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Chapter 1

Propositional Logic

...an incorrect theory, even if it cannot be inhibited by any contradiction that would
refute it, is none the less incorrect, just as a criminal policy is none the less criminal
even if it cannot be inhibited by any court that would curb it.

— L. E. J. Brouwer

Science is what we understand well enough to explain to a computer, Art is all the

rest.
— Donald E. Knuth

1.1 Whirlwind Inroduction to Propositional Cal-
culus

Do you consider proofs mysterious and forbidding? Does logic seem remote
from the programming that you enjoy? In course, through the magic of the
Curry-Howard isomorphism, we will demonstrate that proving theorems and
writing programs are actually two sides of the same coin! We will need just
one sophisticated programming notion, namely that functions can be data. We
will allow our functions to take in other functions as input and return them as
output. And not just functions, we will also allow types themselves to be data.

Now, suppose I asked you to write a function that took in data of some type
and returned the exact same thing. You might write something like

foo(Type P, P p) {

return p;

}

where we need to allow our function foo to return different types depending
on the input tp. In the notation of the language Coq that we will use for the
course, this becomes
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fun (P : Prop) (p : P) => p

: forall P : Prop, P -> P
We can translate all the parts of this definition. The fun keyword defines a
function. The prop type means that we have passed in a type as data, what we
use Type for above. Type declarations use the colon operator, so p : p means we
have a variable p of type p. The => operator is the same as return in C. So the
first line contains our function definition, with the arguments in parentheses,
and the second line contains the equivalent statement of propositional calculus,
namely that any proposition P implies itself. We have just completed our first
proof doing nothing but programming!

Talk about P, P -; Q

Talk about P -; Q, Q-; R, R -; S

1.2 Propositions

A proposition is a declarative statement. It is not an opinion (normative state-
ment), a question (interogative statement), command (imperative statement),
or a parameterized statement with indeterminate truth value. An example of a
parameterized statement would be “n? is even”, for some indeterminate natural
number n. Propositional calculus is a set of rules for manipulating proposi-
tions so that if we start with valid propositions, we can produce other valid

propositions. Why would we use propositional calculus?
e To compose propositions

e So we can get from facts we collect about the world, to conclusions about
it or decisions about our behavior, in an automated way.

e To verify that computer programs/algorithms produce the correct output
for all possible input values.

e To establish the security of systems.

Propositional calculus, or Boolean algebra, was the creation of self-taught
mathematician George Boole in his book The Laws of Thought. We will call a
statement of the propositional calculus a Boolean expression.

Classically, a proposition could be either true or false, which leads to the
Law of Excluded Middle, § vV —P. In this book, we take the computational
perspective. A proposition is valid sentence of propositional calculus that might
be proved.

1.3 Operators and Truth Tables

There are two non-trivial unary Boolean operators. The first, identity, just
returns its input. The other, negation, reverses the truth value of its argument.
So, if P is true, then =P is false, and vice versa.


https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/The_Laws_of_Thought
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P|idP  P|-P
T[T T| F
F| F F| T

There must be four unary operators in total, but the other two are constant,
always returning true or always returning false.

Implication is a binary Boolean operator, P = (@), which encasulates the
common verbal form “if P, then Q”. The first part P is called the assumption,
or antecedent, and the second part is called the conclusion, or consequent. An
implication is only false if a true antecedent leads to a false consequent, say “If
2 is even then 22 is odd”. We can illustrate this using a truth table, which is a
device that assigns truth values to a combination of propositions based on the
truth values of the propositions themselves. For implication,

P Q|P = Q

T T T
T F F
F T T
F F T

Because implication statements play such an essential role in mathematics, a
variety of terminology is used to express p = gq,

e if p, then ¢

e ¢, ifp

p, only if ¢

e p implies ¢

e p is sufficient for ¢
® ¢ is necessary for p
e ¢ follows from p

A common argument technique involving implication is called contraposition or
employing the contrapositive. An argument using the contrapositive replaces an
implication

p—q
with its contraposition

since in classical logic, the two forms are equivalent. We can see this using a
truth table.
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PQ‘P:>Q - = —P
T T T T
T F F F
F T T T
F F T T

However, they are not equivalent in constructive logic since it relies on the Law
of Excluded Middle.

It turns out that { = , =} constitute a complete logical system, in the sense
that we can construct any Boolean sentence using only these operators. But
what does that mean? It must mean that we can generate any given truth table
from a set of inputs P4, ..., P,. Emil Post characterized functional completeness
of logical operators. The NAND and NOR operators (see Problem 5) are the
only functionally complete singletons. The sets {A, -}, {V,—}, and { = , -}
are all complete, along with 18 more.

Using the same reasoning as above, we can conclude that there are 16 possible
binary logical operators, since there are 4 possible input combinations for each
one, and two possible responses for each input combination, 2* = 16. They
are not strictly necessary, but we define a few more logical operators below for
convenience in writing Boolean expressions. Conjuction, P A @, formalizes the
verbal construction “P and Q are true”,

P Q| PAQ
T T T
T F F
F T F
F F F

so that it is only true when both arguments are true. A kind of inverse of this
is disjunction, PV @, from the verbal form “P or Q is true”,

P Q|PVvQ
T T T
T F T
F T T
F F F

which is true if either of the arguments is true. We can formalize this idea of
an tnverse, by saying that the inverse negates all the arguments, so

“PA-Q=-(PVQ) (1.1)
which is one of Augustus De Morgan’s Laws, the other being

which can also be verified using the truth tables. The exclusive-or operator,
P & Q, also called XOR, is like logical or except that it is false when both
arguments are true, which is the exclusion.


https://en.wikipedia.org/wiki/Emil_Leon_Post
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/De_Morgan's_laws
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P Q| PaQ
T T F
T F T
F T T
F F F

Another way of seeing this, is that the operator is true when the arguments are
different. We could imagine an operator that was true when both arguments
were the same. This happens when we have implication in both directions,
namely that P = @ and Q = P, which we will call logical equivalence or
bidirectional implication.

