- n elements $e_1 < e_2 < e_3 < \cdots < e_n$
- e_i has frequency f_i
- goal: build a binary search tree for $\{e_1, e_2, \cdots, e_n\}$ with the minimum accessing cost:

$$\sum_{i=1}^{n} f_i \times (\text{depth of } e_i \text{ in the tree})$$

- $10 \times 1 + 5 \times 2 + 3 \times 3 = 29$
- $10 \times 2 + 5 \times 1 + 3 \times 2 = 31$
- $10 \times 3 + 5 \times 2 + 3 \times 1 = 43$

- $10 \times 1 + 5 \times 2 + 3 \times 3 = 29$
- $10 \times 2 + 5 \times 1 + 3 \times 2 = 31$
- $10 \times 3 + 5 \times 2 + 3 \times 1 = 43$

- suppose we decided to let e_k be the root
- $e_1, e_2, \cdots, e_{k-1}$ are on left sub-tree
- $e_{k+1}, e_{k+2}, \cdots, e_n$ are on right sub-tree
- d_j : depth of e_j in our tree
- C, C_L, C_R : cost of tree, left sub-tree and right sub-tree

•
$$d_1 = 3, d_2 = 2, d_3 = 3, d_4 = 4, d_5 = 1,$$

• $d_6 = 2, d_7 = 4, d_8 = 3, d_9 = 4,$
• $C = 3f_1 + 2f_2 + 3f_3 + 4f_4 + f_5 + 2f_6 + 4f_7 + 3f_8 + 4f_9$
• $C_L = 2f_1 + f_2 + 2f_3 + 3f_4$
• $C_R = f_6 + 3f_7 + 2f_8 + 3f_9$
• $C = C_L + C_R + \sum_{j=1}^9 f_j$

77/90

$$C = C_L + C_R + \sum_{\ell=1}^n f_\ell$$

• In order to minimize $C_{\rm L}$ need to minimize $C_{\rm L}$ and $C_{\rm R}$ respectively

$$C = C_L + C_R + \sum_{\ell=1}^n f_\ell$$

- In order to minimize C, need to minimize C_L and C_R respectively
- opt[i, j]: the optimum cost for the instance $(f_i, f_{i+1}, \cdots, f_j)$

$$C = C_L + C_R + \sum_{\ell=1}^n f_\ell$$

In order to minimize C, need to minimize C_L and C_R respectively
opt[i, j]: the optimum cost for the instance (f_i, f_{i+1}, · · · , f_j)

$$opt[1,n] = (opt[1,k-1] + opt[k+1,n]) + \sum_{\ell=1}^{n} f_{\ell}$$

$$C = C_L + C_R + \sum_{\ell=1}^n f_\ell$$

In order to minimize C, need to minimize C_L and C_R respectively
opt[i, j]: the optimum cost for the instance (f_i, f_{i+1}, · · · , f_j)

$$opt[1,n] = \min_{k:1 \le k \le n} (opt[1,k-1] + opt[k+1,n]) + \sum_{\ell=1}^{n} f_{\ell}$$

$$C = C_L + C_R + \sum_{\ell=1}^n f_\ell$$

In order to minimize C, need to minimize C_L and C_R respectively
opt[i, j]: the optimum cost for the instance (f_i, f_{i+1}, · · · , f_j)

$$opt[1,n] = \min_{k:1 \le k \le n} (opt[1,k-1] + opt[k+1,n]) + \sum_{\ell=1}^{n} f_{\ell}$$

• In general, opt[i, j] =

$$\begin{cases} 0 & \text{if } i = j+1\\ \min_{k:i \le k \le j} \left(opt[i,k-1] + opt[k+1,j] \right) + \sum_{\ell=i}^{j} f_{\ell} & \text{if } i \le j \end{cases}$$

1:
$$fsum[0] \leftarrow 0$$

2: for $i \leftarrow 1$ to n do $fsum[i] \leftarrow fsum[i-1] + f_i$
 $\triangleright fsum[i] = \sum_{j=1}^i f_j$
3: for $i \leftarrow 0$ to n do $opt[i+1,i] \leftarrow 0$
4: for $\ell \leftarrow 1$ to n do
5: for $i \leftarrow 1$ to $n - \ell + 1$ do
6: $j \leftarrow i + \ell - 1$, $opt[i,j] \leftarrow \infty$
7: for $k \leftarrow i$ to j do
8: if $opt[i, k - 1] + opt[k + 1, j] < opt[i, j]$ then
9: $opt[i, j] \leftarrow opt[i, k - 1] + opt[k + 1, j]$
10: $\pi[i, j] \leftarrow k$
11: $opt[i, j] \leftarrow opt[i, j] + fsum[j] - fsum[i - 1]$

