
26/75

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

27/75

Sorting Problem
Input: sequence of n numbers (a1, a2, · · · , an)

Output: a permutation (a01, a
0
2, · · · , a0n) of the input sequence such

that a01  a
0
2  · · ·  a

0
n

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

28/75

Insertion-Sort

At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15

iteration 2: 12, 53, 35, 21, 59, 15

iteration 3: 12, 35, 53, 21, 59, 15

iteration 4: 12, 21, 35, 53, 59, 15

iteration 5: 12, 21, 35, 53, 59, 15

iteration 6: 12, 15, 21, 35, 53, 59

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

12 21 35 53 59 15
"
i

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

12 21 35 53 59 59
"
i

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

12 21 35 53 59 59
"
i

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

12 21 35 53 53 59
"
i

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

12 21 35 53 53 59
"
i

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

12 21 35 35 53 59
"
i

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

12 21 35 35 53 59
"
i

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

12 21 21 35 53 59
"
i

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

12 21 21 35 53 59
"
i

29/75

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

j = 6

key = 15

12 15 21 35 53 59
"
i

30/75

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

31/75

Analysis of Insertion Sort

Correctness

Running time

32/75

Correctness of Insertion Sort

Invariant: after iteration j of outer loop, A[1..j] is the sorted array
for the original A[1..j].

after j = 1 : 53, 12, 35, 21, 59, 15

after j = 2 : 12, 53, 35, 21, 59, 15

after j = 3 : 12, 35, 53, 21, 59, 15

after j = 4 : 12, 21, 35, 53, 59, 15

after j = 5 : 12, 21, 35, 53, 59, 15

after j = 6 : 12, 15, 21, 35, 53, 59

33/75

Analyzing Running Time of Insertion Sort

Q1: what is the size of input?

A1: Running time as the function of size

possible definition of size :

Sorting problem: # integers,

Greatest common divisor: total length of two integers

Shortest path in a graph: # edges in graph

Q2: Which input?

For the insertion sort algorithm: if input array is already sorted in

ascending order, then algorithm runs much faster than when it is

sorted in descending order.

A2: Worst-case analysis:

Running time for size n = worst running time over all possible arrays

of length n

33/75

Analyzing Running Time of Insertion Sort

Q1: what is the size of input?

A1: Running time as the function of size

possible definition of size :

Sorting problem: # integers,

Greatest common divisor: total length of two integers

Shortest path in a graph: # edges in graph

Q2: Which input?

For the insertion sort algorithm: if input array is already sorted in

ascending order, then algorithm runs much faster than when it is

sorted in descending order.

A2: Worst-case analysis:

Running time for size n = worst running time over all possible arrays

of length n

33/75

Analyzing Running Time of Insertion Sort

Q1: what is the size of input?

A1: Running time as the function of size

possible definition of size :
Sorting problem: # integers,

Greatest common divisor: total length of two integers

Shortest path in a graph: # edges in graph

Q2: Which input?

For the insertion sort algorithm: if input array is already sorted in

ascending order, then algorithm runs much faster than when it is

sorted in descending order.

A2: Worst-case analysis:

Running time for size n = worst running time over all possible arrays

of length n

33/75

Analyzing Running Time of Insertion Sort

Q1: what is the size of input?

A1: Running time as the function of size

possible definition of size :
Sorting problem: # integers,

Greatest common divisor: total length of two integers

Shortest path in a graph: # edges in graph

Q2: Which input?
For the insertion sort algorithm: if input array is already sorted in

ascending order, then algorithm runs much faster than when it is

sorted in descending order.

A2: Worst-case analysis:

Running time for size n = worst running time over all possible arrays

of length n

33/75

Analyzing Running Time of Insertion Sort

Q1: what is the size of input?

A1: Running time as the function of size

possible definition of size :
Sorting problem: # integers,

Greatest common divisor: total length of two integers

Shortest path in a graph: # edges in graph

Q2: Which input?
For the insertion sort algorithm: if input array is already sorted in

ascending order, then algorithm runs much faster than when it is

sorted in descending order.

A2: Worst-case analysis:
Running time for size n = worst running time over all possible arrays

of length n

34/75

Analyzing Running Time of Insertion Sort

Q3: How fast is the computer?

