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Chapter 1

Programming Basics

1.1 Scientific Computing

I want to begin this course with a brief look back at the history of computa-
tional science. I think the physical sciences have always recognized the value of
experience better than mathematics. The hallmark of physical science is its in-
teraction with the physical world, and it is long experience with this world that
informs and guides theory, and now computation. Computational mathematics,
or computational science, stands between the worlds of mathematics and phys-
ical science, and thus must deal with these real world constraints. The speed of
light, capacitive coupling, leakage current, and the limits of photolithography
all constrain the kinds of computations we can do efficiently. And these trade-
offs do change depending on advances in materials science. In the 1960s and
1970s when many foundational numerical algorithms were developed, machines
had very little memory compared to computing power, whereas today memory
limitations impact very few algorithms. Our assumptions and rules of thumbs
must be rethought for each generation of computing hardware.

For pure mathematicians, the sine non qua of technical communication is
the journal paper, although people like Terence Tao and Timothy Gowers have
clearly shown that blogging and the polymath project can play a significant role.
However, more then 40 years ago, computational mathematicians created a new
way to disseminate their results, namely the high quality numerical library. It is
now a commonplace that a great part of your interaction with physical sciences,
engineering, and other fields can be mediated by software you produce and
maintain. I will argue that the most effective form of software communication
is the library.

1.1.1 Libraries

The main impact of computational mathematics is in design and analysis of
algorithms for simulation and data analysis. This is where elements of com-
puter science enter in, since software is the transmission mechanism from math-
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ematicians and computational scientists to rest of the research community. The
description of an algorithm present in a paper is usually schematic so that im-
portant pieces of the (local) convergence or complexity proof can be matched
to algorithmic operations. Many thing remain unspecified, either because they
are incidental to the main point (precise language and data structure choices),
cumbersome to describe (exact line search and continuation strategies), difficult
to reproduce (optimizations for large, expensive machines), or a host of other
reasons. In the end, it is nearly impossible to reproduce results from a computa-
tional publication without the original source, test inputs, and outputs to serve
as a reference. The best way to assure that others have access to this material
and that it does not place an undue burden on the author, is to move most
operations into supported community code, reducing the author contribution to
an easily manageable set.

The best way to create robust, efficient and scalable, maintainable scientific
codes, is to use libraries. The primary job of software design is to contain imple-
mentation complexity, and libraries provide a systematic, hierarchical strategy
for this. They can hide the details associated with different hardware archi-
tectures. For example, the MPI libraries (Forum 2012; W. Gropp, Lusk, and
Skjellum 1994; W. Gropp and et. al. n.d.) we will work with later in the course
hide the details of network interfaces and machine data representations behind
generic interfaces. PETSc (Balay, Abhyankar, Adams, Benson, Brown, Brune,
Buschelman, E. Constantinescu, et al. 2022; Balay, Abhyankar, Adams, Benson,
Brown, Brune, Buschelman, E. M. Constantinescu, et al. 2022) hides complex
data structures used for sparse matrix implementations on parallel architectures.

Libraries not only hide complexity for the individual user, but they serve to
accumulate best practices in the field. There are very often complex tradeoffs
associated with algorithmic choices, so that no best algorithm exists (Nachtigal,
Reddy, and Trefethen 1992) and determining the best algorithm for a particular
problem is costly or undecideable. Thus determining effective and robust de-
faults can save large amounts of time and computing. For example, by default
PETSc uses classical Gram-Schmidt orthogonalization with selective reorthog-
onalization (Bjorck 1994) rather than the more robust but far less scalable
modified Gram-Schmidt. Moreover, the capabilities of an application using a
generic library interface can increase without any code changes. An application
using PETSc would benefit from the addition of a new matrix format for specific
hardware, Krylov solver, or Implicit-Explicit (IMEX) time integration without
any changes to the application itself.

This last point about improvement is the edge of the elusive concept of ex-
tensiblity. It is not enough to make a fantastic, working code. Users will need
the ability to change your approach to fit their problem, or a new hardware or
software environment, or to interoperate with another library. A library must
separate its core concepts cleanly so that they can be recombined in novel ways
to produce more powerful and complex algorithms. For example, in PETSc both
multigrid solvers and block solvers exist separately, but they can be combined,
even recursively and hierarchically, to produce optimal solvers for complex, mul-
tiphysics problems (Brown et al. 2012). The parallel structured grid abstraction,
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DMDA, has been reused as the infrastructure underlying both parallel finite
volume methods in PyCLAW (Ketcheson et al. 2012; Mandli, Ketcheson, et al.
2012) and parallel isogeometric analysis in PetIGA (Nathan Collier, Lisandro
Dalcin, and V. M. Calo 2013; N. Collier, L. Dalcin, and V. Calo 2014).

A library is a bundle of code presenting a uniform interface to the user.
Larger libraries, such as PETSc, present many layers of interfaces, often hierar-
chically, and use their own interface internally when refering to other parts of
the library. In order to make the library consistent across architectures, envi-
ronments, and builds, it should have a consistent Application Binary Interface
(ABI) across different builds, for example debugging and optimized.

Bill Gropp gives a thoughtful list of mistakes to avoid when designing a
library (W. D. Gropp 1999):

e Namespace pollution and monolithic library structure

Printing error messages or exiting
e Requiring interactive input or main ()

e Requiring running on all processes

Lack of portability, testing, documentation, examples

e Ignorance of standards
A short timeline of early numerical libraries is given below:

71 Handbook for Automatic Computation: Linear Algebra, J. H. Wilkinson
and C. Reinch

73 EISPACK, Brian Smith et.al.
79 BLAS, Lawson, Hanson, Kincaid and Krogh
90 LAPACK, many contributors

91 PETSc, Gropp and Smith

All of these packages had their genesis in the Mathematics and Computer Sci-
ence Division (MCS) (Yood 2005) of Argonne National Laboratory.

1.1.2 Knowledge and Creativity

The purpose of computing is insight, not numbers.

— Richard Hamming, Numerical Methods for Scientists and Engineers

Controlling complexity is the essence of computer programming.

— Brian Kernighan

Factual recall and canned examples are not as impressive or important as
they once were. Richard Feynman could get an invitation to the Manhattan


http://www.amazon.com/Handbook-Automatic-Computation-Vol-Mathematischen/dp/0387054146
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.mcs.anl.gov/petsc/
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Project largely on the strength of his uncanny ability to calculate mentally, but
today Wolfram Alpha can fill that role. The ability to make new connections,
to draw together disparate sources of information and integrate them, and to
propose a new synthesis are more valuable skills today.

In this course, we will rely on internet resources to provide much of the
factual background and tutorial examples. However, we have not obviated the
need for memorization. It is still quite important to hold a firm mental grasp
on collections of information in order to make new connections, but initially
locating the information, supplementing it, and refreshing yourself have become
much easier with the advent of large, decentralized information storage and
efficient search.

We are concerned with Why rather than How, which has been satisfactorily
explained in the Numerical Analysis course. In his book Code, Lawrence Lessig
demonstrates the parallels between programming and constitutional law. Both
establish ground rules within which a system works. When a court decides
a question of constitutional law, they look for an underlying principle which
controls the decision. This is exactly the model which we use to compress our
understanding of a multitude of situations with similar characteristics, as well
as make predictions about new situations. In this course, I want to give you the
tools to answer questions such as:

e Which numerical method should I use, and why?
e Is this method accurate for this problem?
e Can my method be made more efficient on this hardware? More scalable?

e Will my method work on this related problem? Will it perform as well?

Can I write my code such that I can experiment with a range of methods?

Can I experiment with a range of models?

1.2 Version Control

A mistake most beginning git users make is thinking git is a complete revision control
system; it is not. Git, plus an organized mailing list that people actually respond to
action items on, plus a rigid set of stylized bookkeeping done by each developer, plus a
tyrannical manager of the entire software development process is a complete revision
control system.

— Barry Smith, PETSc Mailing List

The essence of this class is not to compute things, but rather to learn how
to choose the computational method. This class will teach you how to make
informed decisions. This is a skill you will also need when it comes time to set a
research agenda, choose productive collaborators, and pick tools which minimize
work and maximize scientific output. The aim of this lecture is not to show you
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how to use Git. There are many excellent web resources for that purpose. This
lecture will convince you that Git is the right tool for computational research,
among many other things.

