
74/90

Optimum Binary Search Tree

n elements e1 < e2 < e3 < · · · < en

ei has frequency fi

goal: build a binary search tree for {e1, e2, · · · , en} with the
minimum accessing cost:

nX

i=1

fi ⇥ (depth of ei in the tree)

75/90

Optimum Binary Search Tree

Example: f1 = 10, f2 = 5, f3 = 3
e1

e2

e3

e2

e1 e3 e2

e1

e3

10⇥ 1 + 5⇥ 2 + 3⇥ 3 = 29

10⇥ 2 + 5⇥ 1 + 3⇥ 2 = 31

10⇥ 3 + 5⇥ 2 + 3⇥ 1 = 43

75/90

Optimum Binary Search Tree

Example: f1 = 10, f2 = 5, f3 = 3
e1

e2

e3

e2

e1 e3 e2

e1

e3

10⇥ 1 + 5⇥ 2 + 3⇥ 3 = 29

10⇥ 2 + 5⇥ 1 + 3⇥ 2 = 31

10⇥ 3 + 5⇥ 2 + 3⇥ 1 = 43

75/90

Optimum Binary Search Tree

Example: f1 = 10, f2 = 5, f3 = 3
e1

e2

e3

e2

e1 e3 e2

e1

e3e1

e2

e3

10⇥ 1 + 5⇥ 2 + 3⇥ 3 = 29

10⇥ 2 + 5⇥ 1 + 3⇥ 2 = 31

10⇥ 3 + 5⇥ 2 + 3⇥ 1 = 43

76/90

suppose we decided to let ek be the root

e1, e2, · · · , ek�1 are on left sub-tree

ek+1, ek+2, · · · , en are on right sub-tree

dj: depth of ej in our tree

C,CL, CR: cost of tree, left sub-tree and right sub-tree

e5

e1

e2

e3

e4 e7

e6

e8

e9

d1 = 3, d2 = 2, d3 = 3, d4 = 4, d5 = 1,

d6 = 2, d7 = 4, d8 = 3, d9 = 4,

C = 3f1 + 2f2 + 3f3 + 4f4 + f5 +
2f6 + 4f7 + 3f8 + 4f9
CL = 2f1 + f2 + 2f3 + 3f4
CR = f6 + 3f7 + 2f8 + 3f9

C = CL + CR +
P9

j=1 fj

77/90

ek

e1 · · · ek�1 ek+1 · · · en

CL: cost of left tree CR: cost of left tree

C: cost of left tree

C =
nX

`=1

f`d` =
nX

`=1

f`(d` � 1) +
nX

`=1

f`

=
k�1X

`=1

f`(d` � 1) +
nX

`=k+1

f`(d` � 1) +
nX

`=1

f`

= CL + CR +
nX

`=1

f`

78/90

C = CL + CR +
nX

`=1

f`

In order to minimize C, need to minimize CL and CR respectively

opt[i, j]: the optimum cost for the instance (fi, fi+1, · · · , fj)

opt[1, n] =

min
k:1kn

(opt[1, k � 1] + opt[k + 1, n]) +
nX

`=1

f`

In general, opt[i, j] =

(
0 if i = j + 1

mink:ikj

�
opt[i, k � 1] + opt[k + 1, j]

�
+
Pj

`=i f` if i j

78/90

C = CL + CR +
nX

`=1

f`

In order to minimize C, need to minimize CL and CR respectively

opt[i, j]: the optimum cost for the instance (fi, fi+1, · · · , fj)

opt[1, n] =

min
k:1kn

(opt[1, k � 1] + opt[k + 1, n]) +
nX

`=1

f`

In general, opt[i, j] =

(
0 if i = j + 1

mink:ikj

�
opt[i, k � 1] + opt[k + 1, j]

�
+
Pj

`=i f` if i j

78/90

C = CL + CR +
nX

`=1

f`

In order to minimize C, need to minimize CL and CR respectively

opt[i, j]: the optimum cost for the instance (fi, fi+1, · · · , fj)

opt[1, n] =

min
k:1kn

(opt[1, k � 1] + opt[k + 1, n]) +
nX

`=1

f`

In general, opt[i, j] =

(
0 if i = j + 1

mink:ikj

�
opt[i, k � 1] + opt[k + 1, j]

