Optimum Binary Search Tree

- n elements $e_{1}<e_{2}<e_{3}<\cdots<e_{n}$
- e_{i} has frequency f_{i}
- goal: build a binary search tree for $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ with the minimum accessing cost:

$$
\sum_{i=1}^{n} f_{i} \times\left(\text { depth of } e_{i} \text { in the tree }\right)
$$

Optimum Binary Search Tree

- Example: $f_{1}=10, f_{2}=5, f_{3}=3$

Optimum Binary Search Tree

- Example: $f_{1}=10, f_{2}=5, f_{3}=3$

- $10 \times 1+5 \times 2+3 \times 3=29$
- $10 \times 2+5 \times 1+3 \times 2=31$
- $10 \times 3+5 \times 2+3 \times 1=43$

Optimum Binary Search Tree

- Example: $f_{1}=10, f_{2}=5, f_{3}=3$

- $10 \times 1+5 \times 2+3 \times 3=29$
- $10 \times 2+5 \times 1+3 \times 2=31$
- $10 \times 3+5 \times 2+3 \times 1=43$
- suppose we decided to let e_{k} be the root
- $e_{1}, e_{2}, \cdots, e_{k-1}$ are on left sub-tree
- $e_{k+1}, e_{k+2}, \cdots, e_{n}$ are on right sub-tree
- d_{j} : depth of e_{j} in our tree
- C, C_{L}, C_{R} : cost of tree, left sub-tree and right sub-tree
- $d_{1}=3, d_{2}=2, d_{3}=3, d_{4}=4, d_{5}=1$,

- $d_{6}=2, d_{7}=4, d_{8}=3, d_{9}=4$,
- $C=3 f_{1}+2 f_{2}+3 f_{3}+4 f_{4}+f_{5}+$ $2 f_{6}+4 f_{7}+3 f_{8}+4 f_{9}$
- $C_{L}=2 f_{1}+f_{2}+2 f_{3}+3 f_{4}$
- $C_{R}=f_{6}+3 f_{7}+2 f_{8}+3 f_{9}$
- $C=C_{L}+C_{R}+\sum_{j=1}^{9} f_{j}$

$$
\begin{aligned}
C & =\sum_{\ell=1}^{n} f_{\ell} d_{\ell}=\sum_{\ell=1}^{n} f_{\ell}\left(d_{\ell}-1\right)+\sum_{\ell=1}^{n} f_{\ell} \\
= & \left.\sum_{\ell=1}^{n-1} f_{\ell}\left(d_{\ell}-1\right)+\sum_{\ell=k+1}^{n} d_{\ell}-1\right)+\sum_{\ell=1}^{n} f_{\ell} \\
= & C_{\ell}+C_{R}+\sum_{\ell=1}^{n}
\end{aligned}
$$

$$
C=C_{L}+C_{R}+\sum_{\ell=1}^{n} f_{\ell}
$$

- In order to minimize C, need to minimize C_{L} and C_{R} respectively

$$
C=C_{L}+C_{R}+\sum_{\ell=1}^{n} f_{\ell}
$$

- In order to minimize C, need to minimize C_{L} and C_{R} respectively
- opt $[i, j]$: the optimum cost for the instance $\left(f_{i}, f_{i+1}, \cdots, f_{j}\right)$

$$
C=C_{L}+C_{R}+\sum_{\ell=1}^{n} f_{\ell}
$$

- In order to minimize C, need to minimize C_{L} and C_{R} respectively
- opt $[i, j]$: the optimum cost for the instance $\left(f_{i}, f_{i+1}, \cdots, f_{j}\right)$

$$
o p t[1, n]=\quad(o p t[1, k-1]+o p t[k+1, n])+\sum_{\ell=1}^{n} f_{\ell}
$$

$$
C=C_{L}+C_{R}+\sum_{\ell=1}^{n} f_{\ell}
$$

- In order to minimize C, need to minimize C_{L} and C_{R} respectively
- opt $[i, j]$: the optimum cost for the instance $\left(f_{i}, f_{i+1}, \cdots, f_{j}\right)$

$$
o p t[1, n]=\min _{k: 1 \leq k \leq n}(o p t[1, k-1]+o p t[k+1, n])+\sum_{\ell=1}^{n} f_{\ell}
$$

$$
C=C_{L}+C_{R}+\sum_{\ell=1}^{n} f_{\ell}
$$

- In order to minimize C, need to minimize C_{L} and C_{R} respectively
- opt $[i, j]$: the optimum cost for the instance $\left(f_{i}, f_{i+1}, \cdots, f_{j}\right)$

$$
\operatorname{opt}[1, n]=\min _{k: 1 \leq k \leq n}(\operatorname{opt}[1, k-1]+o p t[k+1, n])+\sum_{\ell=1}^{n} f_{\ell}
$$