1.2.1 Why use Version Control?

Version control is a representation of a groupoid (Wikipedia 2015). The elements
of the groupoid are the things being versioned, such as source files, and the group
operation (which is a partial function), are the changes or diffs that map one
element to another, such as a textual change to a source file.

A version control system (VCS) allows the user to recall any specific version,
which can be thought of as a vertex in a change graph, whose edges represent
diffs. We can restore the previous state of a file or set of files, compare changes
over time, see who last modified something that might be causing a problem,
or trace a set of changes marked for a specific purpose (a branch). It greatly
improves the robustness of our storage, since we can recover from accidental
changes or deletions even long after the fact, but it can also improve the robust-
ness of our analyses since we can restore the exact state of any computation we
performed. In addition, this is all possible with very little overhead.

1.2.2 Why use Distributed Version Control?

The original VCSes used a central server to allow communication among many
developers. Each developer in turn would be allowed to modify the master copy.
This model has severe problems with availability, reliability, and scalability.
Using a distributed VCS, such as Git, Mercurial or Darcs, clients do not check
out the latest snapshot of the files, but rather fully independent copies of the
repository which communicate among themselves by exchanging sets of changes
(the groupoid operation). This removes the server as a single point of failure,
since each repository contains all the history data, and as a bottleneck for
query and store operations, since there is not central repository through which
all communication must flow. Moreover, the repository is fully functional in
isolation, such as on an airplane.

In a distributed VCS, each repository is a fully autonomous participant, and
thus you can assemble much more complex arrangements among them than the
simple star graph of centralized systems. For example, we can create hierarchical
workflows which successive migrate changes up the chain as testing is completed,
or more general graphs which allow staging areas to combine changes from
different developers before merging to the main development line.

1.2.3 Why use Git?

Choosing among VCSes has much in common with choosing among numerical
algorithms for a given problem. The accuracy guarantees for VCSes are largely
the same, as often happens with algorithms, and thus we are led to also consider
its performance, flexibility, and extensibility. Git is quite fast compared to other


https://docs.google.com/drawings/d/1kMHa7O6FB5iiJG5QPTWqlMne1xv17A6jOXXyQ_74kaE/edit?usp=sharing
https://git.wiki.kernel.org/index.php/GitBenchmarks

14 CHAPTER 1. PROGRAMMING BASICS

VCSes, as well as being scalable to large projects with many contributors, such
as the Linux kernel. It has good integration with other tools, such as Emacs
and web browsers, and there is a very active tool developer community based
on the Git model.

An area where the flexibility of Git really pays off is developer collaboration.
The lightweight branching model in Git makes it easy to start a new line of
development, incorporate changes from another branch, and manage a complex
library workflow. Moreover, once a branch is deleted, it leaves no permanent
trace so that history can be cleanly maintained.

1.2.4 How do I learn Git?

One virtue of Git is that is has outstanding, freely available documentation.
A comprehensive manual, complete with tutorial, exists online at http://git-
scm.com/documentation. In addition, the difficult subject of branching and
merging is covered by an interactive, graphical web application which is really
fantasic and easy to use. There is even a brief history of Git.

I will assign a few simple exercises to start you off with Git, however the
best way to learn anything is to do something truly useful with it. I recommend
picking a smaller, but important and fun task to manage with Git. For exam-
ple, writing a paper, organizing your personal library, or keeping track of your
homework assignments in this class. The online tutorials and documentation
can provide all the technical help necessary to get such an effort off the ground.

1.2.5 How do I submit a Pull Request?

When many developers are collaborating on a project, especially when they are
geographically distributed, it becomes more difficult to coordinate the work,
and you need new, higher level organizational mechanisms. A pull request is a
way both to alert other developers that a particular branch should be merged
into the main development line, and to discuss/amend that branch. There are
good introductions to pull requests on both Bitbucket and Github.

However, the shortcomings of the Git interface are apparent when dealing
with pull requests. Git itself provides no facility for managing or enforcing policy
decisions, such as which branches are appropriate for merging what kinds of
changes. These policies are now merely documented, such as the PETSc policy
for integrating pull requests. This relies in turn on the organization of branches
in PETSc shown in Fig. 1.1.

1.2.6 Why use a multi-branch workflow?

The integration workflow known as gitworkflows is a multi-branch organization
developed to accomodate incoming patches from many distributed contributors.
It is nicely explained on the gitworkflows(7) manpage, although the explanation
is couched in the language of a patch-based system rather than a pull-request
system. The maintainer gets a patch series on the mailing list and pipes the


https://docs.google.com/drawings/d/1kMHa7O6FB5iiJG5QPTWqlMne1xv17A6jOXXyQ_74kaE/edit?usp=sharing
http://git-scm.com/documentation
http://git-scm.com/documentation
http://pcottle.github.io/learnGitBranching/
https://www.atlassian.com/git/articles/10-years-of-git
https://www.atlassian.com/git/tutorials/making-a-pull-request/
https://help.github.com/articles/using-pull-requests/
https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-integrating-pull-requests-for-petsc-developersintegrators-only
https://docs.google.com/drawings/d/1kMHa7O6FB5iiJG5QPTWqlMne1xv17A6jOXXyQ_74kaE/edit
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mailbox through ’git am’ to apply that patch series into local branches. The
local branch should start from master for new features, and maint for bug fixes
relevant to the last release. Patches frequently go through several revisions
before being finalized, but in the meantime, the maintainer puts promising-
looking series into named topic branches and merges those into a throw-away
integration branch called pu (proposed updates). Patches there will probably be
reworked before they become permanent history, and pu gets rebuilt frequently
(every day or two). This organization provides an easy way for people to try
out a system with all the intermediate work from other developers. A throw-
away merge into pu lets a developer find out if their work might conflict with
someone else’s work without having to monitor the mailing list. You can see
the maintainer branches from Git at https://github.com/gitster/git/branches.

Only the maint, master, next, and pu branches are in normal repositories. When
a topic branch is thought to be complete (perhaps after being re-rolled or fixed
up in review), it is merged to next where it undergoes testing. If this is successful,
then the topic branch is merged to master, a step often called “graduation”. If
all branches graduate in a release cycle, then

'git log master..next’'

which shows what is in next, but not in master, would show only merge commits
from when the topics were tested.

Mailing list review and integration is an effective workflow for mature
projects in which all participants are competent with their tools. However,
it takes considerable discipline to structure commits as to be easily reviewable
in discrete units and requires using sophisticated email clients. In PETSc, we
follow the same principle of testing in next before graduating to master, but we
do not designate a sole integrator. Instead, we all push our topic branches to
the same repository, which means that running git fetch automatically gets all
current development branches. Pushing a branch to the shared repository with-
out merging it into next offers the opportunity for passive review. PETSc also
accepts pull requests which are merged to named topic branches, and thereafter
look like normal development. A group of core PETSc developers have histori-
cally done all the integration, where this means merging to any of next, master, or
maint, but that circle is expanding. If named topic branches reside on a central
server, as is done for PETSc or https://github.com/gitster /git, then

comm -12 <(git branch -r --no-merged master | sort) <(git branch -r --merged next | sort)

shows the name of all the topic branches that have not yet graduated. This can
be used in combination with the decorated log command below which locates
change sets in next but not in master.

git log --graph --decorate --oneline --topo-order --no-merges master..next

Another popular organization is known as git-flow, which does away with
the integration branches, next and pu, keeping just a deveiop branch (like master
above) and master (like maint above). However, this means that new features do
not interact before they are merged to develop. Instead of having topic branches
tested together in next, an integrator has to be make the difficult decision of


https://github.com/gitster/git/branches
https://github.com/gitster/git
http://nvie.com/posts/a-successful-git-branching-model/
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() bugfix branch - usually starts

from maint ---- this git history is discarded at the next release

Figure 1.1: This shows the PETSc development branch organization, together
with the associated workflow.

whether a topic branch that has only been tested in isolation should be merged
into develop, or in the case of bugfixes master. This generally means that a git-
flow develop is less stable than a gitworkflows master, so it’s more common to be
working on a new feature and find bugs that were there when you started. This
is disruptive to development and its unpleasant for advanced users who often
follow the development branch rather than discrete releases. Also any decision
to merge a topic branch comes with the pressure that any bugs introduced in
the merge (possibly through indirect semantic conflicts with other work) will
disrupt developers starting new work between the merge and the time a fix is
provided.