�
+
Pj

`=i f` if i j

78/90

C = CL + CR +
nX

`=1

f`

In order to minimize C, need to minimize CL and CR respectively

opt[i, j]: the optimum cost for the instance (fi, fi+1, · · · , fj)

opt[1, n] = min
k:1kn

(opt[1, k � 1] + opt[k + 1, n]) +
nX

`=1

f`

In general, opt[i, j] =

(
0 if i = j + 1

mink:ikj

�
opt[i, k � 1] + opt[k + 1, j]

�
+
Pj

`=i f` if i j

78/90

C = CL + CR +
nX

`=1

f`

In order to minimize C, need to minimize CL and CR respectively

opt[i, j]: the optimum cost for the instance (fi, fi+1, · · · , fj)

opt[1, n] = min
k:1kn

(opt[1, k � 1] + opt[k + 1, n]) +
nX

`=1

f`

In general, opt[i, j] =

(
0 if i = j + 1

mink:ikj

�
opt[i, k � 1] + opt[k + 1, j]

�
+
Pj

`=i f` if i j

79/90

Optimum Binary Search Tree
1: fsum[0] 0
2: for i 1 to n do fsum[i] fsum[i� 1] + fi

. fsum[i] =
Pi

j=1 fj

3: for i 0 to n do opt[i+ 1, i] 0

4: for ` 1 to n do

5: for i 1 to n� `+ 1 do

6: j i+ `� 1, opt[i, j] 1
7: for k i to j do

8: if opt[i, k � 1] + opt[k + 1, j] < opt[i, j] then
9: opt[i, j] opt[i, k � 1] + opt[k + 1, j]

10: ⇡[i, j] k

11: opt[i, j] opt[i, j] + fsum[j]� fsum[i� 1]

80/90

Printing the Tree

Print-Tree(i, j)
1: if i > j then

2: return

3: else

4: print(’(’)
5: Print-Tree(i, ⇡[i, j]� 1)
6: print(⇡[i, j])
7: Print-Tree(⇡[i, j] + 1, j)
8: print(’)’)

81/90

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Summary of Studies Until Nov 1st

82/90

Dynamic Programming
Break up a problem into many overlapping sub-problems

Build solutions for larger and larger sub-problems

Use a table to store solutions for sub-problems for reuse

83/90

Comparison with greedy algorithms
Greedy algorithm: each step is making a small progress towards
constructing the solution

Dynamic programming: the whole solution is constructed in the
last step

Comparison with divide and conquer
Divide and conquer: an instance is broken into many independent
sub-instances, which are solved separately.

Dynamic programming: the sub-instances we constructed are
overlapping.

84/90

Definition of Cells for Problems We Learnt

Weighted interval scheduling: opt[i] = value of instance defined
by jobs {1, 2, · · · , i}
Subset sum, knapsack: opt[i,W 0] = value of instance with items
{1, 2, · · · , i} and budget W 0

Longest common subsequence: opt[i, j] = value of instance
defined by A[1..i] and B[1..j]

Shortest paths in DAG: f [v] = length of shortest path from s to v

Matrix chain multiplication, optimum binary search tree:
opt[i, j] = value of instances defined by matrices i to j

85/90

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary

9 Summary of Studies Until Nov 1st

86/90

Important notations/algorithms

Introduction:
Asymptotic analysis: O, ⌦, ⇥, compare the orders

Polynomial time (e�cient algorithm), exponential time

Graph Basics:

Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm
Topological Ordering problem: topological-sort algorithm

86/90

Important notations/algorithms

Introduction:
Asymptotic analysis: O, ⌦, ⇥, compare the orders
Polynomial time (e�cient algorithm), exponential time

Graph Basics:

Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm
Topological Ordering problem: topological-sort algorithm

