Reductions of NP-Complete Problems

 $\operatorname{3-CNF}$ (conjunctive normal form) is a special case of formula:

• Boolean variables: x_1, x_2, \cdots, x_n

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$, $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$, $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$
- 3-CNF formula: conjunction ("and") of clauses: $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

• To satisfy a 3-CNF, we need to satisfy all clauses

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
- Assignment $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$ satisfies $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

• Associate every wire with a new variable

- Associate every wire with a new variable
- The circuit is equivalent to the following formula:

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5
	0	0	0
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1
	0	1	0
	0	1	1
	1	0	0
	1	0	1
	1	1	0

	/ – – –
45/	15
10/	10

 $\begin{array}{c} x_5 \leftrightarrow x_1 \lor x_2 \\ \hline 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ \end{array}$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1
	$egin{array}{c} x_1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{c c} x_1 & x_2 \\ \hline 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{c cccc} x_1 & x_2 & x_5 \\ \hline 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
~ <u>-</u>	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

$$\begin{aligned} & (x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\ & \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\ & \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10} \end{aligned}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
, <u> </u>	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
× /	1	0	1	1
	1	1	0	0
	1	1	1	1

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1
	x_1 0 0 0 1 1 1 1 1	$\begin{array}{ccc} x_1 & x_2 \\ \hline 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ \hline 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} x_1 & x_2 & x_5 \\ \hline 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
, <u> </u>	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
$(\neg r_1 \lor r_2 \lor r_2) \land$	1	0	1	1
$(x_1 v x_2 v x_5)$	1	1	0	0
	1	1	1	1

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$	
	0	0	0	1	
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0	
, <u> </u>	0	1	0	0	
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1	
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0	
$(\neg r_1 \lor r_2 \lor r_5) \land$	1	0	1	1	
$(x_1 \vee x_2 \vee x_5) \wedge (x_1 \vee x_2 \vee x_5)$	1	1	0	0	
	1	1	1	1 45/	75
				TJ/	i J

$$\begin{aligned} & (x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\ & \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\ & \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10} \end{aligned}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
$(\neg r_1 \lor / r_2 \lor / r_5) \land$	1	0	1	1
$(x_1 \vee x_2 \vee x_5) \wedge ($	1	1	0	0
$(\neg x_1 \lor \neg x_2 \lor x_5)$	1	1	1	1
				43/73

• Circuit \iff Formula \iff 3-CNF

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_P 3-Sat

Reductions of NP-Complete Problems

Recall: Independent Set Problem

Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem Input: G = (V, E), kOutput: whether there is an independent set of size k in G

|3-Sat $\leq_P \mathsf{Ind}$ -Set

• $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses

3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses

3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

- $\bullet\,$ satisfying assignment $\Rightarrow\,$ independent set of size k
- independent set of size $k \Rightarrow$ satisfying assignment

Satisfying Assignment \Rightarrow IS of Size k

• $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

• For every clause, at least 1 literal is satisfied

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- An IS of size k

• $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

• For every group, exactly one literal is selected in IS

- $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$
- Otherwise, set x_i arbitrarily

Reductions of NP-Complete Problems

Clique Problem

Input: G = (V, E) and integer k > 0,

Output: whether there exists a clique of size k in G

Clique Problem

Input: G = (V, E) and integer k > 0,

Output: whether there exists a clique of size k in G

• What is the relationship between Clique and Ind-Set?

Def. Given a graph G = (V, E), define $\overline{G} = (V, \overline{E})$ be the graph such that $(u, v) \in \overline{E}$ if and only if $(u, v) \notin E$.

Obs. S is an independent set in G if and only if S is a clique in \overline{G} .

Reductions of NP-Complete Problems

Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover Problem

Input: G = (V, E) and integer k

Output: whether there is a vertex cover of G of size at most k

$Vertex-Cover =_P Ind-Set$

Q: What is the relationship between Vertex-Cover and Ind-Set?

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V, E) if and only if $V \setminus S$ is an independent set of G.

Reductions of NP-Complete Problems

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

• In general, algorithm for \boldsymbol{Y} can call the algorithm for \boldsymbol{X} many times.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.
- \bullet However, for most reductions, we call algorithm for X only once

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for \boldsymbol{Y} can call the algorithm for \boldsymbol{X} many times.
- $\bullet\,$ However, for most reductions, we call algorithm for X only once
- That is, for a given instance s_Y for Y, we only construct one instance s_X for X

A Strategy of Polynomial Reduction

- Given an instance s_Y of problem Y, show how to construct in polynomial time an instance s_X of problem such that:
 - s_Y is a yes-instance of $Y \Rightarrow s_X$ is a yes-instance of X
 - s_X is a yes-instance of $X \Rightarrow s_Y$ is a yes-instance of Y

Outline

Some Hard Problems

- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems

6 Summary

• Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables
 - Best algorithm runs in time ${\cal O}(c^n)$ for some constant c>1
Q: How far away are we from proving or disproving P = NP?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables
 - Best algorithm runs in time ${\cal O}(c^n)$ for some constant c>1
 - Best lower bound is $\Omega(n)$

Q: How far away are we from proving or disproving P = NP?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables
 - Best algorithm runs in time $O(c^n)$ for some constant c > 1
 - Best lower bound is $\Omega(n)$
- Essentially we have no techniques for proving lower bound for running time

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms

3-SAT:

3-SAT:

• Brute-force: $O(2^n \cdot \operatorname{poly}(n))$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

• Brute-force: $O(n! \cdot poly(n))$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot poly(n))$
- Better algorithm: $O(2^n \cdot poly(n))$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot poly(n))$
- Better algorithm: $O(2^n \cdot poly(n))$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices

trees

- trees
- bounded tree-width graphs

- trees
- bounded tree-width graphs
- interval graphs

- trees
- bounded tree-width graphs
- interval graphs

• • • •

• path (HW2 Problem 2)

- path (HW2 Problem 2)
- trees

- path (HW2 Problem 2)
- trees
- o . . .

Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$
- Running time is $f(k)n^c$ for some c independent of k

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$
- Running time is $f(k)n^c$ for some c independent of k
- Vertex-Cover is fixed-parameter tractable.

• For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time
- There is an 2-approximation for the vertex cover problem: we can efficiently find a vertex cover whose size is at most 2 times that of the optimal vertex cover

2-Approximation Algorithm for Vertex Cover

VertexCover(G)

- 1: $C \leftarrow \emptyset$
- 2: while $\neq \emptyset$ do
- 3: select an edge $(u, v) \in E$, $C \leftarrow C \cup \{u, v\}$
- 4: Remove from E every edge incident on either u or v
- 5: return C
- Let the set C and C^\ast be the sets output by above algorithm and an optimal alg, respectively. Let S be the set of edges selected.
- Since no two edge in S are covered by the same vertex (Once an edge is picked in line 3, all other edges that are incident on its endpoints are removed from E in line 4), we have |C^{*}| ≥ |S|;
- As we have added both vertices of edge (u, v), we get |C| = 2|S| but C^* have to add one of the two, thus, $|C|/|C^*| \leq 2$.