Outline

Divide-and-Conquer

- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- Other Classic Algorithms using Divide-and-Conquer
- Solving Recurrences
- Computing n-th Fibonacci Number

Merge SortDivideTrivialConquerRecurseCombineMerge 2 sorted arrays

Quicksort

Separate small and big numbers Recurse Trivial

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ array of elements in A that are less than x
- 4: $A_R \leftarrow$ array of elements in A that are greater than $x \setminus \setminus$ Divide
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, \mathsf{length of } A_L)$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, \mathsf{length of } A_R)$
- 7: $t \leftarrow$ number of times x appear A
- 8: return concatenation of B_L , t copies of x, and B_R

Divide

 $\langle \rangle$

\\ Conquer

Conquer

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ array of elements in A that are less than x
- 4: $A_R \leftarrow$ array of elements in A that are greater than $x \setminus \setminus$ Divide
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, \mathsf{length of } A_L)$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, \mathsf{length of } A_R)$
- 7: $t \leftarrow$ number of times x appear A
- 8: **return** concatenation of B_L , t copies of x, and B_R

• Recurrence $T(n) \leq 2T(n/2) + O(n)$

Divide

\\ Conquer

\\ Conquer

 $\langle \rangle$

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ array of elements in A that are less than x
- 4: $A_R \leftarrow$ array of elements in A that are greater than $x \setminus \setminus$ Divide
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, \mathsf{length of } A_L)$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, \mathsf{length of } A_R)$
- 7: $t \leftarrow$ number of times x appear A
- 8: **return** concatenation of B_L , t copies of x, and B_R
- Recurrence $T(n) \leq 2T(n/2) + O(n)$
- Running time = $O(n \lg n)$

Divide

 $\langle \rangle$

\\ Conquer

\\ Conquer

Q: How to remove this assumption?

Q: How to remove this assumption?

A:

There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

Q: How to remove this assumption?

A:

- There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
- Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- 3: $A_L \leftarrow$ array of elements in A that are less than x
- 4: $A_R \leftarrow$ array of elements in A that are greater than x
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, \mathsf{length of } A_L)$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, \mathsf{length of } A_R)$
- 7: $t \leftarrow$ number of times x appear A
- 8: return concatenation of B_L , t copies of x, and B_R

Divide

\\ Divide

\\ Conquer

\\ Conquer

Q: Can computers really produce random numbers?

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

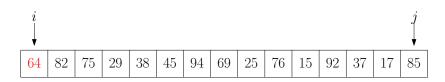
• In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random

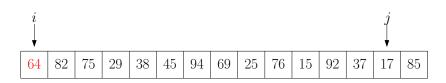
Q: Can computers really produce random numbers?

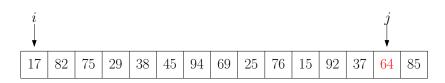
A: No! The execution of a computer programs is deterministic!

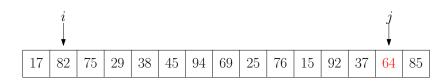
- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random
- In theory: assume they can.

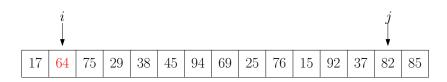
Quicksort Using A Random Pivot

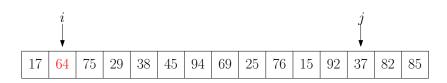

quicksort(A, n)

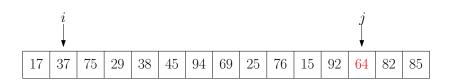

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- 3: $A_L \leftarrow$ array of elements in A that are less than $x \land \land$ Divide
- 4: $A_R \leftarrow$ array of elements in A that are greater than $x \setminus \setminus$ Divide
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, \mathsf{length of } A_L)$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, \mathsf{length of } A_R)$
- 7: $t \leftarrow$ number of times x appear A
- 8: return concatenation of B_L , t copies of x, and B_R

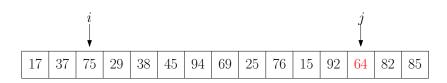

Lemma The expected running time of the algorithm is $O(n \lg n)$.