- In general, opt $[i, j]=$

$$
\begin{cases}0 & \text { if } i=j+1 \\ \min _{k: i \leq k \leq j}(\operatorname{opt}[i, k-1]+\operatorname{opt}[k+1, j])+\sum_{\ell=i}^{j} f_{\ell} & \text { if } i \leq j\end{cases}
$$

Optimum Binary Search Tree

1: $\operatorname{fsum}[0] \leftarrow 0$
2: for $i \leftarrow 1$ to n do $f \operatorname{sum}[i] \leftarrow f \operatorname{sum}[i-1]+f_{i}$

$$
\triangleright \operatorname{fsum}[i]=\sum_{j=1}^{i} f_{j}
$$

3: for $i \leftarrow 0$ to n do $o p t[i+1, i] \leftarrow 0$
4: for $\ell \leftarrow 1$ to n do
5: \quad for $i \leftarrow 1$ to $n-\ell+1$ do
6: $\quad j \leftarrow i+\ell-1$, opt $[i, j] \leftarrow \infty$
7: \quad for $k \leftarrow i$ to j do
8:
9:

$$
o p t[i, j] \leftarrow o p t[i, k-1]+o p t[k+1, j]
$$

10 :

$$
\pi[i, j] \leftarrow k
$$

11:

$$
\text { if } \operatorname{opt}[i, k-1]+o p t[k+1, j]<o p t[i, j] \text { then }
$$

$$
o p t[i, j] \leftarrow o p t[i, j]+f \operatorname{sum}[j]-f \operatorname{sum}[i-1]
$$

Printing the Tree

Print-Tree (i, j)

1: if $i>j$ then

2: return

3: else
4: print('(')
5: $\quad \operatorname{Print-Tree}(i, \pi[i, j]-1)$
6: $\quad \operatorname{print}(\pi[i, j])$
7: \quad Print-Tree $(\pi[i, j]+1, j)$
8: $\quad \operatorname{print}\left({ }^{\prime}\right)$ ')

Outline

(1) Weighted Interval Scheduling
(2) Subset Sum Problem
(3) Knapsack Problem
4. Longest Common Subsequence

- Longest Common Subsequence in Linear Space

55 Shortest Paths in Directed Acyclic Graphs
(6) Matrix Chain Multiplication
(7) Optimum Binary Search Tree
(8) Summary
(9) Summary of Studies Until Nov 1st

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Comparison with greedy algorithms

- Greedy algorithm: each step is making a small progress towards constructing the solution
- Dynamic programming: the whole solution is constructed in the last step

Comparison with divide and conquer

- Divide and conquer: an instance is broken into many independent sub-instances, which are solved separately.
- Dynamic programming: the sub-instances we constructed are overlapping.

Definition of Cells for Problems We Learnt

- Weighted interval scheduling: opt $[i]=$ value of instance defined by jobs $\{1,2, \cdots, i\}$
- Subset sum, knapsack: opt $\left[i, W^{\prime}\right]=$ value of instance with items $\{1,2, \cdots, i\}$ and budget W^{\prime}
- Longest common subsequence: opt $[i, j]=$ value of instance defined by $A[1 . . i]$ and $B[1 . . j]$
- Shortest paths in DAG: $f[v]=$ length of shortest path from s to v
- Matrix chain multiplication, optimum binary search tree: $o p t[i, j]=$ value of instances defined by matrices i to j

Outline

(1) Weighted Interval Scheduling
(2) Subset Sum Problem
(3) Knapsack Problem

4 Longest Common Subsequence

- Longest Common Subsequence in Linear Space
(5) Shortest Paths in Directed Acyclic Graphs
(6) Matrix Chain Multiplication
(7) Optimum Binary Search Tree
(8) Summary
(9) Summary of Studies Until Nov 1st

Important notations/algorithms

- Introduction:
- Asymptotic analysis: O, Ω, Θ, compare the orders

Important notations/algorithms

- Introduction:
- Asymptotic analysis: O, Ω, Θ, compare the orders
- Polynomial time (efficient algorithm), exponential time