P Q|P = Q
T T T
T F F
F T F
F F T
We can also get this using our inverse operation
“PO-Q=-(P < Q) (1.3)
which we can verify with a truth table
P Q| -Po-Q -(P < Q)
T T F F
T F T T
F T T T
F F F F

In this way, truth tables give us a way to interpret the meaning of any
compound logical expression. First, we substitute a truth value for each atomic
proposition. Then for each operator, we replace it with the truth value from
its table. How many truth values do we need for an operator or expression? If
it has n inputs, then we will need 2™ truth values, one for each combination of
input truth values. And it is here that we arrive at the true goal of propositional
calculus, that is to automate deduction and the use of logic to make decisions.
Be very suspicious of any activity for which you must be smart. We instead
want automation, which allows dumb things, such as computers, to perform
flawlessly. There is a fly in the ointment above, since we see that using truth
tables in a brute force manner will require an exponential table size. Later on
we will look at another way to formalize proofs in propositional calculus.

An underlying assumption in this use of truth tables is the Law of Excluded
Middle which says that either P or its negation =P must be true. We can verify
this with a truth table.

SRCRENT v
Hﬂﬂjﬁj%
HH 33


https://en.wikipedia.org/wiki/Law_of_excluded_middle
https://en.wikipedia.org/wiki/Law_of_excluded_middle
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Logic admitting this proof will be called classical logic, as opposed to intuition-
istic logic in which we cannot prove PV -Por (P = Q) — P) = P
(Pierce’s Law).

An example from number theory of an argument that depends on the law
of excluded middle would be to prove that there exist two irrational numbers a
and b such that a® is rational. It is known that /2 is irrational (we will prove
this later in the course). Consider the number

vz (1.4)

By the law of excluded middle, this number is either rational or irrational. If it
is rational, the proof is complete, giving

a=2 and b=+2. (1.5)
However, if \/5\/5 is irrational, then let

a= \/5\/5 and b=+72, (1.6)

so that
V2
ab = (\/iﬁ> — V2 =2, (1.7)

and 2 is certainly rational, which concludes the proof. The above proof is
non-constructive because it doesn’t give specific numbers a and b that satisfy
the theorem but only two separate possibilities, one of which must work. An
intuitionist mathematician would require a explicit proof that a was irrational

instead. Actually \/5\/i is irrational, but there is no known easy proof of this
fact.

This may seem like a silly objection (a chair is either red, or its not red),
but it becomes more serious when we talk about infinite objects or infinite
processes. In this case, an intuitionist would be object that such an infinite
object cannot be created or the process cannot be finished, and thus I am not
justified in assuming that it is. For example, suppose that we are talking about
a program. I could define the proposition P = (the program halts), and say the
program either halts or it does not halt. However, we have no way of verifying
this. We cannot wait long enough to see if the program halts. In fact, this
was the subject of one of Kolmogorov’s earliest papers (Kolmogorov 1925). In
Coq, those propositions for which the Law of Excluded Middle holds are called
decidable propositions.

The split between classical and intuitionistic logic also arises when we try to
automate the process of proving theorems. One of the most popular strategies
for proving theorems of propositional calculus makes use of the Curry-Howard
Correspondence, which states that a proof in intuitionistic logic is equivalent
to a properly typed program of a certain language, an approach pioneered by
Heyting.


https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
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1.4 Proving Logical Equivalence

A tautology is a statement which is always true. We have already seen an
example of this, PV—P. If two propositional statements s; and s, have the same
truth values for all inputs, then s; <= s5 is a tautology since bidirectional
implication is true when its arguments are the same. We can show this using
a truth table, just as we did above. For example, let us validate one of De
Morgan’s Laws,

| 2(PAQ) -PV-Q | ~(PAQ) < —PV-Q

CRCEER|
CREECRE |
HH s
HHa s

F
T
T
T

1.5 Using Coq and Writing Proofs by Hand

Coq is a proof assistant, meaning a program which helps a user construct and
check proofs. In some instances, it may even carry out the entire proof auto-
matically. Other interactive theorem provers exist, such as HOL and Isabelle. 1
have chosen to use Coq because it is full-featured and well supported, as shown
in the comparison of proof assistants here. Coq has an excellent reference man-
ual, as well as companion book, and its library of proofs is available online at
https://coq.inria.fr/library.

Installation instructions for Coq can be found at here. We will use it for the
entire course, in order to guarantee correctness, but all steps can be done equally
well by hand. Let us begin with a very simple proof, namely that P — P is
a tautology. First, we enter the proof assistant,

/home/knepley> coqtop
Welcome to Coq 8.6 (December 2017)

Coq <

Most presentations of logic apply inference rules to the hypotheses to generate
conclusions. We will also do this, but typically using a reduced set of rules that
correspond to type inference. This makes it easier to automate, but we could
of course prove all the inference rules shown in traditional texts and use them
in our proof assistant. One of the most common inference rules is known as
modus ponens and also sometimes called implication elimination. It says that
given a proof of P and a proof of P = (@), we can construct a proof of Q. In
Coq, modus ponens corresponds to function evaluation, and is effected with the
apply tactic, or proof operation, which eliminates a hypothesis. If instead the
implication P = (@ is our goal, we can introduce a hypothesis P and make
our goal . This makes sense because the content of P = (@, according to
Heyting, is that given a proof of P (hypothesis) we can generate a proof of Q.

