Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : E — R
Output: the spanning tree T" of GG with the minimum total weight

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : E — R
Output: the spanning tree T" of GG with the minimum total weight

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : E — R
Output: the spanning tree T" of GG with the minimum total weight

12

Recall: Steps of Designing A Greedy Algorithm

@ Design a “reasonable” strategy

@ Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Recall: Steps of Designing A Greedy Algorithm

@ Design a “reasonable” strategy

@ Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
o Kruskal's Algorithm
@ Prim’s Algorithm

@ Minimum Spanning Tree
@ Kruskal's Algorithm

Q: Which edge can be safely included in the MST?

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge. J

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’
@ Assume the lightest edge e* is not in T’

lightest edge e*~

~

~

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’
@ Assume the lightest edge e* is not in T’

@ There is a unique path in T" connecting v and v

lightest edge e*~

~

~

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’

@ Assume the lightest edge e* is not in T’

@ There is a unique path in T" connecting v and v

@ Remove any edge ¢ in the path to obtain tree 7"

lightest edge e*~

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’

Assume the lightest edge e* is not in T’

There is a unique path in 7" connecting u and v

Remove any edge e in the path to obtain tree 7’
w(e*) <w(e) = w(T") <w(T): T"is also a MST

lightest edge e*~

Is the Residual Problem Still a MST Problem?

Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g, 1)

Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g, 1)
e Contract the edge (g, h)

Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g, 1)
e Contract the edge (g, h)

@ Residual problem: find the minimum spanning tree in the
contracted graph

Contraction of an Edge (u,v)

Contraction of an Edge (u,v)

@ Remove u and v from the graph, and add a new vertex u*

Contraction of an Edge (u,v)

@ Remove u and v from the graph, and add a new vertex u*

@ Remove all edges (u,v) from £

Contraction of an Edge (u,v)

@ Remove u and v from the graph, and add a new vertex u*
@ Remove all edges (u,v) from £
o For every edge (u,w) € E,w # v, change it to (u*, w)

Contraction of an Edge (u,v)

Remove u and v from the graph, and add a new vertex u*
Remove all edges (u,v) from E
For every edge (u,w) € E,w # v, change it to (u*, w)

For every edge (v,w) € E,w # u, change it to (u*, w)

Contraction of an Edge (u,v)

Remove u and v from the graph, and add a new vertex u*

Remove all edges (u,v) from E

°
°

o For every edge (u,w) € E,w # v, change it to (u*, w)
o For every edge (v,w) € E,w # u, change it to (u*, w)
°

May create parallel edges! E.g. : two edges (i, g*)

Greedy Algorithm

Repeat the following step until G' contains only one vertex:
@ Choose the lightest edge e¢*, add e¢* to the spanning tree
@ Contract e* and update G be the contracted graph

Greedy Algorithm

Repeat the following step until G' contains only one vertex:
@ Choose the lightest edge e¢*, add e¢* to the spanning tree
@ Contract e* and update G be the contracted graph

Q: What edges are removed due to contractions?

Greedy Algorithm

Repeat the following step until G' contains only one vertex:
@ Choose the lightest edge e¢*, add e¢* to the spanning tree
@ Contract e* and update G be the contracted graph

Q: What edges are removed due to contractions? |

A: Edge (u,v) is removed if and only if there is a path connecting u
and v formed by edges we selected J

Greedy Algorithm

MST-Greedy(G, w)

1. F+0

2: sort edges in E in non-decreasing order of weights w

3: for each edge (u,v) in the order do

4: if u and v are not connected by a path of edges in F' then
5 F <+ FU{(u,v)}

6

. return (V, F)

Kruskal's Algorithm: Example

Sets: {a}, {0}, {c}, {d}, {e}, {f} {9}, {h}, {i}

Kruskal's Algorithm: Example

Sets: {a}, {0}, {c}, {d}, {e}, {f} {9}, {h}, {i}

Kruskal's Algorithm: Example

Sets: {a}, {b}, {c}, {d}, {e}, {f}, {9, h}, {i}

Kruskal's Algorithm: Example

Sets: {a}, {b}, {c}, {d}, {e}, {f}, {9, h}, {i}

Kruskal's Algorithm: Example

Sets: {a}, {b}, {c,i}, {d}, {e}, {f}, {9, h}

Kruskal's Algorithm: Example

Sets: {a}, {b}, {c,i}, {d}, {e}, {f}, {9, h}

Kruskal's Algorithm: Example

Sets: {a}, {0}, {c,i},{d},{e}, {f g, h}

Kruskal's Algorithm: Example

Sets: {a}, {0}, {c,i},{d},{e}, {f g, h}

Kruskal's Algorithm: Example

13

Sets: {a},{b},{c,i, f,g,h}, {d},{e}

Kruskal's Algorithm: Example

13

Sets: {a},{b},{c,i, f,g,h}, {d},{e}

Kruskal's Algorithm: Example

13

Sets: {a,b},{c,i, f,9,h},{d},{e}

Kruskal's Algorithm: Example

Sets: {a,b},{c,i, f,9,h},{d},{e}

Kruskal's Algorithm: Example

Sets: {a,b,¢,i, f,g,h}, {d}, {e}

Kruskal's Algorithm: Example

Sets: {a,b,¢,i, f,g,h}, {d}, {e}

Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,g,h},{d, e}

Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,g,h},{d, e}

Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,g,h,d, e}

Kruskal's Algorithm: Efficient Implementation of

Greedy Algorithm

MST-Kruskal(G, w)