Important notations/algorithms

- Introduction:
- Asymptotic analysis: O, Ω, Θ, compare the orders
- Polynomial time (efficient algorithm), exponential time
- Graph Basics:

Important notations/algorithms

- Introduction:
- Asymptotic analysis: O, Ω, Θ, compare the orders
- Polynomial time (efficient algorithm), exponential time
- Graph Basics:
- Undirected graph, directed graph

Important notations/algorithms

- Introduction:
- Asymptotic analysis: O, Ω, Θ, compare the orders
- Polynomial time (efficient algorithm), exponential time
- Graph Basics:
- Undirected graph, directed graph
- Two representations: adjacency matrix, linked lists

Important notations/algorithms

- Introduction:
- Asymptotic analysis: O, Ω, Θ, compare the orders
- Polynomial time (efficient algorithm), exponential time
- Graph Basics:
- Undirected graph, directed graph
- Two representations: adjacency matrix, linked lists
- Path, cycle, tree, directed acyclic graph, bipartite graph

Important notations/algorithms

- Introduction:
- Asymptotic analysis: O, Ω, Θ, compare the orders
- Polynomial time (efficient algorithm), exponential time
- Graph Basics:
- Undirected graph, directed graph
- Two representations: adjacency matrix, linked lists
- Path, cycle, tree, directed acyclic graph, bipartite graph
- Connectivity problem: BFS and DFS algorithm

Important notations/algorithms

- Introduction:
- Asymptotic analysis: O, Ω, Θ, compare the orders
- Polynomial time (efficient algorithm), exponential time
- Graph Basics:
- Undirected graph, directed graph
- Two representations: adjacency matrix, linked lists
- Path, cycle, tree, directed acyclic graph, bipartite graph
- Connectivity problem: BFS and DFS algorithm
- Testing Bipartiteness problem: test-bipartiteness-BFS or test-bipartiteness-DFS algorithm

Important notations/algorithms

- Introduction:
- Asymptotic analysis: O, Ω, Θ, compare the orders
- Polynomial time (efficient algorithm), exponential time
- Graph Basics:
- Undirected graph, directed graph
- Two representations: adjacency matrix, linked lists
- Path, cycle, tree, directed acyclic graph, bipartite graph
- Connectivity problem: BFS and DFS algorithm
- Testing Bipartiteness problem: test-bipartiteness-BFS or test-bipartiteness-DFS algorithm
- Topological Ordering problem: topological-sort algorithm

Important notations/algorithms

- Greedy algorithms: safety strategy+self reduce
- Box Packing problem: greedy algorithm

Important notations/algorithms

- Greedy algorithms: safety strategy+self reduce
- Box Packing problem: greedy algorithm
- Interval Scheduling problem: schedule algorithm

Important notations/algorithms

- Greedy algorithms: safety strategy+self reduce
- Box Packing problem: greedy algorithm
- Interval Scheduling problem: schedule algorithm
- Interval Partitioning problem: partition algorithm

Important notations/algorithms

- Greedy algorithms: safety strategy+self reduce
- Box Packing problem: greedy algorithm
- Interval Scheduling problem: schedule algorithm
- Interval Partitioning problem: partition algorithm
- Offline Caching problem: FIF algorithm

Important notations/algorithms

- Greedy algorithms: safety strategy+self reduce
- Box Packing problem: greedy algorithm
- Interval Scheduling problem: schedule algorithm
- Interval Partitioning problem: partition algorithm
- Offline Caching problem: FIF algorithm
- Priority Queue: heap

Important notations/algorithms

- Greedy algorithms: safety strategy+self reduce
- Box Packing problem: greedy algorithm
- Interval Scheduling problem: schedule algorithm
- Interval Partitioning problem: partition algorithm
- Offline Caching problem: FIF algorithm
- Priority Queue: heap
- Huffman Code problem: prefix code notation, Huffman algorithm

Important notations/algorithms

- Greedy algorithms: safety strategy+self reduce
- Box Packing problem: greedy algorithm
- Interval Scheduling problem: schedule algorithm
- Interval Partitioning problem: partition algorithm
- Offline Caching problem: FIF algorithm
- Priority Queue: heap
- Huffman Code problem: prefix code notation, Huffman algorithm
- Exercise problems: Fractional knapsack problem, scheduling problem (min weighted sum of completion times)

Important notations/algorithms

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
- Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)