For our example, P = P, we first declare the proof, using the Lemma or
Theorem Statement, id_P


https://coq.inria.fr
https://hol-theorem-prover.org/
http://isabelle.in.tum.de/
https://en.wikipedia.org/wiki/Proof_assistant
https://coq.inria.fr/library
https://coq.inria.fr/opam/www/using.html
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Coq < Lemma id_P : forall P : Prop, P->P.
1 subgoal

forall P : Prop, P -> P

The fora11 part, called universal quantification, will be discussed in Chapter 2.
However, for now we will understand it as giving the type of our argument
P, which is a proposition of type prop. We put this type declaration in the
hypothesis set using the intro tactic, which introduces a new hypothesis.

id_P < intro P.
1 subgoal

P : Prop

P ->P

In the same way, we can introduce the antecedent as a hypothesis

id_P < intro p.

1 subgoal
P : Prop
p:P
P

and then note that our goal is actually one of our hypotheses, named p.

id_P < exact p.
No more subgoals.

id_P < Qed.
intro P.
intro p.
exact p.

Qed.
id_P is defined

You can get the IDE to print out a summary of your proof using show script.
or the Debug menu in the ProofWeb interface. After that, you use ged so that
Coq will print out a summary of the proof, check it, and register the lemma
internally. We could have done this proof using a truth table,

P|P=P
T T
F T

or more traditional inference rules.

P = P=-PVP (Conditional Identity) (1.8)
=T (Complement Law) (1.9)

However, using a proof assistant, we are guaranteed that our conclusion is cor-
rect and it removes the sometimes confusing choice of law to apply.

We can equivalently write this proof by hand, mirroring the steps we use
in the proof assistant. We write the each step, the application of a tactic, in
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a list on the right. We write the hypotheses, indicated by H, above the goals
indicated by G, separated by a line. We use the step number to number the
goals, and we number the hypotheses sequentially.

H:P Step Tactic
- 1 intro H
GO:P — P 2 assumption
G1:P

Lets look at a slightly more advanced example, in which we use modus
ponens, proving that (P — Q) — (@ =— R) — P — R. We begin
by generating three hypotheses, the antecedents of our implications, and also
making the three type declarations into hypotheses, imp_trans

Coq < Lemma imp_trans : forall P Q R : Prop, (P->Q)->(Q->R)->P->R.
1 subgoal

forall PQ R : Prop, (P -> Q) -> (Q ->R) ->P ->R

imp_trans < intros P Q R.
1 subgoal

P, Q, R : Prop

(P->Q) ->(@->R) >P >R

imp_trans < intros pimpq qimpr p.
1 subgoal

P, Q, R : Prop
pimpq : P -> Q
qimpr : Q -> R
p:P

R

Now, we apply hypothesis qimpr. This hypothesis says that if we can prove @,
then we can prove R. So if R is our current goal, we only really need to prove
@, so that is our new goal.

imp_trans < apply qimpr.
1 subgoal

P, Q, R : Prop
pimpq : P -> Q
qimpr : Q -> R
p:P

Q

We can do the same thing again using hypothesis pimpq.

imp_trans < apply pimpq.
1 subgoal

P, Q, R : Prop
pimpq : P -> Q
qimpr : Q -> R
p:P
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P

Now it is a simple matter to say that our goal is one of our assumptions, and
the proof is complete.

imp_trans < exact p.
No more subgoals.

imp_trans < Qed.
(intros P Q R).

(intros pimpq qimpr p).
(apply qimpr).

(apply pimpq).

exact p.

Qed.
imp_trans is defined

We write this proof by hand below.

H:P = @
H2:QQ = R o Tacti
e actic
p:P T intros
2 intros H2
GO:(P = Q) = (Q = R) = P = R 3 intros p
Gl1:(Q = R) = P = R 4 apply H2
G2:P = R 5 apply H
6 assumption
G3:R
G4 :Q
G5 :P

We have similar tactics for the other logical operators. If my goal is to prove
P A @, then T need a proof for P and a proof for Q). The spiit introduction
tactic in Coq generates these two subgoals. On the other hand, if we have a
hypothesis P A @Q, then we can turn this into two hypotheses P and @, which is
done by the destruct elimination tactic in Coq. For example, and_comm

Coq < Lemma and_comm : forall P Q : Prop, (P /\ Q) -> (Q /\ P).
1 subgoal

forall P Q : Prop, P/\Q ->Q /\ P

and_comm < intros P Q.
1 subgoal

P, Q : Prop

P/AANQ->Q/\P

and_comm < intro pq.
1 subgoal

P, Q : Prop
pa : P/\Q
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Q/\P

and_comm < destruct pq as [p ql.

1 subgoal

, Q : Prop
H

P
p
q:Q
Q/\P

and_comm < split.
2 subgoals

P, Q : Prop
p:P
q:Q

Q

subgoal 2 is:
P

and_comm < exact q.
1 subgoal

P, Q : Prop
p:P
q:Q

o

and_comm < exact p.
No more subgoals.

and_comm < Qed.

