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Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V,E)

Output: 1-to-1 function ⇡ : V ! {1, 2, 3 · · · , n}, so that
if (u, v) 2 E then ⇡(u) < ⇡(v)

a b

c d e f

g h i
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Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.
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Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as e�cient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0
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topological-sort(G)
1: let dv  0 for every v 2 V

2: for every v 2 V do

3: for every u such that (v, u) 2 E do

4: du  du + 1

5: S  {v : dv = 0}, i 0
6: while S 6= ; do
7: v  arbitrary vertex in S, S  S \ {v}
8: i i+ 1, ⇡(v) i

9: for every u such that (v, u) 2 E do

10: du  du � 1
11: if du = 0 then add u to S

12: if i < n then output “not a DAG”

S can be represented using a queue or a stack

Running time = O(n+m)
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S as a Queue or a Stack

DS Queue Stack

Initialization head 1, tail  0 top 0

Non-Empty? head  tail top > 0

Add(v) tail  tail + 1
S[tail] v

top top+ 1
S[top] v

Retrieve v v  S[head]
head head+ 1

v  S[top]
top top� 1
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Example

a b c d f g

degree

e

queue:

a

b c

d

e

f

g
0 1 1 1 12 3

tail

head

a
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Outline

1 Graphs

2 Connectivity and Graph Traversal
Types of Graphs

3 Bipartite Graphs
Testing Bipartiteness

4 Topological Ordering
Applications: Word Ladder
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Def. Word: A string formed by letters.

Def. Adjacency words: Word A and B are adjacent if they di↵er in
exactly one letter.

e.g. word and work; tell and tall; askbe and askee.
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Def. Word Ladder: Players start with one word and, in a series of
steps, change or transform that word into another word.

The objective is to make the change in the smallest number of
steps, with each step involving changing a single letter of the
word to create a new valid word.
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Word Ladder Problem
Input: Two words S and T , a list of words A = {W1,W2, ...,Wk}.

Output: “ The smallest word ladder” if we can change S to T by
moving between adjacency words in A [ {S, T};
Otherwise, “No word ladder”.

Example:

S=“a e f g h”, T = “d l m i h”

W1=“a e f i h”, W2 = “a e m g h”, W3=“d l f i h”
W4 = “s e f i h”, W5=“a d f g h”, W6 = “d e m i h”
W7=“d e f i h”, W8 = “d e m g h”, W9 = “s e m i h”
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Example:

S=“a e f g h”, T = “d l m i h”

W1=“a e f i h”, W2 = “a e m g h”, W3=“d l f i h”
W4 = “s e f i h”, W5=“a d f g h”, W6 = “d e m i h”
W7=“d e f i h”, W8 = “d e m g h”, W9 = “s e m i h”

S

T

W1

W6

W2

W7

W3

W4

W9

W8

W5

Each vertex corresponds to a word.

Two vertices are adjacent if the corresponding words are adjacent.
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S

T

W1

W6

W2

W7

W3

W4

W9

W8

W5

Each vertex corresponds to a word.

Two vertices are adjacent if the corresponding words are adjacent.

Hints: Given vertex v, check its nearest neighbor.
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Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

f(n) is a polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = e�cient

Goals of algorithm design

1 Design e�cient algorithms to solve problems
2 Design more e�cient algorithms to solve problems
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Common Paradigms for Algorithm Design

Greedy Algorithms: shortest path problem

Divide and Conquer: merge-sort, binary search

Dynamic Programming: Fibonacci number
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Greedy algorithm properties

Greedy algorithms are often for optimization problems.

They often run in polynomial time due to their simplicity: easy to
come up with, easy to analyze running time.

Hard to see correctness. Mostly, it is not correct. E.g. min f(x)
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Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

(key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

(usually easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.
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Outline

1 Toy Example: Box Packing

2 Interval Scheduling

3 O✏ine Caching
Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Hu↵man Code

5 Summary
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Box Packing
Input: n boxes of capacities c1, c2, · · · , cn

m items of sizes s1, s2, · · · , sm
Can put at most 1 item in a box

Item j can be put into box i if sj  ci
Output: A way to put as many items as possible in the boxes.

Example:
Box capacities: 60, 40, 25, 15, 12

Item sizes: 45, 42, 20, 19, 16

Can put 3 items in boxes: 45 ! 60, 20 ! 40, 19 ! 25
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Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing

Q: Take box 1. Which item should we put in box 1?

A: The item of the largest size that can be put into the box.
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