© Introduction

@ Example: Insertion Sort



Input: sequence of n numbers (a1, as, - ,a,)

Output: a permutation (a},a), - ,al,) of the input sequence such

r'n

that a} <a)y <.--<a),

@ Input: 53,12, 35,21,59, 15
e Output: 12,15, 21,35, 53,59
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Insertion-Sort

@ At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53,12, 35, 21,59, 15
iteration 2: 12,53, 35,21,59, 15
iteration 3: 12,35,53,21,59,15
iteration 4: 12,21,35,53,59,15
iteration 5: 12,21,35,53,59,15
iteration 6: 12,15,21,35,53,59



Example:
@ Input: 53,12, 35, 21,59, 15
o Output: 12,15,21,35,53,59

insertion-sort( A, n)
1: for j < 2 ton do

key < Alj]

i j—1

while i > 0 and A[i] > key do
Ali + 1] « A[l]
1 1—1

Ali + 1] < key
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© Introduction

@ Analysis of Insertion Sort



Analysis of Insertion Sort

@ Correctness

@ Running time



Correctness of Insertion Sort

@ Invariant: after iteration j of outer loop, A[l..j] is the sorted array
for the original A[l..j].

after j =1:53,12,35,21,59, 15
after j =2:12,53,35,21,59, 15
after j =3 :12,35,53,21,59, 15
after j =4 :12,21,35,53,59,15
after j =5:12,21,35,53,59,15
after j =6:12,15,21,35,53,59
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Analyzing Running Time of Insertion Sort

@ QI1: what is the size of input?
@ Al: Running time as the function of size
@ possible definition of size :

e Sorting problem: # integers,
o Greatest common divisor: total length of two integers
o Shortest path in a graph: # edges in graph

@ Q2: Which input?

e For the insertion sort algorithm: if input array is already sorted in
ascending order, then algorithm runs much faster than when it is
sorted in descending order.

o A2: Worst-case analysis:

e Running time for size n = worst running time over all possible arrays
of length n
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Analyzing Running Time of Insertion Sort

@ Q3: How fast is the computer?
@ Q4: Programming language?
@ A: They do not matter!

Important idea: asymptotic analysis

@ Focus on growth of running-time as a function, not any particular
value.
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Asymptotic Analysis: O-notation

@ 3n®+2n? — 18n + 1028 = O(n?)

e n2/100 — 3n* + 10 = O(n?)

O-notation allows us to ignore

@ architecture of computer

@ programming language

@ how we measure the running time: seconds or # instructions?

@ to execute a + b+ c:

e program 1 requires 10 instructions, or 10~® seconds

e program 2 requires 2 instructions, or 10~ seconds

e they only change by a constant in the running time, which will be
hidden by the O(-) notation
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Asymptotic Analysis: O-notation

@ Algorithm 1 runs in time O(n?)
@ Algorithm 2 runs in time O(n)

@ Does not tell which algorithm is faster for a specific n!

@ Algorithm 2 will eventually beat algorithm 1 as n increases.

@ For Algorithm 1: if we increase n by a factor of 2, running time
increases by a factor of 4

@ For Algorithm 2: if we increase n by a factor of 2, running time
increases by a factor of 2
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Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)
1: for j < 2ton do
2: key < A[j]
3 145 —1
4: while i > 0 and A[i] > key do
5: Ali + 1] + A[i]
6: 141—1
7: Ali + 1] < key |

@ Worst-case running time for iteration j of the outer loop?
Answer: O(j)

o Total running time = >~7 , O(j) = O(3_7_, j)
_ O(n (n+1) 1) — O(?’LQ)
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Computation Model

@ Random-Access Machine (RAM) model
o reading and writing A[j] takes O(1) time

@ Basic operations such as addition, subtraction and multiplication
take O(1) time

@ Each integer (word) has clogn bits, ¢ > 1 large enough

e Reason: often we need to read the integer n and handle integers
within range [—n®, n¢], it is convenient to assume this takes O(1)
time.

@ What is the precision of real numbers?
Most of the time, we only consider integers.
@ Can we do better than insertion sort asymptotically?

@ Yes: merge sort, quicksort and heap sort take O(nlogn) time
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Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jngy > 0 such that ¥n > ny we have f(n) >0 J

@ In other words, f(n) is positive for large enough n.
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Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jngy > 0 such that ¥n > ny we have f(n) >0 J

In other words, f(n) is positive for large enough n.
n*—n — 30 Yes

2n — 20 Yes

100n — n?/10 4 507 No

We only consider asymptotically positive functions.
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O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) <cg(n),¥n > no}.

@ In other words, f(n) € O(g(n)) if f(n) < cg(n) for some ¢ > 0
and every large enough n.

e 3n?+2n € O(n? — 10n)

Proof.

Let ¢ = 4 and ny = 50, for every n > ng = 50, we have,
3n? 4+ 2n — c(n? — 10n) = 3n? + 2n — 4(n? — 10n)
=-—n?4+42n<0.
3n® 4+ 2n < c¢(n* — 10n) O
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Conventions

e We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))"
@ 3n% +2n = 0(n®— 10n)

@ 3n% +2n = O(n®+ 5n)

@ 3n% +2n = 0(n?)

“="is asymmetric! Following equalities are wrong:

e O(n®—10n) = 3n?+2n

e O(n*+5n)=3n*+2n

e O(n?) =3n?+2n

@ Analogy: Mike is a student. A-studentis—Mike:
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()-Notation: Asymptotic Lower Bound

@ Again, we use “=" instead of €.
o 4n% = Q(n — 10)
o 3n? —n+10 = Q(n? — 20)
Asymptotic Notations | O |
Comparison Relations | < |

Theorem f(n) = O(g(n)) < g(n) = Q(f(n)).
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Theorem f(n) = O(g(n)) if and only if
f(n) = O(g(n)) and f(n) = Q(g(n)). J