Q4: Programming language?

A: They do not matter!

Important idea: asymptotic analysis
Focus on growth of running-time as a function, not any particular
value.

34/75

Analyzing Running Time of Insertion Sort

Q3: How fast is the computer?

Q4: Programming language?

A: They do not matter!

Important idea: asymptotic analysis
Focus on growth of running-time as a function, not any particular
value.

34/75

Analyzing Running Time of Insertion Sort

Q3: How fast is the computer?

Q4: Programming language?

A: They do not matter!

Important idea: asymptotic analysis
Focus on growth of running-time as a function, not any particular
value.

35/75

Asymptotic Analysis: O-notation

Informal way to define O-notation:

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 � 18n+ 1028) 3n3) n
3

3n3 + 2n2 � 18n+ 1028 = O(n3)

n
2
/100� 3n+ 10) n

2
/100) n

2

n
2
/100� 3n+ 10 = O(n2)

35/75

Asymptotic Analysis: O-notation

Informal way to define O-notation:

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 � 18n+ 1028) 3n3) n
3

3n3 + 2n2 � 18n+ 1028 = O(n3)

n
2
/100� 3n+ 10) n

2
/100) n

2

n
2
/100� 3n+ 10 = O(n2)

35/75

Asymptotic Analysis: O-notation

Informal way to define O-notation:

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 � 18n+ 1028) 3n3) n
3

3n3 + 2n2 � 18n+ 1028 = O(n3)

n
2
/100� 3n+ 10) n

2
/100) n

2

n
2
/100� 3n+ 10 = O(n2)

35/75

Asymptotic Analysis: O-notation

Informal way to define O-notation:

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 � 18n+ 1028) 3n3) n
3

3n3 + 2n2 � 18n+ 1028 = O(n3)

n
2
/100� 3n+ 10) n

2
/100) n

2

n
2
/100� 3n+ 10 = O(n2)

35/75

Asymptotic Analysis: O-notation

Informal way to define O-notation:

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 � 18n+ 1028) 3n3) n
3

3n3 + 2n2 � 18n+ 1028 = O(n3)

n
2
/100� 3n+ 10) n

2
/100) n

2

n
2
/100� 3n+ 10 = O(n2)

36/75

Asymptotic Analysis: O-notation

3n3 + 2n2 � 18n+ 1028 = O(n3)

n
2
/100� 3n2 + 10 = O(n2)

O-notation allows us to ignore

architecture of computer

programming language

how we measure the running time: seconds or # instructions?

to execute a b+ c:

program 1 requires 10 instructions, or 10�8
seconds

program 2 requires 2 instructions, or 10�9
seconds

they only change by a constant in the running time, which will be

hidden by the O(·) notation

36/75

Asymptotic Analysis: O-notation

3n3 + 2n2 � 18n+ 1028 = O(n3)

n
2
/100� 3n2 + 10 = O(n2)

O-notation allows us to ignore

architecture of computer

programming language

how we measure the running time: seconds or # instructions?

to execute a b+ c:
program 1 requires 10 instructions, or 10�8

seconds

program 2 requires 2 instructions, or 10�9
seconds

they only change by a constant in the running time, which will be

hidden by the O(·) notation

36/75

Asymptotic Analysis: O-notation

3n3 + 2n2 � 18n+ 1028 = O(n3)

n
2
/100� 3n2 + 10 = O(n2)

O-notation allows us to ignore

architecture of computer

programming language

how we measure the running time: seconds or # instructions?

to execute a b+ c:
program 1 requires 10 instructions, or 10�8

seconds

program 2 requires 2 instructions, or 10�9
seconds

they only change by a constant in the running time, which will be

hidden by the O(·) notation

36/75

Asymptotic Analysis: O-notation

3n3 + 2n2 � 18n+ 1028 = O(n3)

n
2
/100� 3n2 + 10 = O(n2)

O-notation allows us to ignore

architecture of computer

programming language

how we measure the running time: seconds or # instructions?

to execute a b+ c:
program 1 requires 10 instructions, or 10�8

seconds

program 2 requires 2 instructions, or 10�9
seconds

they only change by a constant in the running time, which will be

hidden by the O(·) notation

37/75

Asymptotic Analysis: O-notation

Algorithm 1 runs in time O(n2)

Algorithm 2 runs in time O(n)

Does not tell which algorithm is faster for a specific n!

