$P \subseteq N P$

- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $X(s)=1$ by himself, without Alice's help.

- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $X(s)=1$ by himself, without Alice's help.

- The certificate is an empty string
- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $X(s)=1$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in N P$ and $P \subseteq N P$
- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $X(s)=1$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in N P$ and $P \subseteq N P$
- Similarly, $\mathrm{P} \subseteq$ Co-NP, thus $\mathrm{P} \subseteq$ NP \cap Co-NP

Is $P=N P ?$

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq N P$ and prove that problems do not have polynomial time algorithms.

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq N P$ and prove that problems do not have polynomial time algorithms.
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
- if $P \neq N P$, then $H C \notin P$
- $\mathrm{HC} \notin \mathrm{P}$, unless $\mathrm{P}=\mathrm{NP}$

Is NP = Co-NP?

- Again, a big open problem

Is NP = Co-NP?

- Again, a big open problem
- Most researchers believe NP $=$ Co-NP.

4 Possibilities of Relationships

Notice that $X \in \mathrm{NP} \Longleftrightarrow \bar{X} \in$ Co-NP and $\mathrm{P} \subseteq \mathrm{NP} \cap$ Co-NP

- People commonly believe we are in the 4th scenario

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness
(4) NP-Complete Problems
(5) Dealing with NP-Hard Problems
(0) Summary

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

To prove positive results:
Suppose $Y \leq_{P} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

To prove positive results:
Suppose $Y \leq_{P} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:
Suppose $Y \leq_{P} X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

 Input: $G=(V, E)$ and $s, t \in V$Output: whether there is a Hamiltonian path from s to t in G

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $\mathrm{HP} \leq_{\mathrm{P}} \mathrm{HC}$.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $\mathrm{HP} \leq_{\mathrm{P}} \mathrm{HC}$.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $\mathrm{HP} \leq_{\mathrm{P}} \mathrm{HC}$.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $\mathrm{HP} \leq_{\mathrm{P}} \mathrm{HC}$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

NP-Completeness

Def. A problem X is called NP-hard if
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Theorem If X is NP-complete and $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Theorem If X is NP-complete and $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Def. A problem X is called NP-complete if

(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{p}} X$ for every $Y \in \mathrm{NP}$.

- How can we find a problem $X \in$ NP such that every problem $Y \in$ NP is polynomial time reducible to X ? Are we asking for too much?

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{p}} X$ for every $Y \in \mathrm{NP}$.

- How can we find a problem $X \in$ NP such that every problem $Y \in$ NP is polynomial time reducible to X ? Are we asking for too much?
- No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit
Output: whether the circuit is satisfiable

Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs $0 / 1$ with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

Time $T \square \square$

Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs $0 / 1$ with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

Time $T \square \square$

- Then, we can show that any problem $Y \in \mathrm{NP}$ can be reduced to Circuit-Sat.
- We prove $\mathrm{HC} \leq_{P}$ Circuit-Sat as an example.

$\mathrm{HC} \leq_{P}$ Circuit-Sat

check- $\mathrm{HC}(G, S)$

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

$\mathrm{HC} \leq_{P}$ Circuit-Sat

check- $\mathrm{HC}(G, S)$

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1

$\mathrm{HC} \leq_{P}$ Circuit-Sat

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-HC

$\mathrm{HC} \leq_{P}$ Circuit-Sat

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-HC
- hard-wire the instance G to the circuit C^{\prime} to obtain the circuit C

$\mathrm{HC} \leq_{P}$ Circuit-Sat

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-HC
- hard-wire the instance G to the circuit C^{\prime} to obtain the circuit C
- G is a yes-instance if and only if C is satisfiable

$Y \leq_{P}$ Circuit-Sat, For Every $Y \in N P$

- Let check- $\mathrm{Y}(s, t)$ be the certifier for problem Y : check- $\mathrm{Y}(s, t)$ returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that check- $\mathrm{Y}(s, t)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-Y
- hard-wire the instance s to the circuit C^{\prime} to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

$Y \leq_{P}$ Circuit-Sat, For Every $Y \in N P$

- Let check- $\mathrm{Y}(s, t)$ be the certifier for problem Y : check- $\mathrm{Y}(s, t)$ returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that check- $\mathrm{Y}(s, t)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-Y
- hard-wire the instance s to the circuit C^{\prime} to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

