Outline

Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

Sorting Problem

Input: sequence of *n* numbers (a_1, a_2, \cdots, a_n)

Output: a permutation $(a_1', a_2', \cdots, a_n')$ of the input sequence such that $a_1' \le a_2' \le \cdots \le a_n'$

Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

• At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15 iteration 2: 12, 53, 35, 21, 59, 15 iteration 3: 12, 35, 53, 21, 59, 15 iteration 4: 12, 21, 35, 53, 59, 15 iteration 5: 12, 21, 35, 53, 59, 15 iteration 6: 12, 15, 21, 35, 53, 59

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

• j = 6• key = 1512 21 35 53 59 15 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

• j = 6• key = 1512 21 35 53 59 59 \uparrow i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

• j = 6• key = 1512 21 35 53 59 59 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

• j = 6• key = 1512 21 35 53 53 59 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

• j = 6• key = 1512 21 35 53 53 59 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

• j = 6• key = 1512 21 35 35 53 59 \uparrow i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

• j = 6• key = 1512 21 35 35 53 59 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 21 21 35 53 59
 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 21 21 35 53 59
 \uparrow
 i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

1:	for $j \leftarrow 2$ to n do
2:	$key \leftarrow A[j]$
3:	$i \leftarrow j - 1$
4:	while $i > 0$ and $A[i] > key$ do
5:	$A[i+1] \leftarrow A[i]$
6:	$i \leftarrow i - 1$
7:	$A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 15 21 35 53 59
 \uparrow_i

Outline

Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

- Correctness
- Running time

• Invariant: after iteration j of outer loop, A[1..j] is the sorted array for the original A[1..j].

after j = 1 : 53, 12, 35, 21, 59, 15after j = 2 : 12, 53, 35, 21, 59, 15after j = 3 : 12, 35, 53, 21, 59, 15after j = 4 : 12, 21, 35, 53, 59, 15after j = 5 : 12, 21, 35, 53, 59, 15after j = 6 : 12, 15, 21, 35, 53, 59

• Q1: what is the size of input?

- Q1: what is the size of input?
- A1: Running time as the function of size

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph

• Q2: Which input?

• For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph
- Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
 - $\bullet\,$ Running time for size n= worst running time over all possible arrays of length n

- Q3: How fast is the computer?
- Q4: Programming language?

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

Important idea: asymptotic analysis

• Focus on growth of running-time as a function, not any particular value.

- Ignoring lower order terms
- Ignoring leading constant

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$
- $n^2/100 3n + 10 = O(n^2)$

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$
- O-notation allows us to ignore
 - architecture of computer
 - programming language
- how we measure the running time: seconds or # instructions?

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute $a \leftarrow b + c$:
 - program 1 requires 10 instructions, or 10^{-8} seconds
 - program 2 requires 2 instructions, or 10^{-9} seconds

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute $a \leftarrow b + c$:
 - ${\, \bullet \,}$ program 1 requires 10 instructions, or 10^{-8} seconds
 - program 2 requires 2 instructions, or 10^{-9} seconds
 - they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation

- Algorithm 1 runs in time ${\cal O}(n^2)$
- Algorithm 2 runs in time O(n)

- Algorithm 1 runs in time ${\cal O}(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!

- Algorithm 1 runs in time ${\cal O}(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!
- Algorithm 2 will eventually beat algorithm 1 as n increases.

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!
- Algorithm 2 will eventually beat algorithm 1 as n increases.
- For Algorithm 1: if we increase n by a factor of $\mathbf{2},$ running time increases by a factor of $\mathbf{4}$

- Algorithm 1 runs in time ${\cal O}(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!
- Algorithm 2 will eventually beat algorithm 1 as n increases.
- For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
- For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2

insertion-sort(A, n)

- 1: for $j \leftarrow 2$ to n do
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j 1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

$\begin{array}{ll} \text{insertion-sort}(A, n) \\ 1: \ \text{for } j \leftarrow 2 \ \text{to } n \ \text{do} \\ 2: & key \leftarrow A[j] \\ 3: & i \leftarrow j - 1 \\ 4: \ \text{ while } i > 0 \ \text{and } A[i] > key \ \text{do} \\ 5: & A[i+1] \leftarrow A[i] \\ 6: & i \leftarrow i - 1 \\ 7: & A[i+1] \leftarrow key \end{array}$

• Worst-case running time for iteration *j* of the outer loop?

$\begin{array}{ll} \text{insertion-sort}(A, n) \\ 1: \ \text{for } j \leftarrow 2 \ \text{to } n \ \text{do} \\ 2: & key \leftarrow A[j] \\ 3: & i \leftarrow j - 1 \\ 4: & \text{while } i > 0 \ \text{and } A[i] > key \ \text{do} \\ 5: & A[i+1] \leftarrow A[i] \\ 6: & i \leftarrow i - 1 \\ 7: & A[i+1] \leftarrow key \end{array}$

• Worst-case running time for iteration j of the outer loop? Answer: O(j)

insertion-sort(A, n)1: for $j \leftarrow 2$ to n do 2: $key \leftarrow A[j]$ 3: $i \leftarrow j - 1$ 4: while i > 0 and A[i] > key do 5: $A[i+1] \leftarrow A[i]$ 6: $i \leftarrow i - 1$ 7: $A[i+1] \leftarrow key$