In PETSc, we have chosen to use a maint/master/next model, eliding pu, since
it is simple, produces clean history, and places less burden on the integrator to
never make mistakes. No changes make it t0 master or maint without first being
tested in combination with other new features in next. Since all new development
starts from either maint, in the case of bug fixes, or master for features, bugs in next
only affect the integration process, not the development of new code. Starting
named topic branches from a stable state is important so that the developer
knows that any new bugs have been introduced only in that branch, which
prevents needing to merge from upstream in order to fix bugs introduced prior
to the branch.



1.3. CONFIGURING AND BUILDING 17

1.3 Configuring and Building

Much like the languages themselves, the mechanics of compiling source and
linking executables is dealt with exhaustively online, and many sources are
cited on the webpage. I would like to discuss the reasons behind different build
architectures and how they help us manage the complexity inherent in writing
and maintaining portable code.

1.3.1 What is a build?

The build stage compiles source to object files, stores them somehow (usually
in archives), and links shared libraries and executables. These are mechanical
operations that reduce to applying a construction rule to sets of files. The make
tool is great at this job. However, other parts of make are not as useful, and we
should distinguish the two.

Make uses a single predicate, older than, to decide whether to apply a rule.
This is a disaster. A useful upgrade to make would expand the list of available
predicates, including things like mddsum has changed and flags have changed.
There have been attempts to use make to determine whether a file has changed,
for example by using stamp files. However, it cannot be done without severe
contortions which make it much harder to see what make is doing and maintain
the system. Right now, we can combine make with the ccache utility to minimize
recompiling and relinking.

1.3.2 Why is configure necessary?

The configure program is designed to assemble all information and precondi-
tions necessary for the build stage. This is a far more complicated task, heavily
dependent on the local hardware and software environment. It is also the source
of nearly every build problem. The most crucial aspect of a configure system is
not performance, scalability, or even functionality, it is debuggability. Configu-
ration failure is at least as common as success, due to broken tools, operating
system upgrades, hardware incompatibilities, user error, and a host of other
reasons. Problem diagnosis is the single biggest bottleneck for development and
maintenance time. Unfortunately, current systems are built to optimize the
successful case rather than the unsuccessful. In PETSc, we have developed the
BuildSystem package (BS) to remedy the shortcomings of configuration systems
such as Autoconf, CMake, and SCons.

First, BS provides consistent namespacing for tests and test results. Tests
are encapsulated in modules, which also hold the test results. Thus you get
the normal Python namespacing of results. Anyone familiar with Autoconf will
recall the painful, manual namespacing using text prefixes inside the flat, global
namespace. Also, this consistent hierarchical organization allows external com-
mand lines to be built up in a disciplined fashion, rather than the usual practice
of dumping all flags into global reservoirs such as the incLupe and riss variables.
This encapsulation makes it much easier to see which tests are responsible for


http://www.gnu.org/software/make/
https://ccache.samba.org/
https://www.bitbucket.org/petsc/BuildSystem
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donating offending flags and switches when tests fail, since errors can occur far
away from the initial inclusion of a flag.

1.3.3 Why use PETSc BuildSystem?

PETSc provides a fully functional configure model implemented in Python,
named BuildSystem (BS), which has also been used as the configuration tool for
other open sources packages. As more than a few configuration tools currently
exist, it is instructive to consider why PETSc would choose to create another
from scratch. Below we list features and design considerations which lead us to
prefer BuildSystem to the alternatives.

Namespacing BS wraps collections of related tests in Python modules, which
also hold the test results. Thus results are accessed using normal Python names-
pacing. As rudimentary as this sounds, no namespacing beyond the use of vari-
able name prefixes is present in SCons, CMake, or Autoconf. Instead, a flat
namespace is used, mirroring the situation in C. This tendency appears again
when composing command lines for extenral tools, such as the compiler and
linker. In the traditional configure tools, options are aggregated in a single
bucket variable, such as mvcrupe or ris, whereas in BS you trace the provenance
of a flag before it is added to the command line. CMake also makes the unfor-
tunate decision to force all link options to resolve to full paths, which causes
havoc with compiler-private libraries.

Explicit control flow The BS configure modules mention above, containing
one configure object per module, are organized explicitly into a directed acyclic
graph (DAG). The user indicates dependence, an edge in the dependence graph,
with a single call, requires('path.to.other.test', self), which not only
structures the DAG, but returns the configure object. The caller can then use
this object to access the results of the tests run by the dependency, achieving
test and result encapsulation simply.

Multi-languages tests BS maintains an explicit language stack, so that the
current language can be manipulated by the test environment. A compile or
link can be run using any language, complete with the proper compilers, flags,
libraries, etc with a single call. This kind of automation is crucial for cross-
language tests, which are very thinly supported in current tools. In fact, the
design of these tools inhibits this kind of check. The check_function_exists() call
in Autoconf and CMake looks only for the presence of a particular symbol in a
library, and fails in C+4 and on Windows, whereas the equivalent BS test can
also take a declaration. The try_compilze() test in Autoconf and CMake requires
the entire list of libraries be present in the riss variable, providing no good way
to obtain libraries from other tests in a modular fashion. As another example,
if the user has a dependent library that requires 1ibstac++, but they are working
with a C project, no straightforward method exists to add this dependency.
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Subpackages The most complicated, but perhaps the most useful part of BS
is the support for dependent packages. It provides an object scaffolding for
including a 3rd party package (more than 60 are now available) so that PETSc
downloads, builds, and tests the package for inclusion. The native configure
and build system for the package is used, and special support exists for GNU
and CMake packages. No similar system exists in the other tools, which rely on
static declarations, such as pkg-config OI FindPackage.cmake files, that are not tested
and often become obsolete. They also require that any dependent packages use
the same configuration and build system.

Batch environments Most systems, such as Autoconf and CMake, do not ac-
tually run tests in a batch environment, but rather require a direct specification,
in CMake a “platform file”. This requires a human expert to write and maintain
the platform file. Alternatively, Buildsystem submits a dynamically generated
set of tests to the batch system, enabling automatic cross-configuration and
cross-compilation.

Caching Caching often seems like an attractive option since configuration
can be quite time-consuming, and both Autoconf and CMake enable caching
by default. However, no system has the ability to reliably invalidate the cache
when the environment for the configuration changes. For example, a compiler or
library dependency may be upgraded on the system. Moreover, dependencies
between cached variables are not tracked, so that even if some variables are
correctly updated after an upgrade, others which depend on them may not be.
Moreover, CMake mixes together information which is discovered automatically
with that explicitly provided by the user, which is often not tested.

1.3.4 Dealing with Errors

The most crucial piece of an effective configure system is good error reporting
and recovery. Most of the configuration process involves errors, either in com-
piling, linking, or execution, but it can be extremely difficult to uncover the
ultimate source of an error. For example, the configuration process might have
checked the system BLAS library, and then tried to evaluate a package that
depends on BLAS such as PETSc. It receives a link error and fails complaining
about a problem with PETSc. However, close examination of the link error
shows that BLAS with compiled without position-independent code, e.g. using
the -sprc flag, but PETSc was built using the flag since it was intended for a
shared library. This is sometimes hard to detect because many 32-bit systems
silently proceeed, but most 64-bit systems fail in this case.

When test command lines are built up from options gleaned from many prior
tests, it is imperative that the system keep track of which tests were responible
for a given flag or a given decision in the configure process. This failure to
preserve the chain of reasoning is not unique to configure, but is ubiquitous
in software and hardware interfaces. When your Wifi receiver fails to connect
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to a hub, or your cable modem to the ISP router, you are very often not told
the specific reason, but rather given a generic error message which does not
help distinguish between the many possible failure modes. It is essential for
robust systems that error reports allow the user to track back all the way to
the decision or test which produced a given problem, although it might involve
voluminous logging. Thus the system must either be designed so that it creates
actionable diagnostics when it fails or it must have unfailingly good support so
that human inervention can resolve the problem. The longevity of Autoconf I
think can be explained by the ability of expert users to gain access to enough
information, possibly by adding set -x to scripts and other invasive practices, to
act to resolve problems. This ability has been nearly lost in follow-on systems
such as SCons and CMake.

