights w
4: for each edge $(u, v) \in E$ in the order do
5: $\quad u^{\prime} \leftarrow \operatorname{root}(u)$
6: $\quad v^{\prime} \leftarrow \operatorname{root}(v)$
7: if $u^{\prime} \neq v^{\prime}$ then
8:
$F \leftarrow F \cup\{(u, v)\}$
9:

$$
\operatorname{par}\left[u^{\prime}\right] \leftarrow v^{\prime}
$$

10: return (V, F)

MST-Kruskal (G, w)

1: $F \leftarrow \emptyset$
2: for every $v \in V$ do: $\operatorname{par}[v] \leftarrow \perp$
3: sort the edges of E in non-decreasing order of weights w
4: for each edge $(u, v) \in E$ in the order do
5: $\quad u^{\prime} \leftarrow \operatorname{root}(u)$
6: $\quad v^{\prime} \leftarrow \operatorname{root}(v)$
7: if $u^{\prime} \neq v^{\prime}$ then
8: $\quad F \leftarrow F \cup\{(u, v)\}$
9: $\quad \operatorname{par}\left[u^{\prime}\right] \leftarrow v^{\prime}$
10: return (V, F)

- 2,5,6,7,9 takes time $O(m \alpha(n))$
- $\alpha(n)$ is very slow-growing: $\alpha(n) \leq 4$ for $n \leq 10^{80}$.

MST-Kruskal (G, w)

1: $F \leftarrow \emptyset$
2: for every $v \in V$ do: $\operatorname{par}[v] \leftarrow \perp$
3: sort the edges of E in non-decreasing order of weights w
4: for each edge $(u, v) \in E$ in the order do
5: $\quad u^{\prime} \leftarrow \operatorname{root}(u)$
6: $\quad v^{\prime} \leftarrow \operatorname{root}(v)$
7: if $u^{\prime} \neq v^{\prime}$ then
8: $\quad F \leftarrow F \cup\{(u, v)\}$
9: $\quad \operatorname{par}\left[u^{\prime}\right] \leftarrow v^{\prime}$
10: return (V, F)

- 2,5,6,7,9 takes time $O(m \alpha(n))$
- $\alpha(n)$ is very slow-growing: $\alpha(n) \leq 4$ for $n \leq 10^{80}$.
- Running time $=$ time for $3=O(m \lg n)$.

Assumption Assume all edge weights are different.
Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

- (i, g) is not in the MST because of cycle (i, c, f, g)

Assumption Assume all edge weights are different.
Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

- (i, g) is not in the MST because of cycle (i, c, f, g)
- (e, f) is in the MST because no such cycle exists

Outline

(1) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

2 Single Source Shortest Paths

- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