Algorithm 2 will eventually beat algorithm 1 as n increases.

For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2

37/75

Asymptotic Analysis: O-notation

Algorithm 1 runs in time O(n2)

Algorithm 2 runs in time O(n)

Does not tell which algorithm is faster for a specific n!

Algorithm 2 will eventually beat algorithm 1 as n increases.

For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2

37/75

Asymptotic Analysis: O-notation

Algorithm 1 runs in time O(n2)

Algorithm 2 runs in time O(n)

Does not tell which algorithm is faster for a specific n!

Algorithm 2 will eventually beat algorithm 1 as n increases.

For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2

37/75

Asymptotic Analysis: O-notation

Algorithm 1 runs in time O(n2)

Algorithm 2 runs in time O(n)

Does not tell which algorithm is faster for a specific n!

Algorithm 2 will eventually beat algorithm 1 as n increases.

For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2

37/75

Asymptotic Analysis: O-notation

Algorithm 1 runs in time O(n2)

Algorithm 2 runs in time O(n)

Does not tell which algorithm is faster for a specific n!

Algorithm 2 will eventually beat algorithm 1 as n increases.

For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2

38/75

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

Worst-case running time for iteration j of the outer loop?

Answer: O(j)

Total running time =
Pn

j=2 O(j) = O(
Pn

j=2 j)

= O(n(n+1)
2 � 1) = O(n2)

38/75

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

Worst-case running time for iteration j of the outer loop?

Answer: O(j)

Total running time =
Pn

j=2 O(j) = O(
Pn

j=2 j)

= O(n(n+1)
2 � 1) = O(n2)

38/75

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

Worst-case running time for iteration j of the outer loop?
Answer: O(j)

Total running time =
Pn

j=2 O(j) = O(
Pn

j=2 j)

= O(n(n+1)
2 � 1) = O(n2)

38/75

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)
1: for j 2 to n do

2: key A[j]
3: i j � 1
4: while i > 0 and A[i] > key do

5: A[i+ 1] A[i]
6: i i� 1
7: A[i+ 1] key

Worst-case running time for iteration j of the outer loop?
Answer: O(j)

Total running time =
Pn

j=2 O(j) = O(
Pn

j=2 j)

= O(n(n+1)
2 � 1) = O(n2)

39/75

Computation Model

Random-Access Machine (RAM) model

reading and writing A[j] takes O(1) time

Basic operations such as addition, subtraction and multiplication
take O(1) time

Each integer (word) has c log n bits, c � 1 large enough

Reason: often we need to read the integer n and handle integers

within range [�nc
, n

c], it is convenient to assume this takes O(1)
time.

What is the precision of real numbers?

Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take O(n log n) time

39/75

Computation Model

Random-Access Machine (RAM) model
reading and writing A[j] takes O(1) time

Basic operations such as addition, subtraction and multiplication
take O(1) time

Each integer (word) has c log n bits, c � 1 large enough

Reason: often we need to read the integer n and handle integers

within range [�nc
, n

c], it is convenient to assume this takes O(1)
time.

What is the precision of real numbers?

Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take O(n log n) time

39/75

Computation Model

Random-Access Machine (RAM) model
reading and writing A[j] takes O(1) time

Basic operations such as addition, subtraction and multiplication
take O(1) time

Each integer (word) has c log n bits, c � 1 large enough

Reason: often we need to read the integer n and handle integers

within range [�nc
, n

c], it is convenient to assume this takes O(1)
time.

What is the precision of real numbers?

Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take O(n log n) time

39/75

Computation Model

Random-Access Machine (RAM) model
reading and writing A[j] takes O(1) time

Basic operations such as addition, subtraction and multiplication
take O(1) time

Each integer (word) has c log n bits, c � 1 large enough
Reason: often we need to read the integer n and handle integers

within range [�nc
, n

c], it is convenient to assume this takes O(1)
time.

