2-Approximation Algorithm for Vertex Cover

VertexCover (G)

1: $C \leftarrow \emptyset$
2: while $E \neq \emptyset$ do
3: \quad select an edge $(u, v) \in E, C \leftarrow C \cup\{u, v\}$
4: \quad Remove from E every edge incident on either u or v
5: return C

- Let the set C and C^{*} be the sets output by above algorithm and an optimal alg, respectively. Let S be the set of edges selected.
- Since no two edge in S are covered by the same vertex (Once an edge is picked in line 3 , all other edges that are incident on its endpoints are removed from E in line 4), we have $\left|C^{*}\right| \geq|S|$;
- As we have added both vertices of edge (u, v), we get $|C|=2|S|$ but C^{*} have to add one of the two, thus, $|C| /\left|C^{*}\right| \leq 2$.

Outline

(1) Some Hard Problems
(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Summary

- We consider decision problems
- Inputs are encoded as $\{0,1\}$-strings

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems for which Alice can convince Bob a yes instance is a yes instance

Summary

Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s)=1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
The string t such that $B(s, t)=1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Summary

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

- If any NP-complete problem can be solved in polynomial time, then $P=N P$
- Unless $P=N P$, a NP-complete problem can not be solved in polynomial time

Summary

Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is a efficient certifier.
- Given a problem $X \in \mathrm{NP}$, let $B(s, t)$ be the certifier
- Convert $B(s, t)$ to a circuit and hard-wire s to the input gates
- s is a yes-instance if and only if the resulting circuit is satisfiable
- Proof of NP-Completeness for other problems by reductions

