Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack

3-CNF (conjunctive normal form) is a special case of formula:

3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1, 25, -+, 2,

3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1, 25, -+, 2,

o Literals: z; or —x;

3-CNF (conjunctive normal form) is a special case of formula:
@ Boolean variables: x1, 25, -+, 2,
o Literals: z; or —x;

e Clause: disjunction (“or") of at most 3 literals: x5V -4,
xl\/xg\/—'xg, _|[L‘2\/_|ZL‘5\/ZL‘7

3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1, 25, -+, 2,

o Literals: z; or —x;

e Clause: disjunction (“or") of at most 3 literals: x5V -4,
xl\/xg\/—'xg, _|[L‘2\/_|ZL‘5\/ZL‘7

@ 3-CNF formula: conjunction (“and”) of clauses:
(IEI V) V _|IE3) A (.TQ V Z3 V I4) A (_15(31 V T3 V _|CL’4)

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

o To satisfy a 3-CNF, we need to satisfy all clauses

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

o To satisfy a 3-CNF, we need to satisfy all clauses

@ To satisfy a clause, we need to satisfy at least 1 literal

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

o To satisfy a 3-CNF, we need to satisfy all clauses
@ To satisfy a clause, we need to satisfy at least 1 literal
@ Assignment x; = 1,29 = 1,23 = 0,24 = 0 satisfies

(1 V —xe Vx3) A (22 Vg V) A(—mxy Vg V oxy)

Circuit-Sat <p 3-Sat

Z1
)

J Y ¢

x3>0*

Circuit-Sat <p 3-Sat

I)
)

>O@é > L9 10
T3 D@x‘* 73"]:7 r‘—/

@ Associate every wire with a new variable

Ty

xs

Circuit-Sat <p 3-Sat

Z1

)

e

xs

Ty Z10

W

=l

@ Associate every wire with a new variable

@ The circuit is equivalent to the following formula:

(x4 ="23) A (15 = 1 V 22) A (26 = TT4)
/\(ZL’7:ZE1/\{E2/\I4)/\(CL’8 21'5\/176)
/\(.Tg :.’176\/337)/\(5610 :xg/\xg/\a:7)/\x10

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1‘5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\ﬂf7)/\fU10

Convert each clause to a 3-CNF

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

8
ok
=
¥
8
ot

X5 <> 21V T2
1

Convert each clause to a 3-CNF

Ts =21 VIy <&

=== =0 000
_H R, OORKRMKEOO
H O, OMFM OKF O
— O RFrRr ORFr OO

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

8
ok
=
¥
8
ot

X5 <> 21V T2
1

Convert each clause to a 3-CNF

Ts =21 VIy <&

=== =0 000
_H R, OORKRMKE OO
H O, OMFMOF O
HOROROO

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

8
ok
=
¥
8
ot

X5 <> 21V T2
1

Convert each clause to a 3-CNF

Ts =21 VIy <&

(x1 Vo V-xs) A

=== =0 000
_H R, OORKRMKE OO
H O, OMFMOF O
HOROROO

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

8
ok
=
¥
8
ot

X5 <> 21V T2
1

Convert each clause to a 3-CNF

Ts =21 VIy <&

(x1 Vo V-xs) A

i i i e B e B e B @)
_H R, OORKRKMHEOO
H O, OMFM OKF O
O, ORKrR OO

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2
0 0 0 1
Ts =x1 VI & 0O 0 1 0
0 1 0 0
(1 Vg V—oxs) A 0o 1 1 1
(.171 V —x9 V [)’)5) VAN 1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2
0 0 0 1
Ts =x1 VI & 0O 0 1 0
0 1 0 0
(1 Vg V—oxs) A 0o 1 1 1
(.171 V —x9 V [)’)5) VAN 1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2

0 0 0 1

Ts =x1 VI & 0O 0 1 0
0 1 0 0

(1 Vg V—oxs) A 0o 1 1 1

(.171 V —x9 V [)’)5) VAN 1 0 0 0
1 0 1 1

1 VI VI AN

(s Vi v s) 1 1 0 0
1 1 1 1

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2

0 0 0 1

Ts =x1 VI & 0O 0 1 0
0 1 0 0

(1 Vg V—oxs) A 0o 1 1 1

(.171 V —x9 V [)’)5) VAN 1 0 0 0
1 0 1 1

1 VI VI AN

(s Vi v s) 1 1 0 0
1 1 1 1

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2

0 0 O 1
Ts =x1 VI & 0O 0 1 0

0 1 o0 0
(1 Vg V—oxs) A 0o 1 1 1
(.171 V —x9 V [)’)5) VAN 1 0 0 0
(_h’El V To V %5) A 1 (]). é é
(_|ZL‘1 V o V 1’5) 1 1 1 1