What is the precision of real numbers?

Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take O(n log n) time

39/75

Computation Model

Random-Access Machine (RAM) model
reading and writing A[j] takes O(1) time

Basic operations such as addition, subtraction and multiplication
take O(1) time

Each integer (word) has c log n bits, c � 1 large enough
Reason: often we need to read the integer n and handle integers

within range [�nc
, n

c], it is convenient to assume this takes O(1)
time.

What is the precision of real numbers?

Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take O(n log n) time

39/75

Computation Model

Random-Access Machine (RAM) model
reading and writing A[j] takes O(1) time

Basic operations such as addition, subtraction and multiplication
take O(1) time

Each integer (word) has c log n bits, c � 1 large enough
Reason: often we need to read the integer n and handle integers

within range [�nc
, n

c], it is convenient to assume this takes O(1)
time.

What is the precision of real numbers?
Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take O(n log n) time

39/75

Computation Model

Random-Access Machine (RAM) model
reading and writing A[j] takes O(1) time

Basic operations such as addition, subtraction and multiplication
take O(1) time

Each integer (word) has c log n bits, c � 1 large enough
Reason: often we need to read the integer n and handle integers

within range [�nc
, n

c], it is convenient to assume this takes O(1)
time.

What is the precision of real numbers?
Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take O(n log n) time

39/75

Computation Model

Random-Access Machine (RAM) model
reading and writing A[j] takes O(1) time

Basic operations such as addition, subtraction and multiplication
take O(1) time

Each integer (word) has c log n bits, c � 1 large enough
Reason: often we need to read the integer n and handle integers

within range [�nc
, n

c], it is convenient to assume this takes O(1)
time.

What is the precision of real numbers?
Most of the time, we only consider integers.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort and heap sort take O(n log n) time

40/75

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

41/75

Asymptotically Positive Functions

Def. f : N! R is an asymptotically positive function if:

9n0 > 0 such that 8n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n
2 � n� 30

Yes

2n � n
20

Yes

100n� n
2
/10 + 50?

No

We only consider asymptotically positive functions.

41/75

Asymptotically Positive Functions

Def. f : N! R is an asymptotically positive function if:

9n0 > 0 such that 8n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n
2 � n� 30

Yes

2n � n
20

Yes

100n� n
2
/10 + 50?

No

We only consider asymptotically positive functions.

41/75

Asymptotically Positive Functions

Def. f : N! R is an asymptotically positive function if:

9n0 > 0 such that 8n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n
2 � n� 30

Yes

2n � n
20

Yes

100n� n
2
/10 + 50?

No

We only consider asymptotically positive functions.

41/75

Asymptotically Positive Functions

Def. f : N! R is an asymptotically positive function if:

9n0 > 0 such that 8n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n
2 � n� 30 Yes

2n � n
20

Yes

100n� n
2
/10 + 50?

No

We only consider asymptotically positive functions.

41/75

Asymptotically Positive Functions

Def. f : N! R is an asymptotically positive function if:

9n0 > 0 such that 8n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n
2 � n� 30 Yes

2n � n
20

Yes

100n� n
2
/10 + 50?

No

We only consider asymptotically positive functions.

41/75

Asymptotically Positive Functions

Def. f : N! R is an asymptotically positive function if:

9n0 > 0 such that 8n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n
2 � n� 30 Yes

2n � n
20 Yes

100n� n
2
/10 + 50?

No

We only consider asymptotically positive functions.

41/75

Asymptotically Positive Functions

Def. f : N! R is an asymptotically positive function if:

9n0 > 0 such that 8n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n
2 � n� 30 Yes

2n � n
20 Yes

100n� n
2
/10 + 50?

No

We only consider asymptotically positive functions.

41/75

Asymptotically Positive Functions

Def. f : N! R is an asymptotically positive function if:

9n0 > 0 such that 8n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n
2 � n� 30 Yes

2n � n
20 Yes

100n� n
2
/10 + 50? No

We only consider asymptotically positive functions.

41/75

Asymptotically Positive Functions

Def. f : N! R is an asymptotically positive function if:

9n0 > 0 such that 8n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n
2 � n� 30 Yes

2n � n
20 Yes

100n� n
2
/10 + 50? No

We only consider asymptotically positive functions.

