Outline

(1) Divide-and-Conquer

- Counting Inversions
(3) Quicksort and Selection
- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem
(4) Polynomial Multiplication
(5) Other Classic Algorithms using Divide-and-Conquer
- Solving Recurrences
(7) Computing n-th Fibonacci Number

Quicksort vs Merge-Sort

	Merge Sort
Divide	Trivial
Conquer	Recurse
Combine	Merge 2 sorted arrays

Quicksort

Separate small and big numbers
Recurse
Trivial

Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85

Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85

Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85

Quicksort

quicksort (A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_{L} \leftarrow$ array of elements in A that are less than x

 Divide
4: $A_{R} \leftarrow$ array of elements in A that are greater than x
5: $B_{L} \leftarrow$ quicksort $\left(A_{L}\right.$, length of $\left.A_{L}\right)$
6: $B_{R} \leftarrow$ quicksort $\left(A_{R}\right.$, length of $\left.A_{R}\right)$
Divide

7: $t \leftarrow$ number of times x appear A
8: return concatenation of B_{L}, t copies of x, and B_{R}

Quicksort

quicksort (A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_{L} \leftarrow$ array of elements in A that are less than x

D Divide
4: $A_{R} \leftarrow$ array of elements in A that are greater than x
5: $B_{L} \leftarrow$ quicksort $\left(A_{L}\right.$, length of $\left.A_{L}\right)$
6: $B_{R} \leftarrow$ quicksort $\left(A_{R}\right.$, length of $\left.A_{R}\right)$
7: $t \leftarrow$ number of times x appear A
8: return concatenation of B_{L}, t copies of x, and B_{R}

- Recurrence $T(n) \leq 2 T(n / 2)+O(n)$

Quicksort

quicksort (A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_{L} \leftarrow$ array of elements in A that are less than x

D Divide
4: $A_{R} \leftarrow$ array of elements in A that are greater than x
5: $B_{L} \leftarrow$ quicksort $\left(A_{L}\right.$, length of $\left.A_{L}\right)$
6: $B_{R} \leftarrow$ quicksort $\left(A_{R}\right.$, length of $\left.A_{R}\right)$
7: $t \leftarrow$ number of times x appear A
8: return concatenation of B_{L}, t copies of x, and B_{R}

- Recurrence $T(n) \leq 2 T(n / 2)+O(n)$
- Running time $=O(n \lg n)$

Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

(1) There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
(1) There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
(2) Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

quicksort (A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_{L} \leftarrow$ array of elements in A that are less than x
$\ \backslash$ Divide
4: $A_{R} \leftarrow$ array of elements in A that are greater than x
5: $B_{L} \leftarrow$ quicksort $\left(A_{L}\right.$, length of $\left.A_{L}\right)$
6: $B_{R} \leftarrow$ quicksort $\left(A_{R}\right.$, length of $\left.A_{R}\right)$
7: $t \leftarrow$ number of times x appear A
8: return concatenation of B_{L}, t copies of x, and B_{R}

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0,1]$.

Q: Can computers really produce random numbers?

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0,1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0,1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0,1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random
- In theory: assume they can.

Quicksort Using A Random Pivot

quicksort (A, n)

1: if $n \leq 1$ then return A

2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_{L} \leftarrow$ array of elements in A that are less than x
$\ \backslash$ Divide
4: $A_{R} \leftarrow$ array of elements in A that are greater than x Divide
5: $B_{L} \leftarrow$ quicksort $\left(A_{L}\right.$, length of $\left.A_{L}\right)$
6: $B_{R} \leftarrow$ quicksort $\left(A_{R}\right.$, length of $\left.A_{R}\right)$
$\backslash \backslash$ Conquer

Conquer
7: $t \leftarrow$ number of times x appear A
8: return concatenation of B_{L}, t copies of x, and B_{R}
Lemma The expected running time of the algorithm is $O(n \lg n)$.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

64	82	75	29	38	45	94	69	25	76	15	92	37	17	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

64	82	75	29	38	45	94	69	25	76	15	92	37	17	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

64	82	75	29	38	45	94	69	25	76	15	92	37	17	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

17	82	75	29	38	45	94	69	25	76	15	92	37	64	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

$\stackrel{i}{i}$														
17	82	75	29	38	45	94	69	25	76	15	92	37	64	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

$\stackrel{i}{\downarrow}$														
17	37	64	29	38	45	94	69	25	76	15	92	75	82	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

i														
17	37	64	29	38	45	94	69	25	76	15	92	75	82	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

17	37	15	29	38	45	94	69	25	76	64	92	75	82	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

17	37	15	29	38	45	94	69	25	76	64	92	75	82	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

17	37	15	29	38	45	64	69	25	76	94	92	75	82	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

17	37	15	29	38	45	64	69	25	76	94	92	75	82	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

17	37	15	29	38	45	25	69	64	76	94	92	75	82	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

17	37	15	29	38	45	25	69	64	76	94	92	75	82	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

17	37	15	29	38	45	25	64	69	76	94	92	75	82	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

$i_{i}^{i j}$														
17	37	15	29	38	45	25	64	69	76	94	92	75	82	85

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

- To partition the array into two parts, we only need $O(1)$ extra space.

partition (A, ℓ, r)

1: $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2: $i \leftarrow \ell, j \leftarrow r$
3: while true do
4: \quad while $i<j$ and $A[i]<A[j]$ do $j \leftarrow j-1$
5: \quad if $i=j$ then break
6: \quad swap $A[i]$ and $A[j] ; i \leftarrow i+1$
7: \quad while $i<j$ and $A[i]<A[j]$ do $i \leftarrow i+1$
8: \quad if $i=j$ then break
9: $\quad \operatorname{swap} A[i]$ and $A[j] ; j \leftarrow j-1$
10: return i

In-Place Implementation of Quick-Sort

quicksort (A, ℓ, r)

1: if $\ell \geq r$ then return
2: $m \leftarrow \operatorname{patition}(A, \ell, r)$
3: quicksort $(A, \ell, m-1)$
4: quicksort $(A, m+1, r)$

- To sort an array A of size n, call quicksort $(A, 1, n)$.

Note: We pass the array A by reference, instead of by copying.

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	8	12	20	32	48

5	7	9	25	29

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5	7

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5	7

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5	7	8

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5	7	8	9	12	20	25	29

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5	7	8	9	12	20	25	29	32	48

Outline

(1) Divide-and-Conquer

(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem

4 Polynomial Multiplication
(3) Other Classic Algorithms using Divide-and-Conquer
(6) Solving Recurrences
(7) Computing n-th Fibonacci Number