Circuit-Sat <p 3-Sat

@ Circuit <= Formula < 3-CNF

Circuit-Sat <p 3-Sat

o Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

Circuit-Sat <p 3-Sat

o Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

@ The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

Circuit-Sat <p 3-Sat

o Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

@ The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

@ Thus, Circuit-Sat <p 3-Sat

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack

Recall: Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such that
no two vertices in [are adjacent in G. J

Independent Set (Ind-Set) Problem
Input: G = (V,E),k
Output: whether there is an independent set of size k in G

3-Sat <p Ind-Set

@ (zq1Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

3-Sat <p Ind-Set

@ (zq1Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ A clause = a group of 3

vertices, one for each literal @“%‘@
@ An edge between every pair of
vertices in same group @ @

3-Sat <p Ind-Set

@ (zq1Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals

3-Sat <p Ind-Set

@ (zq1Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals

@ Problem: whether there is an
IS of size k = #clauses

3-Sat <p Ind-Set

@ (zq1Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals

@ Problem: whether there is an
IS of size k = #clauses

3-Sat instance is yes-instance <> Ind-Set instance is yes-instance:

3-Sat <p Ind-Set

@ (zq1Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals

@ Problem: whether there is an
IS of size k = #clauses

3-Sat instance is yes-instance <> Ind-Set instance is yes-instance:
@ satisfying assignment = independent set of size k

@ independent set of size k = satisfying assignment

Satisfying Assignment = IS of Size k

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

Satisfying Assignment = IS of Size k

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every clause, at least 1
literal is satisfied

Satisfying Assignment = IS of Size k

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal

Satisfying Assignment = IS of Size k

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)
@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal

@ So, 1 literal from each group

Satisfying Assignment = IS of Size k

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal

@ So, 1 literal from each group

@ No contradictions among the
selected literals

Satisfying Assignment = IS of Size k

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every clause, at least 1
literal is satisfied

@ Pick the vertex correspondent
the literal

@ So, 1 literal from each group

@ No contradictions among the
selected literals

@ An IS of size k

IS of Size k = Satisfying Assignment

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

IS of Size k = Satisfying Assignment

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every group, exactly one
literal is selected in IS

IS of Size k = Satisfying Assignment

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

IS of Size k = Satisfying Assignment

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

o If x; is selected in IS, set z; = 1

IS of Size k = Satisfying Assignment

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

o If x; is selected in IS, set z; = 1

o If —x; is selected in IS, set

IS of Size k = Satisfying Assignment

@ (1 Vxe Vxg) A(xeVazVay) A(—x V-oxg V)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

o If x; is selected in IS, set z; = 1

o If —x; is selected in IS, set

@ Otherwise, set x; arbitrarily

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack

Def. A clique in an undirected graph G = (V| E) is a subset S C V/
such that Yu,v € S we have (u,v) € E J

Def. A clique in an undirected graph G = (V| E) is a subset S C V/
such that Yu,v € S we have (u,v) € E J

Def. A clique in an undirected graph G = (V| E) is a subset S C V/
such that Yu,v € S we have (u,v) € E J

Clique Problem
Input: G = (V, E) and integer k > 0,
Output: whether there exists a clique of size k£ in G

Def. A clique in an undirected graph G = (V| E) is a subset S C V/
such that Yu,v € S we have (u,v) € E J

Clique Problem
Input: G = (V, E) and integer k& > 0,
Output: whether there exists a clique of size k in G

@ What is the relationship between Clique and Ind-Set?

Clique =p Ind-Set

Def. Given a graph G' = (V, E), define G’ = (V, E) be the graph
such that (u,v) € £ if and only if (u,v) ¢ E.

Obs. S is an independent set in G if and only if S is a clique in G.]

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack

Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € E'thenu e Sorve S . J

Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € E'thenu e Sorve S . J

Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € E'thenu e Sorve S . J

Vertex-Cover Problem
Input: G = (V, F) and integer k

Output: whether there is a vertex cover of G of size at most k

T

Vertex-Cover =p Ind-Set

Vertex-Cover =p Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?)

Vertex-Cover =p Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?)

A: S is a vertex-cover of G = (V, E) if and only if V'\ S is an
independent set of G. J

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

@ In general, algorithm for Y can call the algorithm for X many
times.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

@ In general, algorithm for Y can call the algorithm for X many
times.

@ However, for most reductions, we call algorithm for X only once

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

@ In general, algorithm for Y can call the algorithm for X many
times.