42/75

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

In other words, f(n) 2 O(g(n)) if f(n)  cg(n) for some c > 0
and every large enough n.

42/75

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

In other words, f(n) 2 O(g(n)) if f(n)  cg(n) for some c > 0
and every large enough n.

42/75

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

In other words, f(n) 2 O(g(n)) if f(n)  cg(n) for some c > 0
and every large enough n.

n
n0

cg(n)

f (n)

f(n) = O(g(n))

43/75

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

In other words, f(n) 2 O(g(n)) if f(n)  cg(n) for some c > 0
and every large enough n.

3n2 + 2n 2 O(n2 � 10n)

Proof.
Let c = 4 and n0 = 50, for every n > n0 = 50, we have,

3n2 + 2n� c(n2 � 10n) = 3n2 + 2n� 4(n2 � 10n)

= �n2 + 42n  0.

3n2 + 2n  c(n2 � 10n)

43/75

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

In other words, f(n) 2 O(g(n)) if f(n)  cg(n) for some c > 0
and every large enough n.

3n2 + 2n 2 O(n2 � 10n)

Proof.
Let c = 4 and n0 = 50, for every n > n0 = 50, we have,

3n2 + 2n� c(n2 � 10n) = 3n2 + 2n� 4(n2 � 10n)

= �n2 + 42n  0.

3n2 + 2n  c(n2 � 10n)

44/75

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

In other words, f(n) 2 O(g(n)) if f(n)  cg(n) for some c and
large enough n.

3n2 + 2n 2 O(n2 � 10n)

3n2 + 2n 2 O(n3 � 5n2)

n
100 2 O(2n)

n
3
/2 O(10n2)

Asymptotic Notations O ⌦ ⇥
Comparison Relations 

44/75

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

In other words, f(n) 2 O(g(n)) if f(n)  cg(n) for some c and
large enough n.

3n2 + 2n 2 O(n2 � 10n)

3n2 + 2n 2 O(n3 � 5n2)

n
100 2 O(2n)

n
3
/2 O(10n2)

Asymptotic Notations O ⌦ ⇥
Comparison Relations 

44/75

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

In other words, f(n) 2 O(g(n)) if f(n)  cg(n) for some c and
large enough n.

3n2 + 2n 2 O(n2 � 10n)

3n2 + 2n 2 O(n3 � 5n2)

n
100 2 O(2n)

n
3
/2 O(10n2)

Asymptotic Notations O ⌦ ⇥
Comparison Relations 

44/75

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

In other words, f(n) 2 O(g(n)) if f(n)  cg(n) for some c and
large enough n.

3n2 + 2n 2 O(n2 � 10n)

3n2 + 2n 2 O(n3 � 5n2)

n
100 2 O(2n)

n
3
/2 O(10n2)

Asymptotic Notations O ⌦ ⇥
Comparison Relations 

44/75

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

In other words, f(n) 2 O(g(n)) if f(n)  cg(n) for some c and
large enough n.

3n2 + 2n 2 O(n2 � 10n)

3n2 + 2n 2 O(n3 � 5n2)

n
100 2 O(2n)

n
3
/2 O(10n2)

Asymptotic Notations O ⌦ ⇥
Comparison Relations 

45/75

Conventions

We use “f(n) = O(g(n))” to denote “f(n) 2 O(g(n))”

3n2 + 2n = O(n3 � 10n)

3n2 + 2n = O(n2 + 5n)

3n2 + 2n = O(n2)

“=” is asymmetric! Following equalities are wrong:

O(n3 � 10n) = 3n2 + 2n

O(n2 + 5n) = 3n2 + 2n

O(n2) = 3n2 + 2n

Analogy: Mike is a student. A student is Mike.

45/75

Conventions

We use “f(n) = O(g(n))” to denote “f(n) 2 O(g(n))”

3n2 + 2n = O(n3 � 10n)

3n2 + 2n = O(n2 + 5n)

3n2 + 2n = O(n2)

“=” is asymmetric! Following equalities are wrong:

O(n3 � 10n) = 3n2 + 2n

O(n2 + 5n) = 3n2 + 2n

O(n2) = 3n2 + 2n

Analogy: Mike is a student. A student is Mike.