Concision is also an important attribute, as the cognitive load is usually
larger for larger code bases. The addition of logic to Autoconf and CMake is
often quite cumbersome as they do not employ a modern, higher level language.
For example, the Trilinos/TriBITS package from Sandia National Laboratory
is quite similar to PETSc in the kinds of computations it performs. It contains
175,000 lines of CMakescript used to configure and build the project, whereas
PETSc contains less than 30,000 lines of Python code to handle configuration
and regression testing and one GNU Makefile of 130 lines.

1.3.5 How do I use make simply and effectively?

We would like a rational, scalable paradigm for building a large, collaborative
project. I think this naturally leads to design which centralizes the rules, but
distributes the data. A possible answer to this is the recursive build structure
employed in PETSc before release 3.5, where makefiles in each source direc-
tory are called recursively. Then a developer only modifies the local makefile.
However, the arguments given in Recursive Make Considered Harmful are quite
convincing. In particular, recursive make does not maintain a consistent DAG
so that all dependencies can be checked. PETSc has now moved to a system
which uses the old makefile in each directory to list the source files to be built,
and then a toplevel makefile. For our example we will use a cleaner version
developed for the IBAMR package (Bhalla et al. 2013), using a small 1oca1.mx file
in each subdirectory.

For example, a local makefile lists source files that should be included in the
build

srcs-core.c += $(call thisdir, \

fas.c \

fasfunc.c \

fasgalerkin.c \

)
where core specifies that these objects will be fed into the 1ibcore library, and
the .c suffix indicates the build rules which should be used. The tnisdir function
gives the current directory, so that we get the full path for the source files. For
non-terminal directories, we indicate that the inclusion should recurse into the

subdirectories,
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include $(call incsubdirs, interface impls utils)

After placing 1ocai.mk in each subdirectory which will assemble the source
list, we want to construct the toplevel control.

IBAMR_ARCH := $(if $(IBAMR_ARCH),$(IBAMR_ARCH),build)

all : $(IBAMR_ARCH)/conf/configure.log $(IBAMR_ARCH)/gmakefile
$(MAKE) -C $(IBAMR_ARCH) -f gmakefile
Q@echo "Build,,complete in,$ (IBAMR_ARCH) . Use_make test to test."

$ (IBAMR_ARCH) /conf/configure.log:
./configure.new --IBAMR_ARCH=$(IBAMR_ARCH) --download-muparser \
--download-eigen --download-silo --download-hdf5 --download-samrai \
—-with-mpi-dir=$ (PETSC_DIR)/$ (PETSC_ARCH)

$ (IBAMR_ARCH) /gmakefile: ./config/gmakegen.py
$(MAKE) -C $(IBAMR_ARCH) -f bootstrap.mk gmakefile

test : all
$(MAKE) -C $(IBAMR_ARCH) test

clean :
$(MAKE) -C $(IBAMR_ARCH) clean

.PHONY: all test clean

We notice that two environment variables are used to control the placement of
the build, 1BaMr_pir specifies the root of the sourse tree, and 1Bamr_arcu specifies
the build directory for this configuration. Also, we need two files created by
the configure process, a bootstrap.mk which enables us to access the configure
information,

gmakefile: ../config/gmakegen.py
$(PYTHON) ../config/gmakegen.py

include conf/ibamrvariables

and the $PETSC_ARCH/conf/ibamrvariables file which holds the specialized make vari-
ables output by the configure process. The gnakegen.py generates a makefile,
gmakefile, Which just has simple toplevel information, and then includes the con-
trol file. The current IBAMR version is shown below, which handles package
dependecies. This information could, of course, be put into the ibamrvariabies file,
but this divison is sometimes cleaner.

PYTHON = ${HOME}/MacSoftware/bin/python2.7

PETSC_DIR = /PETSc3/petsc/petsc-pylith

PETSC_ARCH = arch-next-ibamr-debug

include ${PETSC_DIR}/conf/variables

SAMRAT_DIR = /PETSc3/fluids/IBAMR

BOOST_DIR = /PETSc3/fluids/IBAMR/IBAMR/ibtk/contrib/boost

EIGEN_DIR = /PETSc3/fluids/IBAMR/IBAMR/ibtk/contrib/eigen-3.2.1

MUPARSER_DIR = /PETSc3/fluids/IBAMR/IBAMR/ibtk/contrib/muparser_v2_2_3

IBAMR_DIR = /PETSc3/fluids/IBAMR/IBAMR

IBAMR_ARCH = arch-next-ibamr-debug

IBAMR_INCLUDES = -I${IBAMR_DIR}/${IBAMR_ARCH}/include -I${IBAMR_DIR}/include \
-I${IBAMR_DIR}/ibtk/include -I${SAMRAI_DIR}/include -I${BOOST_DIR} \



22 CHAPTER 1. PROGRAMMING BASICS

-I${EIGEN_DIR} -I${MUPARSER_DIR}/include
CFLAGS += ${IBAMR_INCLUDES} -DNDIM=2
include ${IBAMR_DIR}/${IBAMR_ARCH}/conf/ibamrvariables

include ${IBAMR_DIR}/base.mk

Our last requirement is the base.mx file which contains toplevel control infor-
mation. Since it is somewhat long, we will explain it in stages. First we start by
configuring make itself, setting up our directory structure, and working around
a Cygwin bug when debugging the build process.

.SECONDEXPANSION: # to expand $$(@D)/.DIR
.SUFFIXES: # Clear .SUFFIXES because we don't use implicit Tules
.DELETE_ON_ERROR: # Delete likely-corrupt target file if rule fails

OBJDIR $(abspath obj)
LIBDIR := $(abspath 1lib)
BINDIR 7= bin

INCDIR ?= include

##### Workarounds for Broken Architectures #####
# old cygwin versions
ifeq ($(PETSC_CYGWIN_BROKEN_PIPE),1)
ifeq ($(shell basename $(AR)),ar)
vV 7=1
endif
endif
ifeq ($(WN),)
quiet_HELP := "Use/\"$(MAKE)_V=1\"_to_ see the verbose compile lines.\n"
quiet = Q@printf $(quiet_HELP)$(eval quiet_HELP:=)"_ %10s_ %s\n" "$1$2" "$@"; $($1)
else ifeq ($(V),0) # Same, but do not print any help
quiet = @printf ", %10s.%s\n" "$1$2" "$@"; $($1)

else # Show the full command line
quiet = $($1)
endif

Next we setup the library versioning by extracting the version number from a
header written by the configure process (or possibly consrtucted by hand).

####E Verstoning #####

IBAMR_VERSION_MAJOR := $(shell awk '/\#define IBAMR_VERSION_MAJOR/{print $$3;}' \
./include/ibamrversion.h)

IBAMR_VERSION_MINOR := $(shell awk '/\#define IBAMR_VERSION_MINOR/{print $83;}' \
./include/ibamrversion.h)

IBAMR_VERSION_SUBMINOR := $(shell awk '/\#define IBAMR_VERSION_SUBMINOR/{print $$3;}' \
./include/ibamrversion.h)

IBAMR_VERSION_RELEASE := $(shell awk '/\#define IBAMR_VERSION_RELEASE/{print $$3;}' \
./include/ibamrversion.h)

ifeq ($(IBAMR_VERSION_RELEASE),O0)
IBAMR_VERSION_MINOR := O0$(IBAMR_VERSION_MINOR)

endif

libibamr_abi_version := $(IBAMR_VERSION_MAJOR).$(IBAMR_VERSION_MINOR)

libibamr_lib_version := $(libibamr_abi_version).$(IBAMR_VERSION_SUBMINOR)

We then define some functions for name manipulation. Note that the thisdir
and incsubdirs functions we saw before are defined here.

####E Functions #####

# Function to nmame shared library $(call SONAME_FUNCTION,libfoo,abiversion)
SONAME_FUNCTION ?= $(1).$(SL_LINKER_SUFFIX).$(2)

soname_function = $(call SONAME_FUNCTION,$(1),$(libibamr_abi_version))
libname_function = $(call SONAME_FUNCTION,$(1),$(libibamr_lib_version))

# Function to link shared library

# $(call SL_LINKER_FUNCTION,libfoo,abiversion, libversion)

SL_LINKER_FUNCTION ?= -shared -Wl,-soname,$(call SONAME_FUNCTION,$(notdir $(1)),$(2))
basename_all = $(basename $(basename $(basename $(basename $(1)))))
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sl_linker_args = $(call SL_LINKER_FUNCTION,$(call basename_all,$@),\
$(libibamr_abi_version),$(libibamr_lib_version))

# Function to prefiz directory that contains most recently-parsed

# makefile (current) if that directory is not ./

thisdir = $(addprefix $(dir $(lastword $(MAKEFILE_LIST))),$(1))

# Function to include makefile from subdirectories

incsubdirs = $(addsuffix /local.mk,$(call thisdir,$(1)))

# Function to change source filenames to object filenames

srctoobj = $(patsubst $(SRCDIR)/%.c,$(0BIDIR)/%.0,$(filter-out $(0BJIDIR)/%,$(1)))

We must name the libraries to be built, distinguishing between static and shared
builds. Here we will build a single library, 1ibibanr.