@ However, for most reductions, we call algorithm for X only once

@ That is, for a given instance sy for Y, we only construct one
instance sx for X

A Strategy of Polynomial Reduction

@ Given an instance sy of problem Y, show how to construct in
polynomial time an instance sx of problem such that:
@ sy is a yes-instance of Y = sx is a yes-instance of X
e sy is a yes-instance of X = sy is a yes-instance of Y

© Dealing with NP-Hard Problems

Q: How far away are we from proving or disproving P = NP?

Q: How far away are we from proving or disproving P = NP?

@ Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

Q: How far away are we from proving or disproving P = NP?

@ Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

@ For 3-Sat problem:

Q: How far away are we from proving or disproving P = NP?

@ Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

@ For 3-Sat problem:
o Assume the number of clauses is ©(n), n = number variables

Q: How far away are we from proving or disproving P = NP?

@ Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.
@ For 3-Sat problem:

o Assume the number of clauses is ©(n), n = number variables
o Best algorithm runs in time O(c™) for some constant ¢ > 1

Q: How far away are we from proving or disproving P = NP?

@ Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.
@ For 3-Sat problem:
o Assume the number of clauses is ©(n), n = number variables
e Best algorithm runs in time O(c™) for some constant ¢ > 1
o Best lower bound is Q(n)

Q: How far away are we from proving or disproving P = NP?

@ Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

@ For 3-Sat problem:
o Assume the number of clauses is ©(n), n = number variables
e Best algorithm runs in time O(c™) for some constant ¢ > 1
o Best lower bound is Q(n)

o Essentially we have no techniques for proving lower bound for
running time

Dealing with NP-Hard Problems

@ Faster exponential time algorithms
@ Solving the problem for special cases
o Fixed parameter tractability

@ Approximation algorithms

Faster Exponential Time Algorithms

3-SAT:

Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))

Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
@ 2" — 1.844" — 1.3334"

Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
@ 2" — 1.844" — 1.3334"

@ Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
@ 2" — 1.844" — 1.3334"

@ Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
@ 2" — 1.844" — 1.3334"

@ Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

@ Brute-force: O(n!- poly(n))

Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
@ 2" — 1.844" — 1.3334"

@ Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:
@ Brute-force: O(n!- poly(n))
@ Better algorithm: O(2" - poly(n))

Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
@ 2" — 1.844" — 1.3334"

@ Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:
@ Brute-force: O(n!- poly(n))
@ Better algorithm: O(2" - poly(n))

@ In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

@ trees

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

@ trees

@ bounded tree-width graphs

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

@ trees
@ bounded tree-width graphs

@ interval graphs

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

@ trees
@ bounded tree-width graphs
@ interval graphs

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

e path (HW2 Problem 2)

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

e path (HW2 Problem 2)

@ trees

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

e path (HW2 Problem 2)
@ trees

Fixed Parameter Tractability

@ Problem: whether there is a vertex
cover of size k, for a small k& (number
of nodes is n, number of edges is

Fixed Parameter Tractability

@ Problem: whether there is a vertex
cover of size k, for a small k& (number
of nodes is n, number of edges is

@ Brute-force algorithm: O(kn

k—l—l)

Fixed Parameter Tractability

@ Problem: whether there is a vertex
cover of size k, for a small k& (number
of nodes is n, number of edges is

O(n).)
@ Brute-force algorithm: O(kn
@ Better running time : O(2% - kn)

k—l—l)

Fixed Parameter Tractability

@ Problem: whether there is a vertex
cover of size k, for a small k& (number
of nodes is n, number of edges is

O(n).)
e Brute-force algorithm: O(knk+1)
@ Better running time : O(2% - kn)

@ Running time is f(k)n® for some ¢
independent of k£

Fixed Parameter Tractability

@ Problem: whether there is a vertex
cover of size k, for a small k& (number
of nodes is n, number of edges is

O(n).)
e Brute-force algorithm: O(knk+1)
@ Better running time : O(2% - kn)

@ Running time is f(k)n® for some ¢
independent of k£

@ Vertex-Cover is fixed-parameter
tractable.

Approximation Algorithms

@ For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation Algorithms

@ For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

@ Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

Approximation Algorithms

@ For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

@ Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

@ We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

Approximation Algorithms

@ For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

@ Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

@ We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

@ There is an 2-approximation for the vertex cover problem: we can
efficiently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover

2-Approximation Algorithm for Vertex Cover

VertexCover(G)

1. C«0

2: while # () do

3: select an edge (u,v) € E, C < C U{u,v}

4 Remove from E' every edge incident on either v or v
5

: return C)

@ Let the set C' and C* be the sets output by above algorithm and
an optimal alg, respectively. Let S be the set of edges selected.

@ Since no two edge in S are covered by the same vertex (Once an
edge is picked in line 3, all other edges that are incident on its
endpoints are removed from E in line 4), we have |C*| > |S|;

@ As we have added both vertices of edge (u,v), we get |C| = 2|5
but C* have to add one of the two, thus, |C|/|C*| < 2.