(intros P Q).

intro pq.

(destruct pq as [p ql).
split.

exact q.

exact p.

Qed.
and_comm is defined

which can be written
H:PAQ
p:P
q:Q

Step  Tactic

GO:PANQ = QAP

Gl1:QANP
G3a :Q
G3b:P

1 intros H

2 destruct H
split

4a assumption

4b assumption

Similarly for disjunction, if we have the goal to prove P V @, then we can
either prove P or prove (). The tactic 1eft in Coq makes P a subgoal, and
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the tactic rignt makes @ a subgoal. Likewise, if we have a hypothesis P V @,
then destruct makes a subgoal with hypothesis P and one with hypothesis @,
which mirrors the proof by cases strategy. For example, we can try using the
introduction tactic first, or_comm

Coq < Lemma or_comm : forall P Q : Prop, (P \/ Q) -> (Q \/ P).
1 subgoal

forall P Q : Prop, P\/ Q ->Q \/ P

or_comm < intros P Q.
1 subgoal

P, Q : Prop

P\/Q->Q\/P

or_comm < intro pq.
1 subgoal

P, Q : Prop
pa : P\/Q

Q\/ P

or_comm < left.
subgoal

[y

P, Q : Prop
pa : P\/Q

Q

or_comm < destruct pq as [p | ql.
2 subgoals

P, Q : Prop
p:P

Q

subgoal 2 is:

Q

but that is a deadend. We cannot prove q since we only know ». We made our
choice in the goal too early. Instead, we should execute the proof-by-cases for
the hypothesis first and then choose which goal we can prove. Thus we undo
that step, and use the elimination tactic instead.

or_comm < Undo.

1 subgoal

P, Q : Prop
pa : P\/Q

Q

or_comm < Undo.
1 subgoal

P, Q : Prop
pa : P\/Q

Q\/ P
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or_comm < destruct pq as [p | ql.
2 subgoals

P, Q : Prop

p:P

Q\/P

subgoal 2 is:
Q\/ P

or_comm < right.
2 subgoals

P, Q : Prop
p:P

P

subgoal 2 is:

Q\/ P

or_comm < exact p.
1 subgoal

P, Q : Prop
q:0Q

Q\/ P

or_comm < left.
1 subgoal

P, Q : Prop
q:Q

Q

or_comm < exact q.
No more subgoals.

or_comm < Qed.

(intros P Q).

intro pq.

(destruct pq as [pl ql).
right.

exact p.

left.
exact q.

Qed.
or_comm is defined

which can be written
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H:PvQ g
tep Tactic
Ha: P
¢ 1 intros H
Hb: @ 2 destruct H
3a right
GO:PVQ = QVP 4a assumption
G1:QVP 3b left .
4b assumption
G3a :P
G3b:Q

The negation operator is a trickier case. When —P is the goal, we use the
equivalence P = F' and the introduction tactic for implication. When —P is
a hypothesis, we use destruct, which introduces a subgoal of P, which is a form
of proof by contradiction as we show below.

e First we assume our hypothesis (—P) is false, so our subgoal is P.
e Next, we show that P — —P.

e Since P and —P cannot both be true, the assumption must be wrong and
=P must be true.

Lastly, for logical equivalence, we use spiit to turn a goal into two subgoals
with the implication each way, and destruct to eliminate a hypothesis in favor of
two hypotheses with both implications. All of these tactics and proof strategies
are expounded in this excellent lecture by Pierre Castéran. In Table 1.1 we
summarize the tactics used to deal with each logical operator and quantifier, and
then in Table 1.2 we give the Coq commands which carry out these operations.
Note that every tactic which takes a hypothesis argument can also take the
name of a lemma or theorem.

A basic example employing negation is the Law of Noncontradiction in con-
structive logic. We start by using unfo1d to replace negation by the equivalent
implication form. noncon

Coq < Lemma noncon : forall P : Prop, ~(P /\ "P).
1 subgoal

forall P : Prop, ~ (P /\ ~ P)

noncon < intro P.
1 subgoal

P : Prop

T ®/N\ 7P

noncon < unfold not.
1 subgoal

P : Prop



https://www.labri.fr/perso/casteran/CoqArt/Tsinghua/C3.pdf
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P /\ (P -> False) -> False

noncon < intro H.
1 subgoal

P : Prop
H: P /\ (P -> False)

False

Now we can separate 1 into two hypotheses by elimination the conjunction,

noncon < destruct H as [p np].

1 subgoal
P : Prop
p:P

np : P -> False

False

and finally apply the np implication to complete the proof.

noncon < apply np.

1 subgoal
P : Prop
p:P

np : P -> False

P

noncon < exact p.
No more subgoals.

noncon < Qed.

intro P.

(unfold not).

intro H.

(destruct H as [p npl).
(apply np).

exact p.

Qed.
noncon is defined

The Law of Noncontradiction —=(P A —P) expands to (PA (P = F)) = I

e A proof of (PA(P = F)) = F is a function f that converts a proof
of (PA(P = F)) into a proof of F.

e A proof of (PA (P = F)) is a pair of proofs (a,b), where a is a proof
of P, and b is a proof of P = F.

e A proof of P — F is a function that converts a proof of P into a proof
of F.

