$\overline{\mathsf{P}} \subseteq \mathsf{N}\mathsf{P}$

Q: How can Alice convince Bob that *s* is a yes instance?

Q: How can Alice convince Bob that *s* is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

Q: How can Alice convince Bob that *s* is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

• The certificate is an empty string

Q: How can Alice convince Bob that *s* is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in \mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP}$

Q: How can Alice convince Bob that *s* is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in \mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP}$
- Similarly, $P \subseteq$ Co-NP, thus $P \subseteq$ NP \cap Co-NP

Is P = NP?

• A famous, big, and fundamental open problem in computer science

- Most researchers believe $\mathsf{P} \neq \mathsf{NP}$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $\mathsf{P} \neq \mathsf{NP}$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
 - if $P \neq NP$, then $HC \notin P$
 - HC \notin P, unless P = NP

• Again, a big open problem

- Again, a big open problem
- Most researchers believe NP \neq Co-NP.

Notice that $X \in \mathsf{NP} \iff \overline{X} \in \mathsf{Co-NP}$ and $\mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{Co-NP}$

• People commonly believe we are in the 4th scenario

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems

6 Summary

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.

Def. A problem X is called NP-complete if

- $\ \ \, \mathbf{0} \ \ \, X \in \mathsf{NP}, \mathsf{ and}$
- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.

Def. A problem X is called NP-hard if

 $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

• NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

 NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

Theorem If X is NP-complete and $X \in P$, then P = NP.

 NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

Theorem If X is NP-complete and $X \in P$, then P = NP.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

Def. A problem X is called NP-complete if • $X \in NP$, and • $Y \leq_P X$ for every $Y \in NP$.

Def. A problem X is called NP-complete if

- $X \in \mathsf{NP}$, and
- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.
 - How can we find a problem $X \in NP$ such that every problem $Y \in NP$ is polynomial time reducible to X? Are we asking for too much?

Def. A problem X is called NP-complete if

- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$
 - How can we find a problem X ∈ NP such that every problem Y ∈ NP is polynomial time reducible to X? Are we asking for too much?
 - No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Input: a circuit

Output: whether the circuit is satisfiable

Circuit-Sat is NP-Complete

• key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.

Circuit-Sat is NP-Complete

• key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.

- Then, we can show that any problem Y ∈ NP can be reduced to Circuit-Sat.
- We prove $HC \leq_P Circuit-Sat$ as an example.

 $\operatorname{check-HC}(G,S)$

• Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

 $\operatorname{check-HC}(G,S)$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C' for the algorithm check-HC

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C' for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C^\prime for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C
- G is a yes-instance if and only if C is satisfiable

$Y \leq_P \text{Circuit-Sat, For Every } Y \in \mathsf{NP}$

- Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t) returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that ${\rm check-Y}(s,t)$ returns 1
- Construct a circuit C^\prime for the algorithm check-Y
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

$Y \leq_P \text{Circuit-Sat, For Every } Y \in \mathsf{NP}$

- Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t) returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that ${\rm check-Y}(s,t)$ returns 1
- Construct a circuit C^\prime for the algorithm check-Y
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

