CSE 531C: Algorithm Analysis and Design (Fall 2023)

Introduction and Syllabus

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Buffalo

© Syllabus

CSE 531 C: Algorithm Analysis and Design

e Course Webpage (contains schedule, policies, and slides):
https://cse.buffalo.edu/~kelinluo/teaching/
cseb31C-fall23/index.html

@ Please sign up course on Piazza via link
https://piazza.com/buffalo/fall2023/cseb31c on course
webpage
- homeworks, solutions, announcements, polls, asking/answering
questions

Acknowledgement: The course design and information primarily draw
inspiration from Prof. Shi Li's Algorithm Analysis and Design course
in Fall 2022.

https://cse.buffalo.edu/~kelinluo/teaching/cse531C-fall23/index.html
https://cse.buffalo.edu/~kelinluo/teaching/cse531C-fall23/index.html
https://piazza.com/buffalo/fall2023/cse531c

CSE 531C: Algorithm Analysis and Design

@ Time & Location : Mon-Wed-Fri, 4:00pm - 4:50pm, Nsc 201
@ Instructor: Kelin Luo, kelinluo@buffalo.edu
o TAs:

Davoud Moradi, davoudmo®buffalo.edu
Xiaoyu Zhang, zhang376@buffalo.edu
Xuelu Feng, xuelufen@buffalo.edu

Ibrahim Bahadir Altun, ialtun@buffalo.edu

@ Office hour

You should already have/know:

You should already have/know:
@ Mathematical Background
e basic reasoning skills, inductive proofs

You should already have/know:
@ Mathematical Background
e basic reasoning skills, inductive proofs

@ Basic data Structures

o linked lists, arrays
o stacks, queues

You should already have/know:
@ Mathematical Background
e basic reasoning skills, inductive proofs

@ Basic data Structures
o linked lists, arrays
e stacks, queues

@ Some Programming Experience
e e.g. Python, C, C++ or Java

You Will Learn

o Classic algorithms for classic problems
e Sorting, shortest paths, minimum spanning tree, - - -

You Will Learn

o Classic algorithms for classic problems
e Sorting, shortest paths, minimum spanning tree, - - -

@ How to analyze algorithms

o Correctness
o Running time (efficiency)

You Will Learn

o Classic algorithms for classic problems
e Sorting, shortest paths, minimum spanning tree, - - -

@ How to analyze algorithms
o Correctness
e Running time (efficiency)
@ Meta techniques to design algorithms

Greedy algorithms
Divide and conquer
Dynamic programming

You Will Learn

o Classic algorithms for classic problems
e Sorting, shortest paths, minimum spanning tree, - - -

@ How to analyze algorithms
o Correctness
e Running time (efficiency)
@ Meta techniques to design algorithms

Greedy algorithms
Divide and conquer
Dynamic programming

@ NP-completeness

Tentative Schedule

@ 50 Minutes/Lecture x 41 Lectures

Introduction | 3 lectures

Graph Basics | 4 lectures

Greedy Algorithms | 6 lectures
Divide and Conquer | 6 lectures
Dynamic Programming | 8 lectures
Graph Algorithms | 7 lectures
NP-Completeness | 4 lectures
Final Review | 3 lectures

Textbook (Highly Recommended):

o Algorithm Design, 1st Edition, by
Jon Kleinberg and Eva Tardos

Other Reference Books

@ Introduction to Algorithms, Third Edition, Thomas Cormen,
Charles Leiserson, Rondald Rivest, Clifford Stein

Reading Before Classes

@ Highly recommended: read the correspondent sections from the
textbook (or reference book) before classes

e Sections for each lecture can be found on the course webpage.

@ Slides are posted on course webpage. They may get updated after
the classes.

@ In last lecture of a major topic (Greedy Algorithms, Divide and
Conquer, Dynamic Programming, Graph Algorithms), | will discuss
exercise problems, which will be posted on the course webpage
before class.

@ 5% for participation
e In-class discussions or quizzes will be given randomly. (We choose
the best 5 scores out of 8-10 quizzes.)

@ 40% for theory homeworks

e 8 points x 5 theory homeworks (We choose the best 5 scores out of
6 homeworks.) (Recommendation: typed submissions, e.g. latex.)

@ 20% for programming projects
e 10 points X 2 programming assignments

@ 35% for final exam (closed-book, closed-note)

For Homeworks, You Are Allowed to

@ Use course materials (textbook, reference books, lecture notes,
etc)

@ Post questions on Piazza
@ Ask me or TAs for hints

@ Collaborate with classmates

e Think about each problem for enough time before discussions
e Must write down solutions on your own, in your own words
o Write down names of students you collaborated with

For Homeworks, You Are Allowed to

@ Use external resources
e Can't Google or ask questions online for solutions
o Can't read posted solutions from other algorithm course webpages

@ Copy solutions from other students

@ Use of Artificial Intelligence Technologies like OpenAl's ChatGPT,
Google Bard, and Al models within search interfaces like Google
or Bing, etc.

For Programming Projects

@ Use Python3
@ Need to implement the algorithms by yourself
@ Can not copy codes from others or the Internet

@ We use Moss (https://theory.stanford.edu/~aiken/moss/)
to detect similarity of programs

https://theory.stanford.edu/~aiken/moss/

Late Policy

@ No late submissions will be accepted.
@ 11:59PM EST. Please submit it before the deadline.