#H##AA Libraries ####H#

libibamr_shared := $(LIBDIR)/libibamr.$(SL_LINKER_SUFFIX)

libibamr_soname := $(call soname_function,$(LIBDIR)/1libibamr)

libibamr_libname := $(call libname_function,$(LIBDIR)/libibamr)

libibamr_static := $(LIBDIR)/libibamr.$(AR_LIB_SUFFIX)

libibamr := $(if $(filter-out no,$(BUILDSHAREDLIB)),$(libibamr_shared) \
$(libibamr_soname) ,$(libibamr_static))

Then for each package, or unit in the library, we must define the source list.
Here we have two packages, core and ibtk. We are defining them for C++4-, but
we could use C, Fortran, or any other language extension.

##### Must define these, or thisdir does not work ######
srcs-core.cpp :=
srcs-ibtk.cpp :=

Finally, we are ready to define the source lists by recursively including all the
local.mk files.

###p# Inclustons #A##H
# Recursively include files for all targets, need to be defined before source rules
include $(IBAMR_DIR)/local.mk

After all the setup, we can define the compilation rules using make variables
from cont/ibamrvariables determined by the congiure process.

##### Rules #####
all : $(libibamr)

# make print VAR=the-variable
print:
@echo $($(VAR))

IBAMR_COMPILE.c = $(call quiet,$(cc_name)) -c $(PCC_FLAGS) $(CFLAGS) $(CCPPFLAGS) \
$ (C_DEPFLAGS)
IBAMR_COMPILE.cxx = $(call quiet,CXX) -c $(CXX_FLAGS) $(CFLAGS) $(CCPPFLAGS) \
$ (CXX_DEPFLAGS)
IBAMR_COMPILE.cu = $(call quiet,CUDAC) -c $(CUDAC_FLAGS) \
--compiler-options="$(PCC_FLAGS) $ (CXXFLAGS) $ (CCPPFLAGS)"
IBAMR_GENDEPS.cu = $(call quiet,CUDAC, .dep) --generate-dependencies $(CUDAC_FLAGS) \
--compiler-options="$(PCC_FLAGS) $ (CXXFLAGS) $ (CCPPFLAGS)"
IBAMR_COMPILE.F = $(call quiet,FC) -c $(FC_FLAGS) $(FFLAGS) $(FCPPFLAGS) \
$ (FC_DEPFLAGS)

Now we define a set a packages, supported languages, and the complete object
list for the library. Then the library link rule is straightforward, as is the
archiving rule (putting object files into a .a file), however there is some fixup to
support the Cygwin OS.

pkgs := ibtk core
langs := c cu cpp F
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concatlang = $(foreach lang, $(langs), $(srcs-$(1).$(lang):%.$(lang)=$(0BIDIR)/%.0))
srcs.o := $(foreach pkg, $(pkgs), $(call concatlang,$(pkg)))

$(libibamr_libname) : $(srcs.o) | $$(@D)/.DIR

$(call quiet,CLINKER) $(sl_linker_args) -o $@ $~ $(PETSC_EXTERNAL_LIB_BASIC)
ifneq ($(DSYMUTIL),true)

$(call quiet,DSYMUTIL) $@
endif

$(libibamr_static) : obj := $(srcs.o)

define ARCHIVE_RECIPE_WIN32FE_LIB
@$(RM) $@ $0.args
Q@cygpath -w $~ > $@.args
$(call quiet,AR) $(AR_FLAGS) $Q 0$0Q.args
Q@$(RM) $@.args
endef

define ARCHIVE_RECIPE_DEFAULT
e$(RM) $@
$(call quiet,AR) $(AR_FLAGS) $e $~
$(call quiet,RANLIB) $@

endef

%.$(AR_LIB_SUFFIX) : $$(obj) | $$(eD)/.DIR
$(if $(findstring win32fe 1lib,$(AR)),$(ARCHIVE_RECIPE_WIN32FE_LIB),\
$ (ARCHIVE_RECIPE_DEFAULT))

We can now declare the dependence relations, including a switch to allow relink-
ing everything. There is a significant optimization at the end for dependencies
arising from =.q files. These are produces by the compiler to automatically track
dependecies arising in the source code.

# The package libraries technically depend on each other (not just in an order-only
# way), but only ABI changes like new or removed symbols requires relinking the
# dependent libraries. ABI should only occur when a header is changed, which would
# trigger recompilation and relinking anyway.
# RELINK=1 causes dependent libraries to be relinked anyway.
ifeq ($(RELINK),1)
libdep_true = $$(libdep)
libdep_order =
else
libdep_true =
libdep_order = $$(libdep)
endif
$(libpetscpkgs_libname) : $(libdep_true) | $(libdep_order) $$(@D)/.DIR
$(call quiet,CLINKER) $(sl_linker_args) -o $@ $~ $(PETSC_EXTERNAL_LIB_BASIC)
ifneq ($(DSYMUTIL),true)
$(call quiet,DSYMUTIL) $@
endif

%.$(SL_LINKER_SUFFIX) : $(call libname_function,%)
Qln -sf $(notdir $<) $@

$(call soname_function,%) : $(call libname_function,%)
@ln -sf $(notdir $<) $@

$(0BJDIR)/%.0 : %.c | $$(eD)/.DIR
$(IBAMR_COMPILE.c) $(abspath $<) -o $@

$(0BJDIR)/%.0 : %.cpp | $$(eD)/.DIR
$ (IBAMR_COMPILE.cxx) $(abspath $<) -o $@

$(0BJDIR) /%.0 : %.cu | $$(eD)/.DIR
# Compile first so that ¢f there is an error, it comes from a mormal compile
$(IBAMR_COMPILE.cu) $(abspath $<) -o $@
# Generate the dependencies for later
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@$ (IBAMR_GENDEPS.cu) $(abspath $<) -o $(Q:%.0=%.d)

$(0BJDIR)/%.0 : %.F | $$(eD)/.DIR
ifeq ($(FC_MODULE_OUTPUT_FLAG),)
cd $(MODDIR) && $(FC) -c $(FC_FLAGS) $(FFLAGS) $(FCPPFLAGS) $(FC_DEPFLAGS) \
$(abspath $<) -o $(abspath $@)
else
$ (IBAMR_COMPILE.F) $(abspath $<) -o $@ $(FC_MODULE_OUTPUT_FLAG)$(MODDIR)
endif

%/ .DIR :
@mkdir -p $(@D)
@touch $@

.PRECIOUS: %/.DIR

allobj.d := $(srcs.o:%.0=%.d)

# Tell make that allobj.d are all up to date. Without this, the include
# below has quadratic complexity, taking more than one second for a

# do-nothing build of PETSc (much worse for larger projects)
$(allobj.d) : ;

-include $(allobj.d)

GNU make is installed on virtually every UNIX system in existence. More-
over, compatible make clones exist on most other systems as well. This unbiq-
uity, and its efficiency, make it a very attractive option. However, the fact that
it recognizes only a single predicate, “older than”, is a significant drawback.
In order to remedy this, most practitioners replace the compiler, say cc, with
ccache, as ccache cc, by providing that combination to configure. The ccache
program hashes the entire command string and file, so that rebuilds are only
performed when an actual change is made.