Putting it all together, a proof of (PA (P = F)) = F is a function f that
converts a pair (a,b), where a is a proof of P, and b is a function that converts
a proof of P into a proof of F, into a proof of F'. There is a function f that
does this, where f(a,b) = b(a), proving the law of non-contradiction, no matter
what P is.
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Coq < Print noncon.
noncon =
fun (P : Prop) (H : P /\ (P -> False)) =>
match H with
| conj p np => np p
end
: forall P : Prop, ~ (P /\ ~ P)
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In fact, this same strategy can provide a proof for (PA (P = Q)) = Q for
any proposition ). This rule of inference is classically called modus ponens, first
described by Theophrastus (Bobzien 2016). We can prove modus ponens two
different ways. First, the functional way that we are used to modus_ponens

Coq < Lemma modus_ponens : forall P Q : Prop, P -> (P -> Q) -> Q.

1 subgoal

forall P Q : Prop, P -> (P -> Q) -> Q

modus_ponens < intros P Q.
1 subgoal

P, Q : Prop

P->(®->Q ->Q

modus_ponens < intros p pimpq.
1 subgoal

P, Q : Prop
p:P
pimpq : P > Q

Q

modus_ponens < apply pimpq.
1 subgoal

P, Q : Prop
p:P
pimpq : P > Q

P

modus_ponens < exact p.
No more subgoals.

modus_ponens < Qed.
(intros P Q).
(intros p pimpq) .
(apply pimpq) .
exact p.

Qed.
modus_ponens is defined

and we see that the proof term mirrors our discussion above of the BHK inter-

pretation of negation

Coq < Print modus_ponens.
modus_ponens =
fun (P Q : Prop) (p : P) (pimpq : P -> Q)

=> pimpq p

: forall P Q : Prop, P -> (P -> Q) -> Q

but we can also explicitly construct the proof term, in a more imperative style,


https://en.wikipedia.org/wiki/Modus_ponens
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Coq < Lemma modus_ponens_2 : forall P Q : Prop, P -> (P -> Q) -> Q.
1 subgoal

forall P Q : Prop, P -> (P -> Q) > Q

modus_ponens_2 < intros P Q p pimpq.
subgoal

[y

P, Q : Prop
p:P
pimpq : P > Q

Q

modus_ponens_2 < apply pimpq in p as q.
1 subgoal

P, Q : Prop
p:P

q:Q

pimpq : P > Q

Q

modus_ponens_2 < exact q.
No more subgoals.

modus_ponens_2 < Qed.
(intros P Q p pimpq).
(apply pimpq in p as q).
exact q.

Qed.
modus_ponens_2 is defined

which has a different looking proof term

Coq < Print modus_ponens_2.
modus_ponens_2 =

fun (P Q : Prop) (p : P) (pimpq : P -> Q) => let q := pimpq p : Q in q

: forall P Q : Prop, P -> (P -> Q) -> Q

23

Another strategy for proving statements using negation is the construction
of a contradiction, meaning a proof of r. Any proof of false means that the
theory is inconsistent and can prove any statement, rendering it trivial. If we
know the theory is consistent, then we conclude that the original assumption
was in error. This is called Proof by Negation. More precisely, the Principle of

Explosion is the induction rule for r, namely
VP : Prop,FF — P

An informal presentation of this could be

e Replace r with a contradiction, such as “The sky is blue and the sky is

not blue”.

e Then we have the statement “The sky is blue”, assumed to be true.

e Therefore, the two-part statement “The sky is blue or unicorns exist”

must also be true, since the first part is true.
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e However, since we know that “The sky is not blue”, as this has also been
assumed, the first part is false, and hence the second part must be true,
i.e. unicorns exist.

We can use this strategy to prove the Law of Noncontradiction with a contra-
diction,

Coq < Lemma noncon3 : forall P : Prop, (P /\ "P).
1 subgoal

forall P : Prop, ~ (P /\ ~ P)

noncon3 < intros P H.
1 subgoal

P : Prop
H:P/\"P

False

noncon3 < destruct H as [p np].
1 subgoal

P : Prop
p:P
np : © P

False

noncon3 < contradiction.
No more subgoals.

noncon3 < Qed.

(intros P H).

(destruct H as [p npl).
contradiction.

Qed.
noncon3 is defined

Coq < Print noncon3.
noncon3 =
fun (P : Prop) (H: P /\ " P) =>
match H with
| conj p np => False_ind False (np p)
end

: forall P : Prop, ~ (P /\ ~ P)

and we can see from the proof term that we use the induction rule for r. We
can get the same effect from our first proof by using elimination rather than
application to get rid of the negation of e,

Coq < Lemma noncon4 : forall P : Prop, (P /\ "P).
1 subgoal

forall P : Prop, ~ (P /\ ~ P)

noncon4 < intros P H.

1 subgoal
P : Prop
H:P/\N"P

False
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noncon4 < destruct H as [p np].
1 subgoal

P : Prop
p:P
np : ~ P

False

noncon4 < elim np.
1 subgoal

P : Prop

noncon4 < exact p.
No more subgoals.

noncon4 < Qed.

(intros P H).

(destruct H as [p npl).
(elim np) .

exact p.

Qed.
noncon4 is defined

Coq < Print noncon4.
noncon4 =
fun (P : Prop) (H : P /\ = P) =>
match H with
| conj p np => False_ind False (np p)
end

: forall P : Prop, ~ (P /\ "~ P)

Note that this is different from the classical Proof by Contradiction. In that
strategy, we assume the negation of our goal and show it leads to contradic-
tion, which amounts to double negation, =——P == P. This is not valid on
constructive logic, and thus we use Proof by Negation instead.