Academic Integrity (Al) Policy for the Course

@ minor violation:
o 0 score for the involved homework/prog. assignment, and
o l-letter grade down
@ 2 minor violations = 1 major violation
e failure for the course
e case will be reported to the department and university

e further sanctions may include a dishonesty mark on transcript or
expulsion from university

Academic Integrity (Al) Policy for the Course

@ minor violation:
o 0 score for the involved homework/prog. assignment, and
o l-letter grade down
@ 2 minor violations = 1 major violation
e failure for the course
e case will be reported to the department and university

e further sanctions may include a dishonesty mark on transcript or
expulsion from university

Course Sign up

@ Last Day to Drop/Add a Course: September 05
@ Resign Date: November 10

Questions, please go to Piazza!

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Introduction
@ What is an Algorithm?

What is an Algorithm?

@ Donald Knuth: An algorithm is a finite, definite effective
procedure, with some input and some output.

What is an Algorithm?

@ Donald Knuth: An algorithm is a finite, definite effective
procedure, with some input and some output.
e Computational problem: specifies the input/output relationship.

@ An algorithm solves a computational problem if it produces the
correct output for any given input.

Greatest Common Divisor
Input: two integers a,b > 0
Output: the greatest common divisor of a and b

Greatest Common Divisor
Input: two integers a,b > 0

Output: the greatest common divisor of a and b

Example:
e Input: 210, 270
e Output: 30

Greatest Common Divisor
Input: two integers a,b > 0

Output: the greatest common divisor of a and b

Example:
e Input: 210, 270
e Output: 30

@ Algorithm: Euclidean algorithm

Greatest Common Divisor
Input: two integers a,b > 0

Output: the greatest common divisor of a and b

Example:
e Input: 210, 270
e Output: 30

@ Algorithm: Euclidean algorithm
e gcd(270,210) = ged (210,270 mod 210) = ged(210, 60)

Greatest Common Divisor
Input: two integers a,b > 0

Output: the greatest common divisor of a and b

Example:
e Input: 210, 270
e Output: 30

@ Algorithm: Euclidean algorithm
e gcd(270,210) = ged (210,270 mod 210) = ged(210, 60)
e (270,210) — (210,60) — (60,30) — (30,0)

Sorting
Input: sequence of n numbers (ay,as, - ,a,)
Output: a permutation (a},a), - ,al,) of the input sequence such

that af <a) <---<a),

Sorting
Input: sequence of n numbers (ay,as, - ,a,)
Output: a permutation (a},a), - ,al,) of the input sequence such

that ¢} <a) <--- <da

Example:
@ Input: 53,12, 35,21,59, 15
e Output: 12,15, 21, 35,53, 59

Sorting
Input: sequence of n numbers (ay,as, - ,a,)
Output: a permutation (a},a), - ,al,) of the input sequence such

that ¢} <af <--- <da,

Example:
@ Input: 53,12, 35,21,59, 15
e Output: 12,15, 21, 35,53, 59

@ Algorithms: insertion sort, merge sort, quicksort, ...

Shortest Path
Input: directed graph G = (V, E), s,t € V
Output: a shortest path from s to ¢ in G

Examples

Shortest Path
Input: directed graph G = (V, E), s,t € V
Output: a shortest path from s to ¢ in G

Examples

Shortest Path
Input: directed graph G = (V, E), s,t € V
Output: a shortest path from s to ¢ in G

Examples

Shortest Path
Input: directed graph G = (V, E), s,t € V
Output: a shortest path from s to ¢ in G

@ Algorithm: Dijkstra’s algorithm

Algorithm = Computer Program?

@ Algorithm: “abstract”, can be specified using computer program,
English, pseudo-codes or flow charts.

o Computer program: “concrete”, implementation of algorithm,
using a particular programming language

Pseudo-Code

Python program:

Pseudo-Code: o def euclidean(a: int, b: int):
: ° c=20
Euclidean(a, b) o whileb > 0:
1. while b > 0 do ° c—=b

2: (a,b) < (b,a mod b) o b—a%b

3: return ¢
° a=c
° return a

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)

@ Sometimes: memory usage

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage

@ Not covered in the course: engineering side

extensibility

modularity

object-oriented model
user-friendliness (e.g, GUI)

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage

@ Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

e Why is it important to study the running time (efficiency) of an
algorithm?

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage

@ Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

e Why is it important to study the running time (efficiency) of an
algorithm?
@ feasible vs. infeasible

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage

@ Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

e Why is it important to study the running time (efficiency) of an
algorithm?
@ feasible vs. infeasible
@ efficient algorithms: less engineering tricks needed, can use languages
aiming for easy programming (e.g, python)

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage

@ Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

e Why is it important to study the running time (efficiency) of an
algorithm?
@ feasible vs. infeasible
@ efficient algorithms: less engineering tricks needed, can use languages
aiming for easy programming (e.g, python)
© fundamental

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage

@ Not covered in the course: engineering side

extensibility

modularity

object-oriented model
user-friendliness (e.g, GUI)

e Why is it important to study the running time (efficiency) of an
algorithm?
@ feasible vs. infeasible
@ efficient algorithms: less engineering tricks needed, can use languages
aiming for easy programming (e.g, python)
© fundamental
Q it is fun!