1.3.6 What about pkg-config?

An alternative to using the PETSc make files for variable definition is the pkg-
config program. PETSc writes out a pkg-config file, which can then be read by
the program, which gives the users access to the variables. Here is a sample
makefile using pkg-config to access the variables

PETSc.pc := $(PETSC_DIR)/$(PETSC_ARCH)/1lib/pkgconfig/PETSc.pc

CC := $(shell pkg-config --variable=ccompiler $(PETSc.pc))

CXX := $(shell pkg-config --variable=cxxcompiler $(PETSc.pc))

FC := $(shell pkg-config --variable=fcompiler $(PETSc.pc))

CFLAGS := $(shell pkg-config --variable=cflags_extra $(PETSc.pc)) $(shell pkg-config --cflags-only-other $(PETSc.pc))

CPPFLAGS := $(shell pkg-config --cflags-only-I $(PETSc.pc))

LDFLAGS := $(shell pkg-config --libs-only-L --libs-only-other $(PETSc.pc))

LDFLAGS += $(patsubst -LJ),, $(shell pkg-config --variable=1ldflag_rpath $(PETSc.pc))%, $(shell pkg-config --libs-only-L $(PETSc.pc)))
LDLIBS := $(shell pkg-config --libs-only-1 $(PETSc.pc)) -1lm

print:
@echo CC=$(CC)
Qecho CFLAGS=$(CFLAGS)
Qecho CPPFLAGS=$(CPPFLAGS)
Q@echo LDFLAGS=$(LDFLAGS)
Qecho LDLIBS=$(LDLIBS)

The only minor sophistication here is the use of patsubst to replace - with the
rpath flags for shared libraries.
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1.3.7 How do I debug?

All debugging comes down to a search for problematic code, configuration, or
input. Effective debugging cuts down on the possible search space as much as
possible. Categorizing bugs can help with this, as can employing effective tools.

The most common type of bug in C is probably the memory overwrite, often
generating an SEGV or SIGILL signal. If the error is proximate to the ultimate
cause, then running in the debugger is the best way to deal with this situation.
For example, suppose that a NULL pointer is passed into your routine instead
of a valid pointer. A write to this location (0x0) causes a SEGV which the
debugger will catch and take you directly to the offending line. Using a stack
trace, you can easily locate the origin of the NULL pointer. The debugger will
also allow you to print the value of local variables, step through the code, and
call arbitrary functions.

However, it is often the case that errors are far removed from their ultimate
cause. For example, suppose that a memory overwrite occurs not into space
owned by the kernel, such as NULL, but into memory owned by the application
itself. This could result in invalid values, such as array indices, which then
cause a subsequent SEGV. Finding the original overwrite which corrupted the
index using the debugger can be quite challenging. For this type of problem,
and many others, the best tool is valgrind. It will flag any out of bounds read
or write, as well as other common errors such as a conditional dependent on an
uninitialized value.

Valgrind has an extensible module interface, allowing it to encompass many
different tools:

Tool Use

Memcheck  Check for memory overwrite and illegal use
Callgrind Generate call graphs

Cachegrind Monitor cache usage

Helgrind Check for thread race conditions

Massif Monitor memory usage

The most commonly used tool for debugging, Memcheck, will catch illegal reads
and writes to memory, uninitialized values, illegal frees, overlapping copies, and
memory leaks. We can try a simple experiment

# Get the tutorial repository

git clone http://bitbucket.org/knepley/simplepetsctutorial.git

git checkout b354cfc

make

# Memcheck is the default tool

valgrind --trace-children=yes --suppressions=bin/simple.supp ./bin/ex5 -use_coords

# Try it for multiple processes

valgrind --trace-children=yes --suppressions=bin/simple.supp \
$PETSC_DIR/$PETSC_ARCH/bin/mpiexec -n 2 ./bin/ex5 -use_coords

which generates the following error,

==13697== Invalid read of size 8

==13697== at 0x100005263: MyInitialGuess(AppCtx*, _p_Vec*) (myStuff.c:45)
==13697== by 0x100004447: main (ex5.c:202)

==13697== Address 0x103dc6fa0 is O bytes after a block of size 48 alloc'd
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==13697==,,,,at,0x10001ED75: malloc,(vg_replace_malloc.c:236)
==13697==_,Luby0x1005CABC4: PetscMallocAlign(unsigned long,...),(mal.c:37)
==13697==_,,ubyL0x1009CCO7D: VecGetArray2d (_p_Vec*,...)y(rvector.c:1739)
==13697==_,LuubyL0x10030D980 : ,.DMDAVecGetArray (_p_DM#*, ,_p_Vec*, voidx) (dagetarray.c:72)
==13697==_,,LubyL0x100005102: MyInitialGuess (AppCtx*, _p_Vec*) (myStuff.c:38)
==13697==_,,LubyL0x100004447 : main (ex5.c:202)

==13697==

==13697==_Invalid read, of size 8
==13697==_,,,,at,0x100005273: MyInitialGuess (AppCtx*, _p_Vec*) (myStuff.c:45)
==13697==_,,LubyL0x100004447 :  main (ex5.c:202)
==13697==_Address 0x18_is not stack'd, malloc'd or (recently) free'd

==13697==

==13698== Use of uninitialised value of size 8

==13698== at 0x10000529D: MyInitialGuess(AppCtx*, _p_Vec*) (myStuff.c:45)
==13698== by 0x100004447: main (ex5.c:202)

==13698==

==13698== Invalid read of size 8

==13698== at 0x10000529D: MyInitialGuess(AppCtx*, _p_Vec*) (myStuff.c:45)
==13698== by 0x100004447: main (ex5.c:202)

==13698== Address 0x6f5c300000018 is not stack'd, malloc'd or (recently) free'd

due to indexing outside of an array. We are trying to retrieve the coordinates
for a ghost point rather than an owned point, and thus we have to use properly
ghosted coordinates.

git checkout 1a1c683

make

valgrind --trace-children=yes --suppressions=bin/simple.supp \

$PETSC_DIR/$PETSC_ARCH/bin/mpiexec -n 2 ./bin/ex5 -use_coords

Note that the --trace-children=yes flag is used to follow all child processes. This
is very useful when running with MPI, as it typically forks before running the
executable. In order to make the output more readable, a suppressions file can
be used to remove output for errors or warnings which we do not wish to see.
This file can be generated automatically by piping the output of the following
command.

valgrind --trace-children=yes --gen-suppressions=all ./bin/ex5 -ksp_rtol 1.0e-9

The Massif tool for memory logging is similarly easy to use

# Memcheck is the default tool
valgrind --tool=massif --trace-children=yes --massif-out-file=ex5.massif \
./bin/exb5 -da_grid_x 100 -da_grid_y 100 -ksp_rtol 1.0e-9
# Turn on stack profiling
valgrind --tool=massif --trace-children=yes --massif-out-file=ex5.massif --stacks=yes \
./bin/ex5 -da_grid_x 100 -da_grid_y 100 -ksp_rtol 1.0e-9
# Visualize output
ms_print --threshold=10.0 ex5.massif
At a much coarser level, PETSc will provide a list of all unfreed memory, along
with stack traces for context, with the option -mal1oc_dump.

In addition to debugging for correctness, we will also debug performance
problems. The massif tool, incorporated into valgrind, can generate a view
of the heap over time, allowing the user to pinpoint large allocations or un-
freed memory. The output of callgrind can be rendered graphically using the

gprof2dot tool

gprof2dot.py -f callgrind callgrind.out.x | dot -Tsvg -o output.svg

There are tools dedicated to performance analysis, such as callgrind and
cachegrind inside valgrind and many more are suggested here. However these


http://valgrind.org/docs/manual/ms-manual.html
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http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cg-manual.html
http://stackoverflow.com/questions/375913/what-can-i-use-to-profile-c-code-in-linux
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tools tend to provide very low level data, and obscure the larger performance
patterns in the code. These low level tools should be complemented with a high
level, coarse grained timing of functional units, incorporating figures of merit
for parallelism such as message sizes and number of reductions. PETSc provides
a logging suite for this purpose which allows custom events, user specified event
aggregation, and counter for parallel operations (Balay, Abhyankar, Adams,
Benson, Brown, Brune, Buschelman, E. Constantinescu, et al. 2022).

Most debugging depends on taking a discplined, step-by-step approach to
tracking down errors. Ruthlessly simplify the problem being run, as well as the
environment, and remove extraneous detail in the computation. As a simple
checklist for debugging, always

e Run in serial,
e Reduce the problem size,
e Run with valgrind, and

e Run the code with a manufactured solution so that you can calculate an
error.