As a last example, we look at the Conditional Identity. This is true in
classical logic, but only partially true in intuitionistic logic. We can prove the
forward implication, cond_ident

Coq < Lemma cond_ident : forall P Q : Prop, ("P \/ Q) > (P > Q).
1 subgoal

forall P Q : Prop, " P \/ Q ->P ->Q

cond_ident < intros P Q H p.
1 subgoal

P, Q : Prop
H: “P\/Q
p:P
Q

cond_ident < destruct H as [np | ql.
2 subgoals
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P, Q : Prop
np : P
p:P

Q

subgoal 2 is:

Q

cond_ident < contradiction.
1 subgoal

P, Q : Prop
q:Q
p:P

o

cond_ident < exact q.
No more subgoals.

cond_ident < Qed.
(intros P Q H p).
(destruct H as [npl ql).
contradiction.

exact q.

Qed.
cond_ident is defined

Coq < Print cond_ident.
cond_ident =
fun (P Q : Prop) (H: “P\/ Q (p : P) =>
match H with
| or_introl np => False_ind Q (np p)
| or_intror q => q
end
: forall P Q : Prop, " P \/ Q ->P ->Q

We used our Proof by Contradiction strategy in one branch, as we can also
see from the proof term. The reverse implication is not provable constructively
since it makes use of the Law of Excluded Middle.

In fact, we can show that there are many equivalent statements which dis-
tinguish classical logic. For example, the Law of Excluded Middle, the Con-
ditional Identity, DeMorgan’s relation, and Peirce’s formula are all equivalent
statements. As a start, we prove that the Law of Excluded Middle implies the
Conditional Inequality.

Coq < Lemma test : forall P Q : Prop, (P \/ "P) > ((P -> Q) <> ("P \/ Q).
1 subgoal

forall P Q : Prop, P\/ “P > (P > Q) <> ~P\/Q

test < intros P Q.
1 subgoal

P, Q : Prop

P\/"P->(®->Q <>"P\/Q

test < intro em.
1 subgoal
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P, Q : Prop
em : P\/ ~P

(P ->Q <>"P\Q
We split the b-implication and prove both directions. Only the forward direction
will require the Law of Excluded Middle.

test < split.
2 subgoals

P, Q : Prop
em : P\/ ~P

P->® ->"P\/Q

subgoal 2 is:

“"P\/Q—>P->Q

test < intro H.
2 subgoals

P, Q : Prop
em : P\/ " P
H:P->0Q

“P\/Q

subgoal 2 is:

“P\N Q->P->Q

We destruct the excluded middle statement, using P to prove right half of our
goal, and =P to prove the left half.

test < destruct em as [p | np].
3 subgoals

P, Q : Prop
p:P
H:P->0Q

“P\/Q

subgoal 2 is:
TP \/Q
subgoal 3 is:

“P\Q->P->Q

test < right.
3 subgoals

P, Q : Prop
p:P
H:P->0Q

o

subgoal 2 is:
“P\/Q
subgoal 3 is:

“P\/Q->P->Q

test < apply H.
3 subgoals

P, Q : Prop
p:P
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H:P->Q

P

subgoal 2 is:
“P\/Q
subgoal 3 is:

"P\/Q-—>P->Q

test < exact p.
2 subgoals

P, Q : Prop
np : © P
H:P->0Q

“P\/Q

subgoal 2 is:

~“P\N Q->P->Q

test < left.
2 subgoals

P, Q : Prop
np : P
H:P->0Q

~ P

subgoal 2 is:

“P\/Q-—>P->Q

test < exact np.
1 subgoal

P, Q : Prop
em : P\/ " P

“P\N/ Q->P->0Q

Now we can prove the reverse implication without using our premise.

test < intro ci.
1 subgoal

P, Q : Prop
em : P\/ ~P
ci: “P\/Q

P ->0Q

test < intro p.

1 subgoal

P, Q : Prop

em : P\/ P

ci: “P\/Q

p:P

Q
test < destruct ci as [np | ql.
2 subgoals

P, Q : Prop

em : P\/ ~P
np : © P
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p:P
Q
subgoal 2 is:
Q
test < contradiction.
1 subgoal
P, Q : Prop
em : P\/ ~P
q:Q
p:P
Q

test < exact q.
No more subgoals.

test < Qed.
(intros P Q).
intro em.
split.
intro H.
(destruct em as [pl| npl).
right.
(apply H).
exact p.

left.
exact np.

intro ci.
intro p.

(destruct ci as [npl ql).
contradiction.

exact q.

Qed.
test is defined

1.5.1 More Examples

For this proof, we use tactics to eliminate the conjuction and disjunction.

Coq < Lemma prob3a : forall P Q R : Prop, (P /\ Q) -> (P \/ R).
1 subgoal

forall P QR : Prop, P /\ Q ->P \/R

prob3a < intros P Q R pq.

