Recall: O, Ω, Θ-Notation: Asymptotic Bounds

O-Notation For a function $g(n)$,

$$
\begin{aligned}
O(g(n))=\{\text { function } f: & \exists c>0, n_{0}>0 \text { such that } \\
& \left.f(n) \leq c g(n), \forall n \geq n_{0}\right\} .
\end{aligned}
$$

Ω-Notation For a function $g(n)$,

$$
\begin{aligned}
& \Omega(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
& \left.f(n) \geq c g(n), \forall n \geq n_{0}\right\} .
\end{aligned}
$$

Θ-Notation For a function $g(n)$,

$$
\begin{aligned}
& \Theta(g(n))=\left\{\text { function } f: \exists c_{2} \geq c_{1}>0, n_{0}>0\right. \text { such that } \\
& \left.c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}\right\} .
\end{aligned}
$$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	$=$

\section*{| Asymptotic Notations | O | Ω | Θ |
| :--- | :--- | :--- | :--- |
| Comparison Relations | \leq | \geq | $=$ |}

Trivial Facts on Comparison Relations

- $a \leq b \Leftrightarrow b \geq a$
- $a=b \Leftrightarrow a \leq b$ and $a \geq b$
- $a \leq b$ or $a \geq b$

$$
\begin{array}{c|c|c|c}
\text { Asymptotic Notations } & O & \Omega & \Theta \\
\hline \text { Comparison Relations } & \leq & \geq & =
\end{array}
$$

Trivial Facts on Comparison Relations

- $a \leq b \Leftrightarrow b \geq a$
- $a=b \Leftrightarrow a \leq b$ and $a \geq b$
- $a \leq b$ or $a \geq b$

Correct Analogies

- $f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n))$
- $f(n)=\Theta(g(n)) \Leftrightarrow f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$

\section*{| Asymptotic Notations | O | Ω | Θ |
| :--- | :--- | :--- | :--- |
| Comparison Relations | \leq | \geq | $=$ |}

Trivial Facts on Comparison Relations

- $a \leq b \Leftrightarrow b \geq a$
- $a=b \Leftrightarrow a \leq b$ and $a \geq b$
- $a \leq b$ or $a \geq b$

Correct Analogies

- $f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n))$
- $f(n)=\Theta(g(n)) \Leftrightarrow f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$

Incorrect Analogy

- $f(n)=O(g(n))$ or $f(n)=\Omega(g(n))$

Incorrect Analogy

- $f(n)=O(g(n))$ or $f(n)=\Omega(g(n))$

Incorrect Analogy

- $f(n)=O(g(n))$ or $f(n)=\Omega(g(n))$

$$
\begin{aligned}
& f(n)=n^{2} \\
& g(n)= \begin{cases}1 & \text { if } n \text { is odd } \\
n^{3} & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

Recall: Informal way to define O-notation

- ignoring lower order terms: $3 n^{2}-10 n-5 \rightarrow 3 n^{2}$
- ignoring leading constant: $3 n^{2} \rightarrow n^{2}$

Recall: Informal way to define O-notation

- ignoring lower order terms: $3 n^{2}-10 n-5 \rightarrow 3 n^{2}$
- ignoring leading constant: $3 n^{2} \rightarrow n^{2}$
- $3 n^{2}-10 n-5=O\left(n^{2}\right)$

Recall: Informal way to define O-notation

- ignoring lower order terms: $3 n^{2}-10 n-5 \rightarrow 3 n^{2}$
- ignoring leading constant: $3 n^{2} \rightarrow n^{2}$
- $3 n^{2}-10 n-5=O\left(n^{2}\right)$
- Indeed, $3 n^{2}-10 n-5=\Omega\left(n^{2}\right), 3 n^{2}-10 n-5=\Theta\left(n^{2}\right)$

Recall: Informal way to define O-notation

- ignoring lower order terms: $3 n^{2}-10 n-5 \rightarrow 3 n^{2}$
- ignoring leading constant: $3 n^{2} \rightarrow n^{2}$
- $3 n^{2}-10 n-5=O\left(n^{2}\right)$
- Indeed, $3 n^{2}-10 n-5=\Omega\left(n^{2}\right), 3 n^{2}-10 n-5=\Theta\left(n^{2}\right)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.