F+ 0
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in S containing u
S, < the set in § containing v
if S, # S, then
F«+ FU{(u,v)}
S S\{Su I\ {S} U{S. U5}

return (V, F)

o Nk

—
=

Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

F <+
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in S containing u
S, < the set in § containing v
if S, # S5, then
F+— FU{(u,v)}
S S\{SI\ (S} U{S. U S}

return (V, F)

e B e o

—
IS

Use union-find data structure to support @, @, @, @, O.

Union-Find Data Structure

o V: ground set
@ We need to maintain a partition of V' and support following
operations:

o Check if u and v are in the same set of the partition
o Merge two sets in partition

o V={1,23,--,16}
e Partition: {2,3,5,9,10,12,15},{1,7,13,16}, {4,8,11}, {6, 14}

@ parli]: parent of i, (par[i] = L if i is a root).

Union-Find Data Structure

Union-Find Data Structure

@ Q: how can we check if © and v are in the same set?

Union-Find Data Structure

@ Q: how can we check if © and v are in the same set?
@ A: Check if root(u) = root(v).

Union-Find Data Structure

@ Q: how can we check if © and v are in the same set?
@ A: Check if root(u) = root(v).

@ root(u): the root of the tree containing u

Union-Find Data Structure

@ Q: how can we check if © and v are in the same set?
@ A: Check if root(u) = root(v).
@ root(u): the root of the tree containing u

@ Merge the trees with root r and r’": par|r] < r'.

Union-Find Data Structure

SN

@ Q: how can we check if © and v are in the same set?
@ A: Check if root(u) = root(v).
@ root(u): the root of the tree containing u

@ Merge the trees with root r and r’": par|r] < r'.

Union-Find Data Structure

root(v)

1 if parjv] = L then
2 return v

3: else

4 return root(par(v])

Union-Find Data Structure

root(v)

. if par[v] = L then
return v

else
return root(par(v])

[y

o

Problem: the tree might too deep; running time might be large

Union-Find Data Structure

root(v)

1 if parjv] = L then
2 return v

3: else

4 return root(par|v])

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

Union-Find Data Structure

root(v
root(v) | ()
. 1: if par[v] = L then
1 if parjv] = L then 9. return v
2 return v 3: else
3: else 4. parfv] < root(par[v))
4 return root(parfv]) . 5 return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

Union-Find Data Structure

root(v)
1: if par[v] = L then
2: return v
3: else
4: par <— root par
5: return par

@m

Union-Find Data Structure

root(v)
1: if par[v] = L then
2: return v
3: else
4: par <— root par
5: return par

5\@1

MST-Kruskal(G, w)

—
=

o NSO R

F«10
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in § containing u
S, < the set in S containing v
if 5, # 5, then
F <+ FU{(u,v)}
S S\{Sup \ {Sut U{SuUS,}

return (V, F)

MST-Kruskal(G, w)

_
=

NI AL HMH

F<«0
for every v € V do: parfv] < L

sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
u’ < root(u)
v' < root(v)
if «' v then
F+ FU{(u,v)}
parfu'] < v
return (V, F)

MST-Kruskal(G, w)

- F+ 0
: for every v € V do: par[v] « L
sort the edges of E in non-decreasing order of weights w
. for each edge (u,v) € E in the order do
u' < root(u)
v' < root(v)
if «' v then
F+ FU{(u,v)}
parfu'] < v
return (V, F)

NI AL HMH

_
I3

° 0.0.0.0.0 takes time O(ma(n))

e a(n) is very slow-growing: a(n) < 4 for n < 103,

MST-Kruskal(G, w)

1. F 10

2: for every v € V do: parfv] < L

3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u,v) € E in the order do

bs u' < root(u)

6: v" < root(v)

7: if «' v then

8: F+ FU{(u,v)}

9: parfu'] < v

10: return (V) F)

0.0.0.0.0 takes time O(ma(n))
e a(n) is very slow-growing: a(n) < 4 for n < 103,
@ Running time = time for @ = O(mlgn).

Assumption Assume all edge weights are different.)

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge. J

Assumption Assume all edge weights are different.

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge.

@ (i,g) is not in the MST because of cycle (i,c¢, f, g)

Assumption Assume all edge weights are different.

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge.

@ (i,g) is not in the MST because of cycle (i,c¢, f, g)
°

(e, f) is in the MST because no such cycle exists

@ Minimum Spanning Tree

@ Reverse-Kruskal's Algorithm