$\mathsf{Print}\text{-}\mathsf{Tree}(i,j)$

- 1: if i > j then
- 2: return
- 3: **else**
- 4: print('(')
- 5: Print-Tree $(i, \pi[i, j] 1)$
- 6: $print(\pi[i, j])$
- 7: Print-Tree $(\pi[i, j] + 1, j)$
- 8: print(')')

Outline

- Weighted Interval Scheduling
- 2 Subset Sum Problem
- 3 Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- 🕜 Optimum Binary Search Tree
- Summary
 - Summary of Studies Until Nov 1st

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Comparison with greedy algorithms

- Greedy algorithm: each step is making a small progress towards constructing the solution
- Dynamic programming: the whole solution is constructed in the last step

Comparison with divide and conquer

- Divide and conquer: an instance is broken into many independent sub-instances, which are solved separately.
- Dynamic programming: the sub-instances we constructed are overlapping.

Definition of Cells for Problems We Learnt

- Weighted interval scheduling: opt[i] = value of instance defined by jobs $\{1, 2, \cdots, i\}$
- Subset sum, knapsack: opt[i,W'] = value of instance with items $\{1,2,\cdots,i\}$ and budget W'
- Longest common subsequence: opt[i, j] = value of instance defined by A[1..i] and B[1..j]
- Shortest paths in DAG: f[v] = length of shortest path from s to v
- Matrix chain multiplication, optimum binary search tree: opt[i, j] = value of instances defined by matrices i to j

Outline

- Weighted Interval Scheduling
- 2 Subset Sum Problem
- 3 Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- 🕜 Optimum Binary Search Tree
- 8 Summary

- Introduction:
 - Asymptotic analysis: ${\it O},~\Omega,~\Theta,$ compare the orders

- Introduction:
 - Asymptotic analysis: ${\it O},~\Omega,~\Theta,$ compare the orders
 - Polynomial time (efficient algorithm), exponential time

- Introduction:
 - Asymptotic analysis: ${\it O},~\Omega,~\Theta,$ compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:

- Introduction:
 - Asymptotic analysis: ${\it O},~\Omega,~\Theta,$ compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph

- Introduction:
 - Asymptotic analysis: ${\it O},~\Omega,~\Theta,$ compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists

- Introduction:
 - Asymptotic analysis: ${\it O},~\Omega,~\Theta,$ compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph

- Introduction:
 - Asymptotic analysis: ${\it O},~\Omega,~\Theta,$ compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph
 - Connectivity problem: BFS and DFS algorithm

- Introduction:
 - Asymptotic analysis: ${\it O},~\Omega,~\Theta,$ compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph
 - Connectivity problem: BFS and DFS algorithm
 - Testing Bipartiteness problem: test-bipartiteness-BFS or test-bipartiteness-DFS algorithm

- Introduction:
 - Asymptotic analysis: ${\it O},~\Omega,~\Theta,$ compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph
 - Connectivity problem: BFS and DFS algorithm
 - Testing Bipartiteness problem: test-bipartiteness-BFS or test-bipartiteness-DFS algorithm
 - Topological Ordering problem: topological-sort algorithm

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem: greedy algorithm

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem: greedy algorithm
 - Interval Scheduling problem: schedule algorithm

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem: greedy algorithm
 - Interval Scheduling problem: schedule algorithm
 - Interval Partitioning problem: partition algorithm

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem: greedy algorithm
 - Interval Scheduling problem: schedule algorithm
 - Interval Partitioning problem: partition algorithm
 - Offline Caching problem: FIF algorithm

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem: greedy algorithm
 - Interval Scheduling problem: schedule algorithm
 - Interval Partitioning problem: partition algorithm
 - Offline Caching problem: FIF algorithm
 - Priority Queue: heap

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem: greedy algorithm
 - Interval Scheduling problem: schedule algorithm
 - Interval Partitioning problem: partition algorithm
 - Offline Caching problem: FIF algorithm
 - Priority Queue: heap
 - Huffman Code problem: prefix code notation, Huffman algorithm