Recall: Informal way to define O-notation

- ignoring lower order terms: $3 n^{2}-10 n-5 \rightarrow 3 n^{2}$
- ignoring leading constant: $3 n^{2} \rightarrow n^{2}$
- $3 n^{2}-10 n-5=O\left(n^{2}\right)$
- Indeed, $3 n^{2}-10 n-5=\Omega\left(n^{2}\right), 3 n^{2}-10 n-5=\Theta\left(n^{2}\right)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
- $3 n^{2}-10 n-5=O\left(5 n^{2}-6 n+5\right)$ is correct, though weird

Recall: Informal way to define O-notation

- ignoring lower order terms: $3 n^{2}-10 n-5 \rightarrow 3 n^{2}$
- ignoring leading constant: $3 n^{2} \rightarrow n^{2}$
- $3 n^{2}-10 n-5=O\left(n^{2}\right)$
- Indeed, $3 n^{2}-10 n-5=\Omega\left(n^{2}\right), 3 n^{2}-10 n-5=\Theta\left(n^{2}\right)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
- $3 n^{2}-10 n-5=O\left(5 n^{2}-6 n+5\right)$ is correct, though weird
- $3 n^{2}-10 n-5=O\left(n^{2}\right)$ is the most natural since n^{2} is the simplest term we can have inside $O(\cdot)$.

Notice that O denotes asymptotic bound

- $n^{2}+2 n=O\left(n^{3}\right)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O\left(n^{4}\right)$.
- We say: the running time of the insertion sort algorithm is $O\left(n^{2}\right)$ and the bound is tight.

Notice that O denotes asymptotic bound

- $n^{2}+2 n=O\left(n^{3}\right)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O\left(n^{4}\right)$.
- We say: the running time of the insertion sort algorithm is $O\left(n^{2}\right)$ and the bound is tight.
- We do not use Ω and Θ very often when we upper bound running times.

Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

f	g	O	Ω	Θ
$n^{3}-100 n$	$5 n^{2}+3 n$			
$3 n-50$	$n^{2}-7 n$			
$n^{2}-100 n$	$5 n^{2}+30 n$			
$\log _{2} n$	$\log _{10} n$			
$\log ^{10} n$	$n^{0.1}$			
2^{n}	$2^{n / 2}$			
\sqrt{n}	$n^{\sin n}$			

Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

f	g	O	Ω	Θ
$n^{3}-100 n$	$5 n^{2}+3 n$	No	Yes	No
$3 n-50$	$n^{2}-7 n$			
$n^{2}-100 n$	$5 n^{2}+30 n$			
$\log _{2} n$	$\log _{10} n$			
$\log ^{10} n$	$n^{0.1}$			
2^{n}	$2^{n / 2}$			
\sqrt{n}	$n^{\sin n}$			

Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

f	g	O	Ω	Θ
$n^{3}-100 n$	$5 n^{2}+3 n$	No	Yes	No
$3 n-50$	$n^{2}-7 n$	Yes	No	No
$n^{2}-100 n$	$5 n^{2}+30 n$			
$\log _{2} n$	$\log _{10} n$			
$\log ^{10} n$	$n^{0.1}$			
2^{n}	$2^{n / 2}$			
\sqrt{n}	$n^{\sin n}$			

Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

f	g	O	Ω	Θ
$n^{3}-100 n$	$5 n^{2}+3 n$	No	Yes	No
$3 n-50$	$n^{2}-7 n$	Yes	No	No
$n^{2}-100 n$	$5 n^{2}+30 n$	Yes	Yes	Yes
$\log _{2} n$	$\log _{10} n$			
$\log ^{10} n$	$n^{0.1}$			
2^{n}	$2^{n / 2}$			
\sqrt{n}	$n^{\sin n}$			

Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

f	g	O	Ω	Θ
$n^{3}-100 n$	$5 n^{2}+3 n$	No	Yes	No
$3 n-50$	$n^{2}-7 n$	Yes	No	No
$n^{2}-100 n$	$5 n^{2}+30 n$	Yes	Yes	Yes
$\log _{2} n$	$\log _{10} n$	Yes	Yes	Yes
$\log ^{10} n$	$n^{0.1}$			
2^{n}	$2^{n / 2}$			
\sqrt{n}	$n^{\sin n}$			

We often use $\log n$ for $\log _{2} n$. But for $O(\log n)$, the base is not important.

Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

f	g	O	Ω	Θ
$n^{3}-100 n$	$5 n^{2}+3 n$	No	Yes	No
$3 n-50$	$n^{2}-7 n$	Yes	No	No
$n^{2}-100 n$	$5 n^{2}+30 n$	Yes	Yes	Yes
$\log _{2} n$	$\log _{10} n$	Yes	Yes	Yes
$\log ^{10} n$	$n^{0.1}$	Yes	No	No
2^{n}	$2^{n / 2}$			
\sqrt{n}	$n^{\sin n}$			

We often use $\log n$ for $\log _{2} n$. But for $O(\log n)$, the base is not important.

Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

f	g	O	Ω	Θ
$n^{3}-100 n$	$5 n^{2}+3 n$	No	Yes	No
$3 n-50$	$n^{2}-7 n$	Yes	No	No
$n^{2}-100 n$	$5 n^{2}+30 n$	Yes	Yes	Yes
$\log _{2} n$	$\log _{10} n$	Yes	Yes	Yes
$\log ^{10} n$	$n^{0.1}$	Yes	No	No
2^{n}	$2^{n / 2}$	No	Yes	No
\sqrt{n}	$n^{\sin n}$			

We often use $\log n$ for $\log _{2} n$. But for $O(\log n)$, the base is not important.

Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

f	g	O	Ω	Θ
$n^{3}-100 n$	$5 n^{2}+3 n$	No	Yes	No
$3 n-50$	$n^{2}-7 n$	Yes	No	No
$n^{2}-100 n$	$5 n^{2}+30 n$	Yes	Yes	Yes
$\log _{2} n$	$\log _{10} n$	Yes	Yes	Yes
$\log ^{10} n$	$n^{0.1}$	Yes	No	No
2^{n}	$2^{n / 2}$	No	Yes	No
\sqrt{n}	$n^{\sin n}$	No	No	No

We often use $\log n$ for $\log _{2} n$. But for $O(\log n)$, the base is not important.

Asymptotic Notations	O	Ω	Θ	o	ω
Comparison Relations	\leq	\geq	$=$	$<$	$>$

Asymptotic Notations	O	Ω	Θ	o	ω
Comparison Relations	\leq	\geq	$=$	$<$	$>$

Questions?

Outline

(1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
(3) Asymptotic Notations

4 Common Running times

$O(n)$ (Linear) Running Time

Computing the sum of n numbers

```
sum(A,n)
    1: }S\leftarrow
    2: for }i\leftarrow1\mathrm{ to }
    3:
    4: return S
```


$O(n)$ (Linear) Running Time

- Merge two sorted arrays

3	8	12	20	32	48

5	7	9	25	29

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

3	5

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

3	5

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

3	5	7

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

3	5	7

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

$$
\begin{array}{|l|l|l|l|}
\hline 3 & 5 & 7 & 8 \\
\hline
\end{array}
$$

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

3	5	7	8

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

3	5	7	8	9	12	20	25	29

$O(n)$ (Linear) Running Time

- Merge two sorted arrays

3	5	7	8	9	12	20	25	29	32	48

$O(n)$ (Linear) Running Time

$\operatorname{merge}\left(B, C, n_{1}, n_{2}\right) \quad \backslash \backslash B$ and C are sorted, with

 length n_{1} and n_{2}1: $A \leftarrow[] ; i \leftarrow 1 ; j \leftarrow 1$
2: while $i \leq n_{1}$ and $j \leq n_{2}$ do
3: \quad if $B[i] \leq C[j]$ then
4: \quad append $B[i]$ to $A ; i \leftarrow i+1$
5: else
6: \quad append $C[j]$ to $A ; j \leftarrow j+1$
7: if $i \leq n_{1}$ then append $B\left[i . . n_{1}\right]$ to A
8: if $j \leq n_{2}$ then append $C\left[j . . n_{2}\right]$ to A
9: return A

$O(n)$ (Linear) Running Time

merge $\left(B, C, n_{1}, n_{2}\right) \quad \backslash \backslash B$ and C are sorted, with

 length n_{1} and n_{2}1: $A \leftarrow[] ; i \leftarrow 1 ; j \leftarrow 1$
2: while $i \leq n_{1}$ and $j \leq n_{2}$ do
3: \quad if $B[i] \leq C[j]$ then
4: \quad append $B[i]$ to $A ; i \leftarrow i+1$
5: else
6: \quad append $C[j]$ to $A ; j \leftarrow j+1$
7: if $i \leq n_{1}$ then append $B\left[i . . n_{1}\right]$ to A
8: if $j \leq n_{2}$ then append $C\left[j . . n_{2}\right]$ to A
9: return A
Running time $=O(n)$ where $n=n_{1}+n_{2}$.

$O(n \log n)$ Running Time

merge-sort(A, n)

1: if $n=1$ then
2: return A
3: $B \leftarrow$ merge-sort $(A[1 . .\lfloor n / 2\rfloor\rfloor,\lfloor n / 2\rfloor)$
4: $C \leftarrow$ merge-sort $(A[\lfloor n / 2\rfloor+1 . . n], n-\lfloor n / 2\rfloor)$
5: return merge $(B, C,\lfloor n / 2\rfloor, n-\lfloor n / 2\rfloor)$

$O(n \log n)$ Running Time

- Merge-Sort

$O(n \log n)$ Running Time

- Merge-Sort

- Each level takes running time $O(n)$

$O(n \log n)$ Running Time

- Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\log n)$ levels

$O(n \log n)$ Running Time

- Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\log n)$ levels
- Running time $=O(n \log n)$