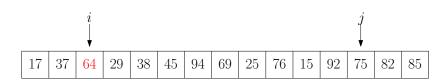

\\ Conquer

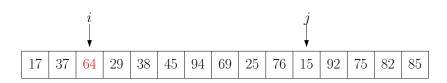

\\ Conquer

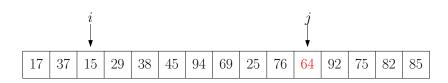


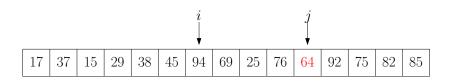


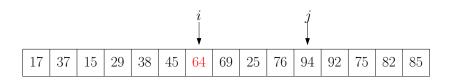


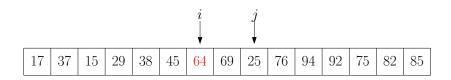


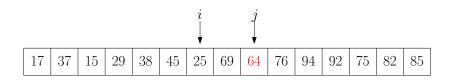


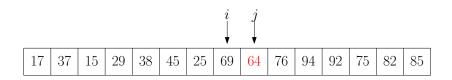


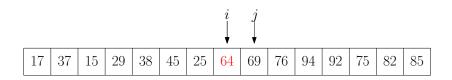


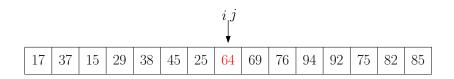


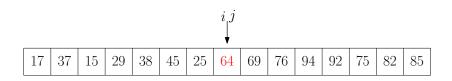












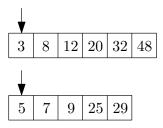
 In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

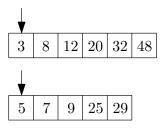
• To partition the array into two parts, we only need ${\cal O}(1)$ extra space.

$\mathsf{partition}(A,\ell,r)$

- 1: $p \leftarrow \text{random integer between } \ell \text{ and } r, \text{ swap } A[p] \text{ and } A[\ell]$
- 2: $i \leftarrow \ell, j \leftarrow r$
- 3: while true do
- 4: while i < j and A[i] < A[j] do $j \leftarrow j 1$
- 5: **if** i = j **then** break
- 6: swap A[i] and A[j]; $i \leftarrow i+1$
- 7: while i < j and A[i] < A[j] do $i \leftarrow i + 1$
- 8: **if** i = j **then** break
- 9: swap A[i] and A[j]; $j \leftarrow j-1$

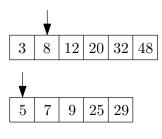
10: **return** *i*

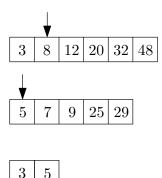

In-Place Implementation of Quick-Sort

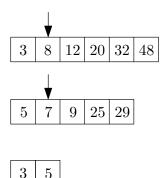

$\mathsf{quicksort}(A, \ell, r)$

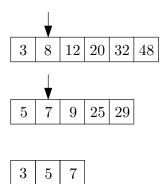
- 1: if $\ell \geq r$ then return
- 2: $m \leftarrow \mathsf{patition}(A, \ell, r)$
- 3: quicksort $(A, \ell, m-1)$
- 4: quicksort(A, m + 1, r)
- To sort an array A of size n, call quicksort(A, 1, n).

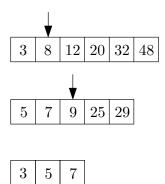
Note: We pass the array A by reference, instead of by copying.

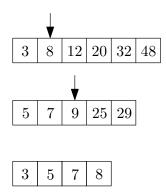

Merge-Sort is Not In-Place

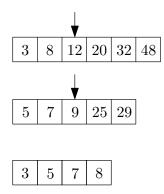


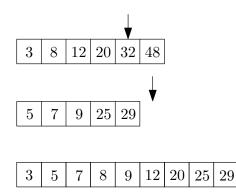

3

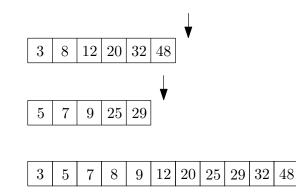

31/75




3







Outline

Divide-and-Conquer

- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort

Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

- Polynomial Multiplication
- Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number