1 subgoal
P, Q, R : Prop
pa : P/\Q
P\/R

prob3a < destruct pq as [p q].
1 subgoal

P, Q, R : Prop
p:P

29
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-P P = @

Hypothesis u

Prove P instead of False Prove P instead of ()

Conclusion Assume P, prove False Assume P, prove )
PVQ PAQ
Hypothesis = Prove using hyp. P Replace with hyp. P
then using hyp. @ and hyp. @
Conclusion Prove P or prove @@ Prove P, then prove @)
Vo e X, P(x) dr € X, P(x)

Hypothesis u

Conclusion

Proves P(y) for y € X Produce a witness y € X
and the hyp. P(y)
Give a witness w

Prove P(x)

rT=y F

Hypothesis u

Conclusion

Substitute y for x False hyp. implies anything
Substitute x for y
A thing equals itself

Table 1.1: Tactics in Plain English for Propositional and Predicate Calculus
(hyp. = hypothesis)

= AN \Y
Hypothesis u elim H elim H elim H
case H case H case H

destruct H as [H1 H2] destruct H as [H1 | H2]

Conclusion intros H split left OI right
= v 3
Hypothesis apply H elim H elim H
apply H case H
destruct H as [x Hi]
Conclusion intros H intros H exists W
= F
Hypothesis H rewrite H elim H
rewrite <- H case H
Conclusion reflexivity
ring

Table 1.2: Summary of Coq tactics for Propositional and Predicate Calculus
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q:Q

P\/R

prob3a < left.
1 subgoal

P, Q, R : Prop
p:P
q:Q

P

prob3a < exact p.
No more subgoals.

prob3a < Qed.

(intros P Q R pq).
(destruct pq as [p ql).
left.

exact p.

Qed.
prob3a is defined

H:PNQ
p:P Step  Tactic
. 1 intros H
¢:Q 2 destruct H
3 left

GO:PANQ = PVR 4 assumption
G1:PV R
G3:P

When we deal with implication, we use the introduction tactic to assume
the antecdent.

Coq < Lemma prob3b : forall P R : Prop, P->(R->P).
1 subgoal

forall PR : Prop, P >R -> P

prob3b < intros PR p r.
1 subgoal

P, R : Prop
p:P
r : R

v

prob3b < exact p.
No more subgoals.

prob3b < Qed.
(intros PR p 1).
exact p.

Qed.
prob3b is defined
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p:P
r-R Step Tactic
1 intros p
2 intros r
GO:P = R =P 3 assumption
Gl:R = P
G3:P

1.5.2 Submitting Coq Homework

All proof will be submitted as Coq source files, which use the extension .v. The
automated system will compile your code and then check that it proves the
desired theorem. A Coq source file consists essentially of a set of proofs. Each
proof has a statement, followed by a list of tactics. These tactics are what is
often printed when ged is executed, or by running the show script command during
the proof. For example, if we were to prove that P = P, our source file easy.v
would contain

Lemma easy : forall P : Prop, P -> P.
Proof.

intros P p.

exact p.

Qed.

You would then submit the easy.v to Autograder. Grading should happen im-
mediately upon submission, so that you can check your score and resubmit if
necessary.

1.5.3 Compiling Coq Files

We can develop libraries of proofs in Coq by using the compiler. We begin by
creating a source file, identity.v, of the commands we used to prove our simple
theorem. The file contents are shown below.

Section Logic_Examples.

Lemma id_P : forall P : Prop, P->P.
intros P p.

exact p.

Qed.

End Logic_Examples.

Now we compile this file using the Coq compiler coqc. If we put our source code
in the code directory, then we want to map that directory to the code namespace
in Coq using the -r flag,

coqc -R $PWD/code code code/identity.v
which creates an object file, code/identity.vo, as well as an auxiliary file

code/identity.glob that describes the compilation process. We can check this file
using the proof checker

coqchk -R $PWD/code code code.identity
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which produces

Checking library: identity
checking cst: identity.id_P
Modules were successfully checked

Now we can use our compiled library in the toplevel interpreter

> coqtop -R $PWD/code code
Welcome to Coq 8.6 (December 2017)
Coq < Require Import code.identity.

Coq < Print code.identity.id_P.
Fetching opaque proofs from disk for code.identity
id_P = fun (P : Prop) (p : P) =>p

: forall P : Prop, P -> P

Argument scopes are [type_scope _]

Using this process, you should be able to verify that your homework submissions
compile before you submit.

1.6 Commonsense Interpretation

Coq does not automate the process of proving theorems, but rather assists
the prover by clarifying the alternatives and checking the results. Thus, we will
look for commonsense proof techniques which we can use when proving by hand,
which mirror the tactics in Coq. For example, if I need to prove

PAQ

then I would first prove P and then prove (. This is exactly what the spiit
tactic does. On the other hand, if I have a hypothesis P A @, so it is true, then
it must mean that both P and @) are true, which is exactly what the destruct
tactic conveys.

Similarly, if I want to prove

PVvVQ

then I must either prove P, or prove @@, which I can choose with the 1eft or right
tactics. If T have a hypothesis P V @, then I have a case where P is true (one
proof) and then another case where @ is true (another proof), which is what
destruct giVGS me.

When I have an implication

P = Q

it is necessarily true when P is false, so the only case I need to be concerned
with is P true. Thus I add P as a hypothesis and try to prove ), which is
accomplished with the intro tactic. If P = (@ is a hypothesis, then I can
think of it as a machine for turning a proof for P into a proof for Q). Thus if I
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have a goal @, I can replace that with a goal P since I can always turn P into
@ in some sense. Moreover, we often write multiple hypotheses for a proof as
P—= R =S5 = Q
instead of
(PANRAS) = Q.

We can look at the truth table

P = (R (S = Q) | (PANRAS) = @

mEmmEE e e a8 38
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which shows us that these are identical statements.

Lastly, proof incorporating negation can always be done by contradiction,
which is how the proof assistant handles them. If I want to prove =P, I start
by assuming P and showing that a contradiction results. This strategy follows
from the equivalence

-P < P = F. (1.10)

The introduction tactic for the implication is the initial assumption in a proof
by contradiction, and the goal of False is the contradiction itself.