$O\left(n^{2}\right)$ (Quardatic) Running Time

Closest Pair

Input: n points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest

$O\left(n^{2}\right)$ (Quardatic) Running Time

Closest Pair

Input: n points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest

$O\left(n^{2}\right)$ (Quardatic) Running Time

Closest Pair

Input: n points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest
closest-pair (x, y, n)
1: bestd $\leftarrow \infty$
2: for $i \leftarrow 1$ to $n-1$ do
3: \quad for $j \leftarrow i+1$ to n do
4: $\quad d \leftarrow \sqrt{(x[i]-x[j])^{2}+(y[i]-y[j])^{2}}$
5: \quad if $d<$ bestd then
6 :

$$
\text { best } i \leftarrow i, \text { best } j \leftarrow j, \text { best } d \leftarrow d
$$

7: return (besti,bestj)

$O\left(n^{2}\right)$ (Quardatic) Running Time

Closest Pair

Input: n points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest
closest-pair (x, y, n)
1: bestd $\leftarrow \infty$
2: for $i \leftarrow 1$ to $n-1$ do
3: \quad for $j \leftarrow i+1$ to n do
4: $\quad d \leftarrow \sqrt{(x[i]-x[j])^{2}+(y[i]-y[j])^{2}}$
5: \quad if $d<$ bestd then
6: \quad besti $\leftarrow i$, best $j \leftarrow j$, best $d \leftarrow d$
7: return (besti, bestj)
Closest pair can be solved in $O(n \log n)$ time!

$O\left(n^{3}\right)$ (Cubic) Running Time

Multiply two matrices of size $n \times n$

matrix-multiplication (A, B, n)

1: $C \leftarrow$ matrix of size $n \times n$, with all entries being 0
2: for $i \leftarrow 1$ to n do
3: \quad for $j \leftarrow 1$ to n do
4: \quad for $k \leftarrow 1$ to n do
5:

$$
C[i, k] \leftarrow C[i, k]+A[i, j] \times B[j, k]
$$

6: return C

Beyond Polynomial Time: 2^{n}

Def. An independent set of a graph $G=(V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Beyond Polynomial Time: 2^{n}

Def. An independent set of a graph $G=(V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Beyond Polynomial Time: 2^{n}

Def. An independent set of a graph $G=(V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Beyond Polynomial Time: 2^{n}

Maximum Independent Set Problem

Input: graph $G=(V, E)$
Output: the maximum independent set of G

max-independent-set $(G=(V, E))$

1: $R \leftarrow \emptyset$
2: for every set $S \subseteq V$ do
3: $\quad b \leftarrow$ true
4: \quad for every $u, v \in S$ do
5: \quad if $(u, v) \in E$ then $b \leftarrow$ false
6: \quad if b and $|S|>|R|$ then $R \leftarrow S$
7: return R
Running time $=O\left(2^{n} n^{2}\right)$.

Beyond Polynomial Time: n !

Hamiltonian Cycle Problem

Input: a graph with n vertices
Output: a cycle that visits each node exactly once, or say no such cycle exists

Beyond Polynomial Time: n !

Hamiltonian Cycle Problem

Input: a graph with n vertices
Output: a cycle that visits each node exactly once, or say no such cycle exists

Beyond Polynomial Time: n !

Hamiltonian $(G=(V, E))$

1: for every permutation $\left(p_{1}, p_{2}, \cdots, p_{n}\right)$ of V do
2: $\quad b \leftarrow$ true
3: \quad for $i \leftarrow 1$ to $n-1$ do
4: \quad if $\left(p_{i}, p_{i+1}\right) \notin E$ then $b \leftarrow$ false
5: \quad if $\left(p_{n}, p_{1}\right) \notin E$ then $b \leftarrow$ false
6: if b then return $\left(p_{1}, p_{2}, \cdots, p_{n}\right)$
7: return "No Hamiltonian Cycle"
Running time $=O(n!\times n)$

$O(\log n)$ (Logarithmic) Running Time

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

3	8	10	25	29	37	38	42	46	52	59	61	63	75	79

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
binary-search (A, n, t)
1: $i \leftarrow 1, j \leftarrow n$
2: while $i \leq j$ do
3: $\quad k \leftarrow\lfloor(i+j) / 2\rfloor$
4: \quad if $A[k]=t$ return true
5: \quad if $t<A[k]$ then $j \leftarrow k-1$ else $i \leftarrow k+1$
6: return false

$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search (A, n, t)

1: $i \leftarrow 1, j \leftarrow n$
2: while $i \leq j$ do
3: $\quad k \leftarrow\lfloor(i+j) / 2\rfloor$
4: \quad if $A[k]=t$ return true
5: \quad if $t<A[k]$ then $j \leftarrow k-1$ else $i \leftarrow k+1$
6: return false
Running time $=O(\log n)$

Comparing the Orders

- Sort the functions from smallest to largest asymptotically $\log n, \quad n \log n, n, n!, n^{2}, 2^{n}, e^{n}, n^{n}$
- $\log n=O(n)$