Simple Example We will illustrate the use of these debugging tools with
a simple example based upon sues exs. We first clone the repository for the
example,

git clone https://bitbucket.org/knepley/simplepetscexample.git example

cd example

and then skip forward after a user modification which introduces a bug

git checkout 857854f

We can examine the changeset

> git log -1

commit 857854fffca425a1c2673a5a0b4c229a4a12e3fb
Author: Matthew G. Knepley <knepley@gmail.com>
Date: Thu Aug 13 05:07:20 2015 -0500

Added MyInitialGuess() which uses coordinates
- Added logging
- Moved declarations to a header

which gives us an idea where the bug may lie.
Now we build the executable, after checking that persc_pir is properly defined
in our environment,

make

and we can run the example using the new code,

> ./bin/ex5 -snes_monitor -use_coords

SNES Function norm 9.875766933286e-01
SNES Function norm 7.968273013801e-01
SNES Function norm 2.649139987149e-01
SNES Function norm 1.130203891627e-01
SNES Function norm 9.649349335803e-03
SNES Function norm 6.634259652040e-05
SNES Function norm 4.669629893639e-09

O WN = O
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with no errors. However, when we run in parallel

> mpiexec -n 2 ./bin/ex5 -snes_monitor -use_coords
[0OJPETSC ERROR:
[0]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
[0JPETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger

[O]JPETSC ERROR: or see http://www.mcs.anl.gov/petsc/documentation/faq.html#valgrind

[0]PETSC ERROR: or try http://valgrind.org on GNU/linux and Apple Mac 0S X to find memory corruption errors
[O]JPETSC ERROR: likely location of problem given in stack below

[1]PETSC ERROR:
[1]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
[11PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger

[1]PETSC ERROR: or see http://www.mcs.anl.gov/petsc/documentation/faq.html#valgrind

[11PETSC ERROR: or try http://valgrind.org on GNU/linux and Apple Mac 0S X to find memory corruption errors
[1JPETSC ERROR: likely location of problem given in stack below

[1]PETSC ERROR: Stack Frames
[1]PETSC ERROR: Note: The EXACT line numbers in the stack are not available,

[1]1PETSC ERROR: INSTEAD the line number of the start of the function

[1]PETSC ERROR: is given.

[1JPETSC ERROR: [1] MyInitialGuess line 24 /PETSc3/classes/CAAM519/simplepetscexample/src/myStuff.c
[1]1PETSC ERROR: Error Message
[1]PETSC ERROR: Signal received

[1]1PETSC ERROR: See http://www.mcs.anl.gov/petsc/documentation/faq.html for trouble shooting.

[1]PETSC ERROR: Petsc Development GIT revision: v3.7.2-669-gecdcb5d GIT Date: 2016-06-16 08:48:26 -0500
[1JPETSC ERROR: ./bin/ex5 on a arch-c-exodus-master named localhost by knepley Thu Aug 18 11:48:08 2016
[1]1PETSC ERROR: Configure options --with-shared-libraries

[11PETSC ERROR: #1 User provided function() line 0 in unknown file

application called MPI_Abort(MPI_COMM_WORLD, 59) - process 1

[cli_1]: aborting job:

we encounter an SEGYV signal, probably arising from a memory overwrite. Here
we are somewhat lucky that our memory overwrite has occurred in a protected
memory region. We could have written into another part of memroy owned by
the process and silently carried on with wrong data.

With a segfault (SEGV), we can often use a debugger, such as gab, to track
down the cause. PETSc can automatically spawn a debugger in a different
window and attach it to the running process. When running on the Mac I use
11db,

mpiexec -n 2 ./bin/ex5 -snes_monitor -use_coords -start_in_debugger 11ldb

which spawns two X-windows running the debugger, one for each process. If we
continue in both windows, we hit the offending line

(11db) cont

Process 67390 resuming

Process 67390 stopped

* thread #1: tid = Oxlc17b8f, 020000000108d0efb6c ex5 MyInitialGuess (da=0x00007ff98589b260,
user=0x00007£ff56ef9760, X=0x00007ff9850b0a60) + 1884
at myStuff.c:45, queue = 'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0xf0e0d0Oel)
42 /* boundary conditions are all zero Dirichlet */
43 x[§1[i] = 0.0;
44 } else {

-> 45 x[j1[i] = templ*sqrt(2.0%PetscMin(coords[j][i+1].x + coords[j][i-1].x, coords[j+1][i].y + coords[j-1]1[il.y));
46 }
47 '}
48 }

Now it seems likely that there is a problem with the indexing into the coords
array, and indeed this is the problem. We can see the fix by looking at the
following changeset

> git log -1 bc2dc5b -u
commit bc2dc5b2c576306274£8e722190042e899e0a7b3
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Author: Matthew G. Knepley <knepley@gmail.com>
Date: Thu Aug 13 05:08:45 2015 -0500

Fixed memory error after debugging

diff --git a/src/myStuff.c b/src/myStuff.c

index 3995123..123c670 100644

--- a/src/myStuff.c

+++ b/src/myStuff.c

@@ -32,7 +32,7 Q@ PetscErrorCode MyInitialGuess(DM da, AppCtx *user, Vec X) {
templ = lambda/(lambda + 1.0);

ierr = DMGetCoordinateDM(da,&cda) ; CHKERRQ(ierr);
- ierr = DMGetCoordinates(da,&c) ;CHKERRQ(ierr);
+ ierr = DMGetCoordinatesLocal(da,&c) ;CHKERRQ(ierr);
ierr = DMDAGetCorners(da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL) ; CHKERRQ (ierr)
ierr = DMDAVecGetArray(da,X,&x) ; CHKERRQ(ierr);
ierr = DMDAVecGetArray(cda,c,&coords) ; CHKERRQ(ierr);

which replaces the global vector from DMGetCoordinates () with the local vector
from DMGetCoordinatesLocal () which contains ghost values. Now the indices
i+ 1 and j £ 1 do not fall outside the local patch.

We could also have found this problem using vaigrind. We must be careful
to use the trace-children option since MPI spawns additional processes after the
initial fork. Running

valgrind --trace-children=yes mpiexec -n 2 ./bin/ex5 -snes_monitor -use_coords

does work but there is a lot of extraneous output. We can filter this using a
suppressions file,

> git checkout 6583927

> valgrind --trace-children=yes --suppressions=./binsimple/supp mpiexec -n 2 ./bin/ex5 -snes_monitor -use_coords
==68238== Memcheck, a memory error detector

==68238== Copyright (C) 2002-2013, and GNU GPL'd, by Julian, Seward et al.
68238==_Using, Valgrind-3.10.1_and, LibVEX; rerun with -h for ,copyright info
68238==_,Command:,./bin/ex5-snes_monitor -use_coords

68238==

68238==_,Invalid read of ;size 8

68238==_, ,,,,at,0x100008F61: MyInitialGuess,(myStuff.c:45)
68238==_,,,,by,0x100001FB5: jmain (ex5.c:148)

==68238== ,Address,0x10013£9£0,,is, 0 bytes after a block of size 48 alloc'd
==68238== at 0x47E1l: malloc (vg_replace_malloc.c:300)

68238== by 0xFOB31: PetscMallocAlign (mal.c:34)

==68238== by 0x3D19F0: VecGetArray2d (rvector.c:2235)

68238== by O0xCF715C: DMDAVecGetArray (dagetarray.c:75)

==68238== by 0x100008E07: MyInitialGuess (myStuff.c:38)

==68238== by 0x100001FB5: main (ex5.c:148)

and we see that an invalid read has occurred at the same problematic line of
code. In addition, we see that the invalid read is looking at memory allocated
by the DMDAVecGetArray() call. It is quite useful to see what memory is the
target of an invalid read or write.

We can also use massif to look at the memory allocation of this run, although
it appears that we must generate one massif output file for every process,

mpiexec -n 2 valgrind --tool=massif ./bin/ex5 -snes_monitor -da_grid_x 100 -da_grid_y 100
produces output files named massif.out.<procid>. We can process these using msprint

or pymassit, although the latter does not seem to be well supported. In Figure ref-
fig:exbmassif, we see the massif graphical output, giving a timeline for alloca-
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Memory Usage Summary

4

Memory (MB)
N

0

Ths page was generated by pymassif on Thu Aug 16 13:52:42 2016

Figure 1.2: Massif output from a parallel run of exb

tions. In the browser we could mouse-over each snapshot to get the allocation
location.