45/75

Conventions

We use “f(n) = O(g(n))” to denote “f(n) 2 O(g(n))”

3n2 + 2n = O(n3 � 10n)

3n2 + 2n = O(n2 + 5n)

3n2 + 2n = O(n2)

“=” is asymmetric! Following equalities are wrong:

O(n3 � 10n) = 3n2 + 2n

O(n2 + 5n) = 3n2 + 2n

O(n2) = 3n2 + 2n

Analogy: Mike is a student. A student is Mike.

45/75

Conventions

We use “f(n) = O(g(n))” to denote “f(n) 2 O(g(n))”

3n2 + 2n = O(n3 � 10n)

3n2 + 2n = O(n2 + 5n)

3n2 + 2n = O(n2)

“=” is asymmetric! Following equalities are wrong:

O(n3 � 10n) = 3n2 + 2n

O(n2 + 5n) = 3n2 + 2n

O(n2) = 3n2 + 2n

Analogy: Mike is a student. A student is Mike.

46/75

⌦-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

⌦-Notation For a function g(n),

⌦(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n) � cg(n), 8n � n0

.

In other words, f(n) 2 ⌦(g(n)) if f(n) � cg(n) for some c and
large enough n.

46/75

⌦-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

⌦-Notation For a function g(n),

⌦(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n) � cg(n), 8n � n0

.

In other words, f(n) 2 ⌦(g(n)) if f(n) � cg(n) for some c and
large enough n.

47/75

⌦-Notation: Asymptotic Lower Bound

⌦-Notation For a function g(n),

⌦(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n) � cg(n), 8n � n0

.

nn0

cg(n)

f (n)
f(n) = ⌦(g(n))

48/75

⌦-Notation: Asymptotic Lower Bound

Again, we use “=” instead of 2.
4n2 = ⌦(n� 10)
3n2 � n+ 10 = ⌦(n2 � 20)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  �

Theorem f(n) = O(g(n)) , g(n) = ⌦(f(n)).

48/75

⌦-Notation: Asymptotic Lower Bound

Again, we use “=” instead of 2.
4n2 = ⌦(n� 10)
3n2 � n+ 10 = ⌦(n2 � 20)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  �

Theorem f(n) = O(g(n)) , g(n) = ⌦(f(n)).

48/75

⌦-Notation: Asymptotic Lower Bound

Again, we use “=” instead of 2.
4n2 = ⌦(n� 10)
3n2 � n+ 10 = ⌦(n2 � 20)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  �

Theorem f(n) = O(g(n)) , g(n) = ⌦(f(n)).

49/75

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

f(n) = ⇥(g(n)), then for large enough n, we have “f(n) ⇡ g(n)”.

49/75

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

f(n) = ⇥(g(n)), then for large enough n, we have “f(n) ⇡ g(n)”.

49/75

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

f(n) = ⇥(g(n)), then for large enough n, we have “f(n) ⇡ g(n)”.

nn0

c1g(n)

f (n)

c2g(n)
f(n) = ⇥(g(n))

50/75

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

3n2 + 2n = ⇥(n2 � 20n)

2n/3+100 = ⇥(2n/3)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Theorem f(n) = ⇥(g(n)) if and only if
f(n) = O(g(n)) and f(n) = ⌦(g(n)).

50/75

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

3n2 + 2n = ⇥(n2 � 20n)

2n/3+100 = ⇥(2n/3)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Theorem f(n) = ⇥(g(n)) if and only if
f(n) = O(g(n)) and f(n) = ⌦(g(n)).

50/75

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

3n2 + 2n = ⇥(n2 � 20n)

2n/3+100 = ⇥(2n/3)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Theorem f(n) = ⇥(g(n)) if and only if
f(n) = O(g(n)) and f(n) = ⌦(g(n)).

50/75

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

3n2 + 2n = ⇥(n2 � 20n)

2n/3+100 = ⇥(2n/3)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Theorem f(n) = ⇥(g(n)) if and only if
f(n) = O(g(n)) and f(n) = ⌦(g(n)).