Important notations/algorithms

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
- Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
- Counting inversions problem: sort-and-count algorithm

Important notations/algorithms

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
- Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
- Counting inversions problem: sort-and-count algorithm
- Selection problem: selection algorithm based on quicksort

Important notations/algorithms

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
- Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
- Counting inversions problem: sort-and-count algorithm
- Selection problem: selection algorithm based on quicksort
- Polynomial Multiplication problem: multiply algorithm

Important notations/algorithms

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
- Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
- Counting inversions problem: sort-and-count algorithm
- Selection problem: selection algorithm based on quicksort
- Polynomial Multiplication problem: multiply algorithm
- Recurrences: recursive-tree method and Master Theorem

Important notations/algorithms

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
- Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
- Counting inversions problem: sort-and-count algorithm
- Selection problem: selection algorithm based on quicksort
- Polynomial Multiplication problem: multiply algorithm
- Recurrences: recursive-tree method and Master Theorem
- Fibonacci number problem: power algorithm

Important notations/algorithms

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
- Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
- Counting inversions problem: sort-and-count algorithm
- Selection problem: selection algorithm based on quicksort
- Polynomial Multiplication problem: multiply algorithm
- Recurrences: recursive-tree method and Master Theorem
- Fibonacci number problem: power algorithm
- Exercise problems: Closest Pair, Convex Hull, Two Matrix Multiplication

Important notations/algorithms

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
- Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule

Important notations/algorithms

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
- Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
- Subset Sum problem: DP algorithm + Recovering optimal schedule

Important notations/algorithms

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
- Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
- Subset Sum problem: DP algorithm + Recovering optimal schedule
- Knapsack problem: DP algorithm + Recovering optimal schedule

Important notations/algorithms

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
- Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
- Subset Sum problem: DP algorithm + Recovering optimal schedule
- Knapsack problem: DP algorithm + Recovering optimal schedule
- Longest common subsequence problem (LCS): DP algorithm + Recovering optimal schedule

Important notations/algorithms

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
- Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
- Subset Sum problem: DP algorithm + Recovering optimal schedule
- Knapsack problem: DP algorithm + Recovering optimal schedule
- Longest common subsequence problem (LCS): DP algorithm + Recovering optimal schedule
- Edit distance with insertions and deletions problem: apply algorithm for LCS problem

Important notations/algorithms

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
- Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
- Subset Sum problem: DP algorithm + Recovering optimal schedule
- Knapsack problem: DP algorithm + Recovering optimal schedule
- Longest common subsequence problem (LCS): DP algorithm + Recovering optimal schedule
- Edit distance with insertions and deletions problem: apply algorithm for LCS problem
- Edit distance with insertions, deletions and replacing problem

Important notations/algorithms

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
- Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
- Subset Sum problem: DP algorithm + Recovering optimal schedule
- Knapsack problem: DP algorithm + Recovering optimal schedule
- Longest common subsequence problem (LCS): DP algorithm + Recovering optimal schedule
- Edit distance with insertions and deletions problem: apply algorithm for LCS problem
- Edit distance with insertions, deletions and replacing problem
- Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in DAG algorithm + print-path algorithm

Important notations/algorithms

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
- Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
- Subset Sum problem: DP algorithm + Recovering optimal schedule
- Knapsack problem: DP algorithm + Recovering optimal schedule
- Longest common subsequence problem (LCS): DP algorithm + Recovering optimal schedule
- Edit distance with insertions and deletions problem: apply algorithm for LCS problem
- Edit distance with insertions, deletions and replacing problem
- Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in DAG algorithm + print-path algorithm
- Matrix Chain Multiplication problem: matrix-chain-multiplication algorithm + print-optimal-order alg

Important notations/algorithms

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
- Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
- Subset Sum problem: DP algorithm + Recovering optimal schedule
- Knapsack problem: DP algorithm + Recovering optimal schedule
- Longest common subsequence problem (LCS): DP algorithm + Recovering optimal schedule
- Edit distance with insertions and deletions problem: apply algorithm for LCS problem
- Edit distance with insertions, deletions and replacing problem
- Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in DAG algorithm + print-path algorithm
- Matrix Chain Multiplication problem: matrix-chain-multiplication algorithm + print-optimal-order alg
- Optimum Binary Search Tree Problem: Optimum Binary Search Tree alg + Print Tree alg

Quiz 6 about Dynamic Programming algorithms

- Fours problems about Dynamic programming algorithms

