2-Approximation Algorithm for Vertex Cover

VertexCover(G)

- 1: $C \leftarrow \emptyset$
- 2: while $E \neq \emptyset$ do
- 3: select an edge $(u, v) \in E$, $C \leftarrow C \cup \{u, v\}$
- 4: Remove from E every edge incident on either u or v
- 5: return C
- Let the set C and C^\ast be the sets output by above algorithm and an optimal alg, respectively. Let S be the set of edges selected.
- Since no two edge in S are covered by the same vertex (Once an edge is picked in line 3, all other edges that are incident on its endpoints are removed from E in line 4), we have |C^{*}| ≥ |S|;
- As we have added both vertices of edge (u, v), we get |C| = 2|S| but C^* have to add one of the two, thus, $|C|/|C^*| \leq 2$.

Outline

Some Hard Problems

- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- Dealing with NP-Hard Problems

- We consider decision problems
- Inputs are encoded as $\{0,1\}$ -strings

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems for which Alice can convince Bob a yes instance is a yes instance

- **Def.** B is an efficient certifier for a problem X if
- $\bullet \ B$ is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, X(s) = 1 if and only if there is string t such that $|t| \le p(|s|)$ and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

• $X \in \mathsf{NP}$, and

- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.
 - If any NP-complete problem can be solved in polynomial time, then ${\cal P}={\cal N}{\cal P}$
 - Unless P = NP, a NP-complete problem can not be solved in polynomial time

Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is a efficient certifier.
- Given a problem $X \in NP$, let B(s,t) be the certifier
- \bullet Convert $B(\boldsymbol{s},t)$ to a circuit and hard-wire \boldsymbol{s} to the input gates
- $\bullet \ s$ is a yes-instance if and only if the resulting circuit is satisfiable
- Proof of NP-Completeness for other problems by reductions