86/90

Important notations/algorithms

Introduction:
Asymptotic analysis: O, ⌦, ⇥, compare the orders
Polynomial time (e�cient algorithm), exponential time

Graph Basics:

Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm
Topological Ordering problem: topological-sort algorithm

86/90

Important notations/algorithms

Introduction:
Asymptotic analysis: O, ⌦, ⇥, compare the orders
Polynomial time (e�cient algorithm), exponential time

Graph Basics:
Undirected graph, directed graph

Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm
Topological Ordering problem: topological-sort algorithm

86/90

Important notations/algorithms

Introduction:
Asymptotic analysis: O, ⌦, ⇥, compare the orders
Polynomial time (e�cient algorithm), exponential time

Graph Basics:
Undirected graph, directed graph
Two representations: adjacency matrix, linked lists

Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm
Topological Ordering problem: topological-sort algorithm

86/90

Important notations/algorithms

Introduction:
Asymptotic analysis: O, ⌦, ⇥, compare the orders
Polynomial time (e�cient algorithm), exponential time

Graph Basics:
Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph

Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm
Topological Ordering problem: topological-sort algorithm

86/90

Important notations/algorithms

Introduction:
Asymptotic analysis: O, ⌦, ⇥, compare the orders
Polynomial time (e�cient algorithm), exponential time

Graph Basics:
Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm

Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm
Topological Ordering problem: topological-sort algorithm

86/90

Important notations/algorithms

Introduction:
Asymptotic analysis: O, ⌦, ⇥, compare the orders
Polynomial time (e�cient algorithm), exponential time

Graph Basics:
Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm

Topological Ordering problem: topological-sort algorithm

86/90

Important notations/algorithms

Introduction:
Asymptotic analysis: O, ⌦, ⇥, compare the orders
Polynomial time (e�cient algorithm), exponential time

Graph Basics:
Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm
Topological Ordering problem: topological-sort algorithm

87/90

Important notations/algorithms

Greedy algorithms: safety strategy+self reduce
Box Packing problem: greedy algorithm

Interval Scheduling problem: schedule algorithm
Interval Partitioning problem: partition algorithm
O✏ine Caching problem: FIF algorithm
Priority Queue: heap
Hu↵man Code problem: prefix code notation, Hu↵man algorithm
Exercise problems: Fractional knapsack problem, scheduling problem
(min weighted sum of completion times)

87/90

Important notations/algorithms

Greedy algorithms: safety strategy+self reduce
Box Packing problem: greedy algorithm
Interval Scheduling problem: schedule algorithm

Interval Partitioning problem: partition algorithm
O✏ine Caching problem: FIF algorithm
Priority Queue: heap
Hu↵man Code problem: prefix code notation, Hu↵man algorithm
Exercise problems: Fractional knapsack problem, scheduling problem
(min weighted sum of completion times)

87/90

Important notations/algorithms

Greedy algorithms: safety strategy+self reduce
Box Packing problem: greedy algorithm
Interval Scheduling problem: schedule algorithm
Interval Partitioning problem: partition algorithm

O✏ine Caching problem: FIF algorithm
Priority Queue: heap
Hu↵man Code problem: prefix code notation, Hu↵man algorithm
Exercise problems: Fractional knapsack problem, scheduling problem
(min weighted sum of completion times)

87/90

Important notations/algorithms

Greedy algorithms: safety strategy+self reduce
Box Packing problem: greedy algorithm
Interval Scheduling problem: schedule algorithm
Interval Partitioning problem: partition algorithm
O✏ine Caching problem: FIF algorithm

Priority Queue: heap
Hu↵man Code problem: prefix code notation, Hu↵man algorithm
Exercise problems: Fractional knapsack problem, scheduling problem
(min weighted sum of completion times)

87/90

Important notations/algorithms

Greedy algorithms: safety strategy+self reduce
Box Packing problem: greedy algorithm
Interval Scheduling problem: schedule algorithm
Interval Partitioning problem: partition algorithm
O✏ine Caching problem: FIF algorithm
Priority Queue: heap

