
6/88

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V,E) and edge weights w : E ! R

Output: the spanning tree T of G with the minimum total weight

6/88

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V,E) and edge weights w : E ! R

Output: the spanning tree T of G with the minimum total weight

a

b c

d

e

5

8 2

7

11

6

12

6/88

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V,E) and edge weights w : E ! R

Output: the spanning tree T of G with the minimum total weight

a

b c

d

e

5

8 2

7

11

6

12

7/88

Recall: Steps of Designing A Greedy Algorithm
Design a “reasonable” strategy

Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
Kruskal’s Algorithm

Prim’s Algorithm

7/88

Recall: Steps of Designing A Greedy Algorithm
Design a “reasonable” strategy

Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
Kruskal’s Algorithm

Prim’s Algorithm

8/88

Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

9/88

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

9/88

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T): T 0 is also a MST

10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T): T 0 is also a MST

10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T): T 0 is also a MST

lightest edge e⇤

u

v

10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T): T 0 is also a MST

lightest edge e⇤

u

v

10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T): T 0 is also a MST

lightest edge e⇤

u

v

10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T): T 0 is also a MST

lightest edge e⇤

u

v

11/88

Is the Residual Problem Still a MST Problem?

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph

11/88

Is the Residual Problem Still a MST Problem?

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph

11/88

Is the Residual Problem Still a MST Problem?

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph

11/88

Is the Residual Problem Still a MST Problem?

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph

12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)

12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)

12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)

12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)

12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)

12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)

13/88

Greedy Algorithm

Repeat the following step until G contains only one vertex:
1 Choose the lightest edge e

⇤, add e
⇤ to the spanning tree

2 Contract e⇤ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u

and v formed by edges we selected

13/88

Greedy Algorithm

Repeat the following step until G contains only one vertex:
1 Choose the lightest edge e

⇤, add e
⇤ to the spanning tree

2 Contract e⇤ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u

and v formed by edges we selected

13/88

Greedy Algorithm

Repeat the following step until G contains only one vertex:
1 Choose the lightest edge e

⇤, add e
⇤ to the spanning tree

2 Contract e⇤ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u

and v formed by edges we selected

14/88

Greedy Algorithm

MST-Greedy(G,w)
1: F ;
2: sort edges in E in non-decreasing order of weights w
3: for each edge (u, v) in the order do
4: if u and v are not connected by a path of edges in F then

5: F F [{(u, v)}
6: return (V, F)

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a}, {b}, {c}, {d}, {e}, {f}, {g, h}, {i}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a}, {b}, {c}, {d}, {e}, {f}, {g, h}, {i}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a}, {b}, {c, i}, {d}, {e}, {f}, {g, h}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a}, {b}, {c, i}, {d}, {e}, {f}, {g, h}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a}, {b}, {c, i}, {d}, {e}, {f, g, h}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a}, {b}, {c, i}, {d}, {e}, {f, g, h}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a}, {b}, {c, i, f, g, h}, {d}, {e}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a}, {b}, {c, i, f, g, h}, {d}, {e}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a, b}, {c, i, f, g, h}, {d}, {e}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a, b}, {c, i, f, g, h}, {d}, {e}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a, b, c, i, f, g, h}, {d}, {e}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a, b, c, i, f, g, h}, {d}, {e}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a, b, c, i, f, g, h}, {d, e}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a, b, c, i, f, g, h}, {d, e}

15/88

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a, b, c, i, f, g, h, d, e}

16/88

Kruskal’s Algorithm: E�cient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)
1: F ;
2: S {{v} : v 2 V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: Su the set in S containing u

6: Sv the set in S containing v

7: if Su 6= Sv then

8: F F [{(u, v)}
9: S S \ {Su} \ {Sv} [{Su [Sv}

10: return (V, F)

17/88

Running Time of Kruskal’s Algorithm

MST-Kruskal(G, w)
1: F ;
2: S {{v} : v 2 V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: Su the set in S containing u

6: Sv the set in S containing v

7: if Su 6= Sv then

8: F F [{(u, v)}
9: S S \ {Su} \ {Sv} [{Su [Sv}

10: return (V, F)

Use union-find data structure to support 2 , 5 , 6 , 7 , 9 .

18/88

Union-Find Data Structure

V : ground set

We need to maintain a partition of V and support following
operations:
Check if u and v are in the same set of the partition
Merge two sets in partition

19/88

V = {1, 2, 3, · · · , 16}
Partition: {2, 3, 5, 9, 10, 12, 15}, {1, 7, 13, 16}, {4, 8, 11}, {6, 14}

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

par[i]: parent of i, (par[i] = ? if i is a root).

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

21/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: return root(par[v])

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

21/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: return root(par[v])

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

21/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: return root(par[v])

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

21/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: return root(par[v])

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

22/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])
5: return par[v]

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

22/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])
5: return par[v]

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

23/88

MST-Kruskal(G, w)
1: F ;
2: S {{v} : v 2 V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: Su the set in S containing u

6: Sv the set in S containing v

7: if Su 6= Sv then

8: F F [{(u, v)}
9: S S \ {Su} \ {Sv} [{Su [Sv}

10: return (V, F)

24/88

MST-Kruskal(G, w)
1: F ;
2: for every v 2 V do: par[v] ?
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: u

0 root(u)
6: v

0 root(v)
7: if u

0 6= v
0
then

8: F F [{(u, v)}
9: par[u0] v

0

10: return (V, F)

2 , 5 , 6 , 7 , 9 takes time O(m↵(n))

↵(n) is very slow-growing: ↵(n)  4 for n  1080.

Running time = time for 3 = O(m lg n).

24/88

MST-Kruskal(G, w)
1: F ;
2: for every v 2 V do: par[v] ?
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: u

0 root(u)
6: v

0 root(v)
7: if u

0 6= v
0
then

8: F F [{(u, v)}
9: par[u0] v

0

10: return (V, F)

2 , 5 , 6 , 7 , 9 takes time O(m↵(n))

↵(n) is very slow-growing: ↵(n)  4 for n  1080.

Running time = time for 3 = O(m lg n).

24/88

MST-Kruskal(G, w)
1: F ;
2: for every v 2 V do: par[v] ?
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: u

0 root(u)
6: v

0 root(v)
7: if u

0 6= v
0
then

8: F F [{(u, v)}
9: par[u0] v

0

10: return (V, F)

2 , 5 , 6 , 7 , 9 takes time O(m↵(n))

↵(n) is very slow-growing: ↵(n)  4 for n  1080.

Running time = time for 3 = O(m lg n).

25/88

Assumption Assume all edge weights are di↵erent.

Lemma An edge e 2 E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists

25/88

Assumption Assume all edge weights are di↵erent.

Lemma An edge e 2 E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists

25/88

Assumption Assume all edge weights are di↵erent.

Lemma An edge e 2 E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists

26/88

Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

