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Two Methods to Build a MST

@ Start from F <+ (), and add edges to F one by one until we obtain
a spanning tree

@ Start from F < FE, and remove edges from F' one by one until we
obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.




Lemma It is safe to exclude the heaviest non-bridge edge: there is a
MST that does not contain the heaviest non-bridge edge. J




Reverse Kruskal's Algorithm

MST-Greedy(G, w)
1. F+ F
2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V,F \ {e}) is connected then
5: F + F\{e}
6: return (V, F)
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Lemma It is safe to include the lightest edge incident to a. )

lightest edge e* incident to a
/

Proof.
@ Let T be a MST

Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

Let e be the edge in T' connecting a to C'

T" =T\ {e} U{e*} is a spanning tree with w(7") < w(T) O

\\\\\\\
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Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4; (u,v) « lightest edge between S and V'\ S,
where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FuU{(u,v)}

7: return (V, F)




Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4; (u,v) « lightest edge between S and V'\ S,

where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FuU{(u,v)}

7: return (V, F) )

@ Running time of naive implementation: O(nm)



Prim's Algorithm: Efficient Implementation of

Greedy Algorithm

For every v € V' \ S maintain
o d[v] = minyeg.(uv)er w(u, v):
the weight of the lightest edge between v and S
o m[v] = arg minyes:(uvecr w(u, v):
(m[v],v) is the lightest edge between v and S
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Prim's Algorithm: Efficient Implementation of

Greedy Algorithm

For every v € V' \ S maintain
o d[v] = minyeg:(u,v)cr W, v):

the weight of the lightest edge between v and S
o m[v] = arg minyegs:(uv)cr w(U, v):

(m[v],v) is the lightest edge between v and S

In every iteration
@ Pick u € V'\ S with the smallest d[u] value
e Add (m[u],u) to F
@ Add u to S, update d and 7 values.



Prim’s Algorithm

MST-Prim(G, w)

s <— arbitrary vertex in G
S(—(D d(s) + 0 and d[v] + oo for every v € V' \ {s}
while S # V do
u < vertex in V'\ .S with the minimum d[u]
S+ SU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
m[v] « u
return {(u, 7[u])|lu € V' \ {s}}

o Na R L
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