Hu↵man Code problem: prefix code notation, Hu↵man algorithm
Exercise problems: Fractional knapsack problem, scheduling problem
(min weighted sum of completion times)

87/90

Important notations/algorithms

Greedy algorithms: safety strategy+self reduce
Box Packing problem: greedy algorithm
Interval Scheduling problem: schedule algorithm
Interval Partitioning problem: partition algorithm
O✏ine Caching problem: FIF algorithm
Priority Queue: heap
Hu↵man Code problem: prefix code notation, Hu↵man algorithm

Exercise problems: Fractional knapsack problem, scheduling problem
(min weighted sum of completion times)

87/90

Important notations/algorithms

Greedy algorithms: safety strategy+self reduce
Box Packing problem: greedy algorithm
Interval Scheduling problem: schedule algorithm
Interval Partitioning problem: partition algorithm
O✏ine Caching problem: FIF algorithm
Priority Queue: heap
Hu↵man Code problem: prefix code notation, Hu↵man algorithm
Exercise problems: Fractional knapsack problem, scheduling problem
(min weighted sum of completion times)

88/90

Important notations/algorithms

Divide-and-Conquer algorithms: Divide+Conquer+Combine
Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)

Counting inversions problem: sort-and-count algorithm
Selection problem: selection algorithm based on quicksort
Polynomial Multiplication problem: multiply algorithm
Recurrences: recursive-tree method and Master Theorem
Fibonacci number problem: power algorithm
Exercise problems: Closest Pair, Convex Hull, Two Matrix
Multiplication

88/90

Important notations/algorithms

Divide-and-Conquer algorithms: Divide+Conquer+Combine
Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
Counting inversions problem: sort-and-count algorithm

Selection problem: selection algorithm based on quicksort
Polynomial Multiplication problem: multiply algorithm
Recurrences: recursive-tree method and Master Theorem
Fibonacci number problem: power algorithm
Exercise problems: Closest Pair, Convex Hull, Two Matrix
Multiplication

88/90

Important notations/algorithms

Divide-and-Conquer algorithms: Divide+Conquer+Combine
Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
Counting inversions problem: sort-and-count algorithm
Selection problem: selection algorithm based on quicksort

Polynomial Multiplication problem: multiply algorithm
Recurrences: recursive-tree method and Master Theorem
Fibonacci number problem: power algorithm
Exercise problems: Closest Pair, Convex Hull, Two Matrix
Multiplication

88/90

Important notations/algorithms

Divide-and-Conquer algorithms: Divide+Conquer+Combine
Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
Counting inversions problem: sort-and-count algorithm
Selection problem: selection algorithm based on quicksort
Polynomial Multiplication problem: multiply algorithm

Recurrences: recursive-tree method and Master Theorem
Fibonacci number problem: power algorithm
Exercise problems: Closest Pair, Convex Hull, Two Matrix
Multiplication

88/90

Important notations/algorithms

Divide-and-Conquer algorithms: Divide+Conquer+Combine
Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
Counting inversions problem: sort-and-count algorithm
Selection problem: selection algorithm based on quicksort
Polynomial Multiplication problem: multiply algorithm
Recurrences: recursive-tree method and Master Theorem

Fibonacci number problem: power algorithm
Exercise problems: Closest Pair, Convex Hull, Two Matrix
Multiplication

88/90

Important notations/algorithms

Divide-and-Conquer algorithms: Divide+Conquer+Combine
Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
Counting inversions problem: sort-and-count algorithm
Selection problem: selection algorithm based on quicksort
Polynomial Multiplication problem: multiply algorithm
Recurrences: recursive-tree method and Master Theorem
Fibonacci number problem: power algorithm

Exercise problems: Closest Pair, Convex Hull, Two Matrix
Multiplication

88/90

Important notations/algorithms

Divide-and-Conquer algorithms: Divide+Conquer+Combine
Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
Counting inversions problem: sort-and-count algorithm
Selection problem: selection algorithm based on quicksort
Polynomial Multiplication problem: multiply algorithm
Recurrences: recursive-tree method and Master Theorem
Fibonacci number problem: power algorithm
Exercise problems: Closest Pair, Convex Hull, Two Matrix
Multiplication

