Formula Satisfiability

Input: boolean formula with n variables, with \lor, \land, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable

- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.

- Formula Satisfiability is NP-hard
Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary
Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).
Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.
Def. A problem X is called a **decision problem** if the output is either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L
Optimization to Decision

Shortest Path

Input: graph $G = (V, E)$, weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k
The input of a problem will be **encoded** as a binary string.
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem

- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String:
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/
The input of a problem will be encoded as a binary string.

Example: Sorting problem
- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/1100100/
The input of a problem will be **encoded** as a binary string.

Example: Sorting problem
- **Input:** (3, 6, 100, 9, 60)
- **Binary:** (11, 110, 1100100, 1001, 111100)
- **String:** 11/110/1100100/ 1001/
The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/1100100/ 1001/111100/
The input of an problem will be **encoded** as a binary string.
The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
The input of a problem will be encoded as a binary string.

Example: Interval Scheduling Problem

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- (0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
- Encode the sequence into a binary string as before
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?
Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care whether the running time is polynomial or not.
Define Problem as a Function

\(X : \{0, 1\}^* \rightarrow \{0, 1\} \)

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

\(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) solves a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).
Define Problem as a Function

\[X : \{0, 1\}^* \rightarrow \{0, 1\} \]

Def. A decision problem \(X \) is a function mapping \(\{0, 1\}^* \) to \(\{0, 1\} \) such that for any \(s \in \{0, 1\}^* \), \(X(s) \) is the correct output for input \(s \).

- \(\{0, 1\}^* \): the set of all binary strings of any length.

Def. An algorithm \(A \) solves a problem \(X \) if, \(A(s) = X(s) \) for any binary string \(s \).

Def. \(A \) has a polynomial running time if there is a polynomial function \(p(\cdot) \) so that for every string \(s \), the algorithm \(A \) terminates on \(s \) in at most \(p(|s|) \) steps.
The complexity class P is the set of decision problems X that can be solved in polynomial time.
The complexity class \(P \) is the set of decision problems \(X \) that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in \(P \).
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V,E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC

Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G
Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given a graph $G = (V, E)$ with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a **certificate**, and the algorithm Bob runs is called a **certifier**.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G=(V,E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really an independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set in G.
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set

Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set.
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm.

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.
Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set

Bob has a slow computer, which can only run an $O(n^3)$-time algorithm

Q: Given graph $G = (V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set
The Complexity Class NP

Def. \(B \) is an **efficient certifier** for a problem \(X \) if

- \(B \) is a polynomial-time algorithm that takes two input strings \(s \) and \(t \), and outputs 0 or 1.
- there is a polynomial function \(p \) such that, \(X(s) = 1 \) if and only if there is string \(t \) such that \(|t| \leq p(|s|) \) and \(B(s, t) = 1 \).

The string \(t \) such that \(B(s, t) = 1 \) is called a **certificate**.
The Complexity Class NP

Def. B is an **efficient certifier** for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1.
- There is a polynomial function p such that, $X(s) = 1$ if and only if there is a string t such that $|t| \leq p(|s|)$ and $B(s, t) = 1$.

The string t such that $B(s, t) = 1$ is called a **certificate**.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G

Certificate: a permutation S of V that forms a Hamiltonian Cycle $| encoding (S) | \leq p (| encoding (G) |)$ for some polynomial function p.

Certifier B: $B(G, S) = 1$ if and only if S gives an HC in G.

Clearly, B runs in polynomial time $HC(G) = 1$ if S, $B(G, S) = 1$.

HC (Hamiltonian Cycle) ∈ NP

- **Input**: Graph G
- **Certificate**: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
HC (Hamiltonian Cycle) ∈ NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- Certifier B: $B(G, S) = 1$ if and only if S gives an HC in G
- Clearly, B runs in polynomial time
HC (Hamiltonian Cycle) ∈ NP

- **Input:** Graph G
- **Certificate:** a permutation S of V that forms a Hamiltonian Cycle
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G)|)$ for some polynomial function p
- **Certifier** B: $B(G, S) = 1$ if and only if S gives an HC in G
- **Clearly,** B runs in polynomial time
- **HC**(G) = 1 \iff $\exists S, B(G, S) = 1$
MIS (Maximum Independent Set) ∈ NP

- Input: graph $G = (V, E)$ and integer k
MIS (Maximum Independent Set) \in NP

- Input: graph $G = (V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
MIS (Maximum Independent Set) $\in \text{NP}$

- **Input:** graph $G = (V, E)$ and integer k
- **Certificate:** a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- **Certifier B:** $B((G, k), S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
MIS (Maximum Independent Set) \in NP

- **Input:** graph $G = (V, E)$ and integer k
- **Certificate:** a set $S \subseteq V$ of size k
- $|\text{encoding}(S)| \leq p(|\text{encoding}(G, k)|)$ for some polynomial function p
- **Certifier B:** $B((G, k), S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
- MIS$(G, k) = 1 \iff \exists S, B((G, k), S) = 1$
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?
Circuit Satisfiability (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

- Is Circuit-Sat ∈ NP?
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

Unlikely Alice can only convince Bob that G is a no-instance \overline{HC} in NP.
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
HC

Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance
Input: graph $G = (V, E)$

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in \text{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e., G does not contain a HC), if this is true.
 - Unlikely
- Alice can only convince Bob that G is a no-instance
- $\overline{HC} \in \text{Co-NP}$
The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $\overline{X}(s) = 1$ if and only if $X(s) = 0$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in \text{NP}$.
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$ is a tautology
Def. A **tautology** is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. \((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)\) is a tautology

- Bob can certify that a formula is not a tautology
Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $\neg x_1 \land x_2 \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$ is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \in Co-NP
Let \(X_2 \) and \(X(s) = 1 \).

Q: How can Alice convince Bob that \(s \) is a yes instance?

A: Since \(X_2 \in \text{P} \), Bob can check whether \(X(s) = 1 \) by himself, without Alice's help.

The certificate is an empty string.

Thus, \(X_2 \in \text{NP} \) and \(\text{P} \in \text{NP} \).

Similarly, \(\text{P} \in \text{NP} \), thus \(\text{P} \in \text{NP} \).