1.4 Problems

Problem 1.1 Following the online directions, install the latest release of
PETSc.

Problem 1.2 Clone my sample repository of PETSc code onto your lo-
cal machine, https://bitbucket.org/knepley /simplepetscexample. Checkout the
ChangeSet with comment “Initial checkin of source”.

Problem 1.3 Create a repository on Bitbucket in which you will store writ-
ing assignments for this course. Commit the IXTEX paragraph you write for
Problem II.1 and push it to the repository hosted at Bitbucket.

Problem I.4 Write a makefile that compiles the code in the sample repository
from Problem 2 and commit it to your local repository.

Problem 1.5 The simple Python script below, in the repository as bin/plotpers.py,
runs the sample exs from Problem 2 for a range of problem sizes and plots the


http://www.mcs.anl.gov/petsc/documentation/installation.html
https://bitbucket.org/knepley/simplepetscexample
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timing.

#! /usr/bin/env python

import os
sizes = []
times = []

for k in range(5):
Nx = 10 * 2%xk
'pertyd' % k
options = ['—da_gridx', str(Nx), '—da_gridy', str(Nx), '—log.view',

modname

':%s.py:ascii_info_detail' % modname]
os.system('./bin/ex5 '+' '.join(options))
perfmod = __import__(modname)
sizes.append(Nx ** 2)
times.append(perfmod.Stages['Main Stage'] ['SNESSolve'] [0]['time'])

print zip(sizes, times)

from pylab import legend, plot, loglog, show, title, xlabel, ylabel
plot(sizes, times)

title('SNES ex5")

xlabel('Problem Size $N$')

ylabel('Time (s)')

show ()

loglog(sizes, times)
title('SNES ex5')
xlabel('Problem Size $N$')
ylabel('Time (s)")

show ()

Notice that the logging information is output in a Python module named perf1.py
for £ = 1. Each time we output a module, it must have a different name since
Python caches module contents by name.

Modify this Python script to report the linear solver time (xspsoive) in-
stead of the nonlinear solve time (snessoive), and plot it for the GMRES/ILU
(—ksp_type gmres -pc_type ilu) and GMRES/GAMG (-ksp_type gmres -pc_type gamg) solvers
on the same graph. For extra credit, look at the performance as the number of
processes increases.

Problem 1.6 Modify the script from Problem 5 to report the assembly time
(SNESFunctionEval and SNESJacobiamkval), of both the residual and Jacobian, instead
of the nonlinear solve time (swessoive), and plot it for the GMRES/ILU and
GMRES/GAMG solvers on the same graph.
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Chapter 2

Finding and Relating
Information

2.1 Self-Teaching

The internet has become a repository of mathematical and scientific knowledge
every bit as important as books, journals, professors, and colleagues. Its reach
is much broader than any single source or even collection of sources, and free
preprint services such as arXiv provide an invaluable opportunity to keep abreast
of the latest research in a large number of fields. This is especially important for
computational science since interdisciplinary understanding is an integral part
of the field.

Mathematics in particular, perhaps due to the unanimity in the field, has
outstanding web resources, including Wikipedia, Math Geneaology, MathOver-
flow and its companion SciComp. Wikipedia especially posssess not just sets of
facts, but in depth treatments of advanced topics, complete with diagrams and
sample code, that rival and sometimes surpass textbooks. As a tool for nav-
igating the literature, Google Scholar is now unequaled. Bibliographic chains
can be followed with a few clicks, and now full BIBTEX entries are also available
directly.

The internet, and in particular Google and Google Scholar, should be your
first stop for:

e Resolving compile and link errors,
e Finding packages containing headers or libraries you are missing,

e Finding package documentation or examples,

Getting BIBTX for missing references,

Achieving a given effect in XTEX (see http://tex.stackexchange.com/),

Achieving a given effect in TikZ,
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in addition to all the mathematical and computational resources.

2.2 TgX and BTEX

TEX (Knuth and Bibby 1986), and in particular BTEX (Lamport 1986), is the
most important piece of technology for scientific communication. It enables the
digital interchange and archiving of scientific communications, including pa-
pers, books, reports, posters, talks, etc. In addition, the TEXBook (Knuth and
Bibby 1986) is the most outstanding achievements in literature on programming.
While ITEX is an excellent typesetting system, some high-level organizational
principles can aid writing and maintaining documents, especially those shared
with others.

Use a professional style For writing articles and notes, I recommend the
SIAM style. It has a bibliographic style which automatically creates links and
great math support. It also makes any eventual submission to a journal much
easier. I recommend segregating the main text into a separate file so that
different styles can be tried in an outer file. For example, I usually submit to a
journal, and then put my paper on the arXiv.

Use a preamble I \input a file named preambie.tex which holds all the TEX
code common to my various documents. It includes packages, defines text styles
(e.g. for urls), sets colors and fonts, defines custom commands, and defines my
1isting package styles for typesetting code. I also recommend using AMS math
package amsmath.

The best way to create PDF from KTEX is to use pafiatex,

pdflatex essay.tex

bibtex essay

pdflatex essay.tex

pdflatex essay.tex

where the repetition is necessay to assure that the metadata stored in auxiliary
files is consistent. This sequence has traditionally been put into a makefile.
However, the process can be handled in a more elegant way by using the 1atexmk
program,

latexmk -pdf essay.tex

If you rely on TEX source or BIBTRX files in other locations, you can use

TEXINPUTS=${TEXINPUTS}:/path/to/tex BIBINPUTS=${BIBINPUTS}:/path/to/bib
latexmk -pdf essay.tex

2.3 Problems

Problem II.1 It is quite likely that no matter what profession you choose to
pursue after this course, expository writing will form a large part of your work-
load. Please write a paragraph or two describing what you hope to learn from
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this course, suggestions for upcoming units, or broader thoughts on scientific
computing and its progress as a discipline. Typeset your work in KTEX and
include at least one citation using BIBTRX.

Problem II.2 Create a PDF file from your essay source and submit it by
email with the subject [CAAM 519] Essay L

Problem 1I1.3 Using any internet resources available, answer the following
questions, providing proper citation for the information you provide:

1. Give the generating function for the sequence 1,1, 2, 2, 3,5,5,7,10, 15,15, 20, 27,37, .. ..

2. Give an asymptotic expansion for the Gamma function I'(z) as z — oo
with error term.

3. On Ubuntu systems, why can you get the error importError: No module named _md5
when using import hashlib in Python?

4. Does the popular nonlinear solver deserve to be called the Newton-Raphson
method? Why or why not?

5. Who is Leonid Kantorovich?

6. How do I solve the semiconductor equations?
Problem I1.4 Using any internet resources available, answer the following
questions, providing proper citation for the information you provide:

1. What relation generates the sequence 8,12, 16, 24, 32, 36, 48, 96, 128, 160, 192, 288, 768, . . .7

2. Give an asymptotic expansion for the complete elliptic integral F(k) =

foﬂ/Q V1—k2sin?60d0 as k — 1.

3. In Linux, if you receive a linker error with the text “relocation R_X86_64_325 against symbol
...”, what has happened?

4. Has Hilbert’s 13th Problem been solved? If so, who solved it and when.

5. Who invented the Python language? What language did this person work
on prior to Python?

6. If I am simulating an incompressible flow, what discretization would be
“mass conservative” for these equations?

Problem II.5 Make a contribution to Wikipedia and send the link to your
edit.
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Chapter 3

PETSc Introduction

Change alone is unchanging
— Heraclitus, 544-483 BC

3.1 Numerical Libraries

For pure mathematicians, the sine non qua of technical communication is the
journal paper, although people like Terence Tao and Timothy Gowers have
clearly shown that blogging and the polymath project can play a significant role.
However, more then 40 years ago, computational mathematicians created a new
way to disseminate their results, namely high quality numerical libraries. It is
now a commonplace that a great part of your interaction with physical sciences,
engineering, and other fields can be mediated by software you produce and
maintain. I will argue that the most effective form of software communication
is the library. In fact, the best way to create robust, efficient and scalable,
maintainable scientific codes, is to use libraries.

Why Libraries? The library organization has advantages over a monolithic
application code, although any well-designed application can be sufficiently
library-like to accomplish these. Libraries hide hardware details from the user.
For example, the MPI library hides network details, although the user can spec-
ify different harware configurations (shared memory vs. socket connections)
on startup. More generally, libraries hide implementation comple