2-Approximation Algorithm for Vertex Cover

VertexCover(G)

1: $C \leftarrow \emptyset$
2: while $E \neq \emptyset$ do
3: select an edge $(u, v) \in E$, $C \leftarrow C \cup \{u, v\}$
4: Remove from E every edge incident on either u or v
5: return C

- Let the set C and C^* be the sets output by above algorithm and an optimal alg, respectively. Let S be the set of edges selected.
- Since no two edge in S are covered by the same vertex (Once an edge is picked in line 3, all other edges that are incident on its endpoints are removed from E in line 4), we have $|C^*| \geq |S|$;
- As we have added both vertices of edge (u, v), we get $|C| = 2|S|$ but C^* have to add one of the two, thus, $|C|/|C^*| \leq 2$.
Outline

1. Some Hard Problems
2. P, NP and Co-NP
3. Polynomial Time Reductions and NP-Completeness
4. NP-Complete Problems
5. Dealing with NP-Hard Problems
6. Summary
We consider decision problems

Inputs are encoded as \(\{0, 1\} \)-strings

Def. The complexity class \(P \) is the set of decision problems \(X \) that can be solved in polynomial time.

Alice has a supercomputer, fast enough to run an exponential time algorithm

Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class \(NP \) is the set of problems for which Alice can convince Bob a yes instance is a yes instance.
Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s) = 1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a certificate.

Def. The complexity class \mathbf{NP} is the set of all problems for which there exists an efficient certifier.
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

1. $X \in \text{NP}$, and
2. $Y \leq_P X$ for every $Y \in \text{NP}$.

- If any NP-complete problem can be solved in polynomial time, then $P = NP$
- Unless $P = NP$, a NP-complete problem can not be solved in polynomial time
Summary

Circuit-Sat

3-Sat

Clique -> Ind-Set

Vertex-Cover

Set-Cover

HC

TSP

3D-Matching

Subset-Sum

3-Coloring

Knapsack
Proof of NP-Completeness for Circuit-Sat

- **Fact 1:** a polynomial-time algorithm can be converted to a polynomial-size circuit
- **Fact 2:** for a problem in NP, there is an efficient certifier.

Given a problem $X \in \text{NP}$, let $B(s, t)$ be the certifier

- Convert $B(s, t)$ to a circuit and hard-wire s to the input gates
- s is a yes-instance if and only if the resulting circuit is satisfiable

Proof of NP-Completeness for other problems by reductions