89/90

Important notations/algorithms

Dynamic Programming algorithms: subproblem+recurrence
relation+calculate from base case
Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule

Subset Sum problem: DP algorithm + Recovering optimal schedule
Knapsack problem: DP algorithm + Recovering optimal schedule
Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule
Edit distance with insertions and deletions problem: apply algorithm
for LCS problem
Edit distance with insertions, deletions and replacing problem
Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm
Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg
Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg

89/90

Important notations/algorithms

Dynamic Programming algorithms: subproblem+recurrence
relation+calculate from base case
Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule
Subset Sum problem: DP algorithm + Recovering optimal schedule

Knapsack problem: DP algorithm + Recovering optimal schedule
Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule
Edit distance with insertions and deletions problem: apply algorithm
for LCS problem
Edit distance with insertions, deletions and replacing problem
Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm
Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg
Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg

89/90

Important notations/algorithms

Dynamic Programming algorithms: subproblem+recurrence
relation+calculate from base case
Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule
Subset Sum problem: DP algorithm + Recovering optimal schedule
Knapsack problem: DP algorithm + Recovering optimal schedule

Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule
Edit distance with insertions and deletions problem: apply algorithm
for LCS problem
Edit distance with insertions, deletions and replacing problem
Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm
Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg
Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg

89/90

Important notations/algorithms

Dynamic Programming algorithms: subproblem+recurrence
relation+calculate from base case
Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule
Subset Sum problem: DP algorithm + Recovering optimal schedule
Knapsack problem: DP algorithm + Recovering optimal schedule
Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule

Edit distance with insertions and deletions problem: apply algorithm
for LCS problem
Edit distance with insertions, deletions and replacing problem
Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm
Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg
Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg

89/90

Important notations/algorithms

Dynamic Programming algorithms: subproblem+recurrence
relation+calculate from base case
Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule
Subset Sum problem: DP algorithm + Recovering optimal schedule
Knapsack problem: DP algorithm + Recovering optimal schedule
Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule
Edit distance with insertions and deletions problem: apply algorithm
for LCS problem

Edit distance with insertions, deletions and replacing problem
Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm
Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg
Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg

89/90

Important notations/algorithms

Dynamic Programming algorithms: subproblem+recurrence
relation+calculate from base case
Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule
Subset Sum problem: DP algorithm + Recovering optimal schedule
Knapsack problem: DP algorithm + Recovering optimal schedule
Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule
Edit distance with insertions and deletions problem: apply algorithm
for LCS problem
Edit distance with insertions, deletions and replacing problem

Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm
Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg
Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg

89/90

Important notations/algorithms

Dynamic Programming algorithms: subproblem+recurrence
relation+calculate from base case
Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule
Subset Sum problem: DP algorithm + Recovering optimal schedule
Knapsack problem: DP algorithm + Recovering optimal schedule
Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule
Edit distance with insertions and deletions problem: apply algorithm
for LCS problem
Edit distance with insertions, deletions and replacing problem
Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm

Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg
Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg

89/90

Important notations/algorithms

Dynamic Programming algorithms: subproblem+recurrence
relation+calculate from base case
Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule
Subset Sum problem: DP algorithm + Recovering optimal schedule
Knapsack problem: DP algorithm + Recovering optimal schedule
Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule
Edit distance with insertions and deletions problem: apply algorithm
for LCS problem
Edit distance with insertions, deletions and replacing problem
Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm
Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg

Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg

89/90

Important notations/algorithms

Dynamic Programming algorithms: subproblem+recurrence
relation+calculate from base case
Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule
Subset Sum problem: DP algorithm + Recovering optimal schedule
Knapsack problem: DP algorithm + Recovering optimal schedule
Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule
Edit distance with insertions and deletions problem: apply algorithm
for LCS problem
Edit distance with insertions, deletions and replacing problem
Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm
Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg
Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg

90/90

Quiz 6 about Dynamic Programming algorithms

Fours problems about Dynamic programming algorithms