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem: greedy algorithm
 - Interval Scheduling problem: schedule algorithm
 - Interval Partitioning problem: partition algorithm
 - Offline Caching problem: FIF algorithm
 - Priority Queue: heap
 - Huffman Code problem: prefix code notation, Huffman algorithm
 - Exercise problems: Fractional knapsack problem, scheduling problem (min weighted sum of completion times)

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem: sort-and-count algorithm

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem: sort-and-count algorithm
 - Selection problem: selection algorithm based on quicksort

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem: sort-and-count algorithm
 - Selection problem: selection algorithm based on quicksort
 - Polynomial Multiplication problem: multiply algorithm

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem: sort-and-count algorithm
 - Selection problem: selection algorithm based on quicksort
 - Polynomial Multiplication problem: multiply algorithm
 - Recurrences: recursive-tree method and Master Theorem

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem: sort-and-count algorithm
 - Selection problem: selection algorithm based on quicksort
 - Polynomial Multiplication problem: multiply algorithm
 - Recurrences: recursive-tree method and Master Theorem
 - Fibonacci number problem: power algorithm

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem: sort-and-count algorithm
 - Selection problem: selection algorithm based on quicksort
 - Polynomial Multiplication problem: multiply algorithm
 - Recurrences: recursive-tree method and Master Theorem
 - Fibonacci number problem: power algorithm
 - Exercise problems: Closest Pair, Convex Hull, Two Matrix Multiplication

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
 - Subset Sum problem: DP algorithm + Recovering optimal schedule

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
 - Subset Sum problem: DP algorithm + Recovering optimal schedule
 - Knapsack problem: DP algorithm + Recovering optimal schedule

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
 - Subset Sum problem: DP algorithm + Recovering optimal schedule
 - Knapsack problem: DP algorithm + Recovering optimal schedule
 - \bullet Longest common subsequence problem (LCS): DP algorithm + Recovering optimal schedule

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
 - Subset Sum problem: DP algorithm + Recovering optimal schedule
 - Knapsack problem: DP algorithm + Recovering optimal schedule
 - $\bullet\,$ Longest common subsequence problem (LCS): DP algorithm $+\,$ Recovering optimal schedule
 - Edit distance with insertions and deletions problem: apply algorithm for LCS problem

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
 - Subset Sum problem: DP algorithm + Recovering optimal schedule
 - Knapsack problem: DP algorithm + Recovering optimal schedule
 - \bullet Longest common subsequence problem (LCS): DP algorithm + Recovering optimal schedule
 - Edit distance with insertions and deletions problem: apply algorithm for LCS problem
 - Edit distance with insertions, deletions and replacing problem

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
 - Subset Sum problem: DP algorithm + Recovering optimal schedule
 - Knapsack problem: DP algorithm + Recovering optimal schedule
 - \bullet Longest common subsequence problem (LCS): DP algorithm + Recovering optimal schedule
 - Edit distance with insertions and deletions problem: apply algorithm for LCS problem
 - Edit distance with insertions, deletions and replacing problem
 - Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in DAG algorithm + print-path algorithm

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
 - Subset Sum problem: DP algorithm + Recovering optimal schedule
 - Knapsack problem: DP algorithm + Recovering optimal schedule
 - \bullet Longest common subsequence problem (LCS): DP algorithm + Recovering optimal schedule
 - Edit distance with insertions and deletions problem: apply algorithm for LCS problem
 - Edit distance with insertions, deletions and replacing problem
 - Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in DAG algorithm + print-path algorithm
 - Matrix Chain Multiplication problem: matrix-chain-multiplication algorithm + print-optimal-order alg

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem: DP algorithm + Recovering optimal schedule
 - Subset Sum problem: DP algorithm + Recovering optimal schedule
 - Knapsack problem: DP algorithm + Recovering optimal schedule
 - $\bullet\,$ Longest common subsequence problem (LCS): DP algorithm $+\,$ Recovering optimal schedule
 - Edit distance with insertions and deletions problem: apply algorithm for LCS problem
 - Edit distance with insertions, deletions and replacing problem
 - Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in DAG algorithm + print-path algorithm
 - Matrix Chain Multiplication problem: matrix-chain-multiplication algorithm + print-optimal-order alg
 - Optimum Binary Search Tree Problem: Optimum Binary Search Tree alg + Print Tree alg 89/90

Quiz 6 about Dynamic Programming algorithms

• Fours problems about Dynamic programming algorithms