- Worst-case running time for iteration j of the outer loop? Answer: O(j)
- Total running time = $\sum_{j=2}^n O(j) = O(\sum_{j=2}^n j)$ = $O(\frac{n(n+1)}{2} 1) = O(n^2)$

Computation Model

Computation Model

- Random-Access Machine (RAM) model
 - ${\, \bullet \,}$ reading and writing A[j] takes O(1) time

Computation Model

- Random-Access Machine (RAM) model
 - reading and writing ${\cal A}[j]$ takes ${\cal O}(1)$ time
- $\bullet\,$ Basic operations such as addition, subtraction and multiplication take O(1) time

- Random-Access Machine (RAM) model
 - reading and writing $\boldsymbol{A}[j]$ takes $\boldsymbol{O}(1)$ time
- $\bullet\,$ Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c\log n$ bits, $c\geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c,n^c]$, it is convenient to assume this takes ${\cal O}(1)$ time.

- Random-Access Machine (RAM) model
 - reading and writing $\boldsymbol{A}[j]$ takes $\boldsymbol{O}(1)$ time
- $\bullet\,$ Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c\log n$ bits, $c\geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c,n^c]$, it is convenient to assume this takes ${\cal O}(1)$ time.
- What is the precision of real numbers?

- Random-Access Machine (RAM) model
 - reading and writing ${\cal A}[j]$ takes ${\cal O}(1)$ time
- $\bullet\,$ Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c\log n$ bits, $c\geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c,n^c]$, it is convenient to assume this takes ${\cal O}(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.

- Random-Access Machine (RAM) model
 - reading and writing $\boldsymbol{A}[j]$ takes $\boldsymbol{O}(1)$ time
- $\bullet\,$ Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c\log n$ bits, $c\geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c,n^c]$, it is convenient to assume this takes ${\cal O}(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?

- Random-Access Machine (RAM) model
 - reading and writing $\boldsymbol{A}[j]$ takes $\boldsymbol{O}(1)$ time
- $\bullet\,$ Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c,n^c]$, it is convenient to assume this takes ${\cal O}(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time

Outline

Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

Asymptotically Positive Functions

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

41/75

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

• In other words, f(n) is positive for large enough n.

- **Def.** $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$

- **Def.** $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes

- **Def.** $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes • $2^n - n^{20}$

- **Def.** $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes • $2^n - n^{20}$ Yes

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50?$

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$? No

- **Def.** $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$? No
- We only consider asymptotically positive functions.

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0and every large enough n.

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0and every large enough n.

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.
- $3n^2 + 2n \in O(n^2 10n)$

O-Notation For a function
$$g(n)$$
,
 $O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that}$
 $f(n) \leq cg(n), \forall n \geq n_0 \}.$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.

•
$$3n^2 + 2n \in O(n^2 - 10n)$$

Proof.

Let
$$c = 4$$
 and $n_0 = 50$, for every $n > n_0 = 50$, we have,
 $3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n)$
 $= -n^2 + 42n \le 0.$
 $3n^2 + 2n \le c(n^2 - 10n)$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$
- $\bullet \ n^3 \notin O(10n^2)$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$
- $\bullet \ n^3 \notin O(10n^2)$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq		

\bullet We use ``f(n) = O(g(n))" to denote $``f(n) \in O(g(n))"$

- \bullet We use ``f(n) = O(g(n))" to denote $``f(n) \in O(g(n))"$
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$

- \bullet We use ``f(n) = O(g(n))" to denote $``f(n) \in O(g(n))"$
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric! Following equalities are wrong:
- $O(n^3 10n) = 3n^2 + 2n$
- $O(n^2 + 5n) = 3n^2 + 2n$
- $O(n^2) = 3n^2 + 2n$

- \bullet We use ``f(n) = O(g(n))" to denote $``f(n) \in O(g(n))"$
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric! Following equalities are wrong:
- $O(n^3 10n) = 3n^2 + 2n$
- $O(n^2 + 5n) = 3n^2 + 2n$
- $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

$$\begin{split} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

• In other words, $f(n) \in \Omega(g(n))$ if $f(n) \ge cg(n)$ for some c and large enough n.

Ω -Notation: Asymptotic Lower Bound

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

$\Omega\text{-Notation}$: Asymptotic Lower Bound

- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

$\Omega\text{-Notation:}$ Asymptotic Lower Bound

• Again, we use "=" instead of
$$\in$$
.

•
$$4n^2 = \Omega(n - 10)$$

• $3n^2 - n + 10 = \Omega(n^2 - 20)$
Asymptotic Notations $O \mid \Omega \mid \Theta$
Comparison Relations $\leq \geq$

$\Omega\text{-Notation}$: Asymptotic Lower Bound

• Again, we use "=" instead of
$$\in$$
.

•
$$4n^2 = \Omega(n - 10)$$

• $3n^2 - n + 10 = \Omega(n^2 - 20)$
Asymptotic Notations $O \mid \Omega \mid \Theta$
Comparison Relations $\leq \geq$

Theorem $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$

$$\begin{split} \Theta\text{-Notation For a function } g(n), \\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) &\leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ &c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

• $3n^2 + 2n = \Theta(n^2 - 20n)$

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

• $2^{n/3+100} = \Theta(2^{n/3})$

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ &c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

• $2^{n/3+100} = \Theta(2^{n/3})$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	=

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ &c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

•
$$2^{n/3+100} = \Theta(2^{n/3})$$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	=

Theorem $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.