1.7 Problems

Problem I.1 This written problem will familiarize you with the grading sys-
tem that we use at UB. Follow the steps below to ensure that your Autolab
account is working correctly.

1. Create your account at https://autograder.cse.buffalo.edu using your UB
email address.


https://autograder.cse.buffalo.edu
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2. An account may have been created for you if you enrolled before you had
an account. If Autolab says that you already have an account, click “For-
got your password?” and enter your email address. Follow instructions to
reset your password.

3. Ensure that you are registered for the course: CSE191: Discrete Structures
4. Submit a pdf to Homework 0 with the following information:

e Name
e Person number

e A programming language you have used, or None

The best way to create PDF from KTEX is to use pafiatex,

pdflatex essay.tex
bibtex essay

pdflatex essay.tex
pdflatex essay.tex

where the repetition is necessay to assure that the metadata stored in auxiliary
files is consistent. This process can be handled in an elegant way by using the
latexmk program,

latexmk -pdf essay.tex

If you rely on TEX source or BIBTRX files in other locations, you can use

TEXINPUTS=${TEXINPUTS}:/path/to/tex BIBINPUTS=${BIBINPUTS}:/path/to/bib
latexmk -pdf essay.tex

Problem 1.2 This problem will teach you to submit a Coq proof for automatic
grading by the Autograder system. We will prove the simplest proposition we
have seen

VP : Prop,P — P.

You will prepare a text file named ChPropositionalLogic.v which contains the
statement and tactics for the proof. You must name the lemma identity

Lemma identity : forall P : Prop, P -> P.
Proof.

intros P p.

exact p.

Qed.

You then submit this file to Autograder, just as you submitted your PDF in the
last assignment.

Problem 1.3 Indicate whether the statement is a proposition. If not, what
kind of statement is it?

1. Have a nice day.

2. The patient has diabetes.
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The light is on.

It’s a beautiful day.

Do you like my new shoes?
The sky is purple.
24+3=6

Every prime number is even.

© e N o ok W

There is a number that is larger than 17.

Problem I.4 Indicate whether the statement is a proposition. If not, what
kind of statement is it?

1. 42=16

The GDP is $10 trillion dollars.

Have a great day.

The light is off.

Every prime number is odd.

Did you vote this year?

Music is nowhere near as good as in the 80s.

The moon is made of cheese.

© e N o ok W N

There is a number that is divisible by 17.

Problem 1.5 Look up the NAND and NOR operations, and write the truth
table for both.

Problem 1.6 Assume the propositions p, ¢, r, and s have the following truth
values:

e p: True
e ¢ : False
o r: True
e s: False

Provide the truth value for each of the following compound propositions. Show
your work.

1. pV(gAs)
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Problem I.7 Assume the propositions p, ¢, r, and s have the following truth
values:

e p: False
e ¢ : True
e r: True
e s : False

Provide the truth value for each of the following compound propositions. Show
your work.

L (prgV-(pAg)

2. (rAs)V-p

3. (rng) = —(pAs)
4. =(sAp) AT
5.

(= q) = (-rvs)

Problem 1.8 Define the following propositions:
e j: aperson is a Jedi
e p: a person is not a Padawan
e 1 : a person is allowed to use a lightsaber
Express each of the following English sentences with a logical expression:

1. A person is allowed to use a lightsaber only if they are a Jedi and not a
Padawan.

2. A person is allowed to use a lightsaber if they are a Jedi or a Padawan.

3. Not being a Padawan is a necessary condition for being allowed to use a
lightsaber.

4. A person is allowed to use a lightsaber if and only if the person is a Jedi
and is not a Padawan.

5. Being allowed to use a lightsaber implies that the person is either a Jedi
or a Padawan.
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Problem 1.9 Define the following propositions:
e g : a person is in Gryffindor House
e s : a person is in Slytherin House
e w : a person won the Quidditch match
Express each of the following English sentences with a logical expression:
1. If she won the match, she is either in Gryffindor or Slytherin House.
2. He won the match if he is in Gryffindor and not in Slytherin House.
3. Gryffindor House never wins at Quidditch.
4. Winning today implies that she isn’t in Gryffindor or Slytherin House.
5. She is in Gryflindor if and only if she is not in Slytherin House.

Problem I.10 Below we tabulate laws of logical equivalence. Verify the Dis-
tributive, De Morgan’s, and Absorption laws using a truth table.

Equivalence Name

pANT=p, pVFE=p Identity laws

pvT=T, pAF=F Domination laws

pVp=p, pApP=Dp Idempotent laws

=(-p)=p Double negation law
pVg=qVp

Commutative laws
PAG=qAp

(pVgVr=pVigVvr)
(PAQOAT=pA(gAT)
pVgAr)=(@EVaA(pVr
pA(gVr)=(@AgV(pAr
~(pVg)=-pA—q
~(pAg) =-pV —q

Associative laws

)

) Distributive laws

De Morgan’s laws

pV(PAg =p A .
bsorption laws

pA(PVeg =p P

pV-p=T, pA—p=F Complement laws

Problem I.11 The laws of intuitionistic logic are not equivalent to classical
logic, and catching the differences can be tricky. For example, the contrapositive
inference rule,

P = @Q < -Q = —-P (1.11)

cannot be proven in intuitionistic logic. Using constructive logic in Coq, gener-
ate Proof: contrap for

(P = Q) = (-Q = —P) (1.12)
which would be
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Lemma contrap : forall P Q : Prop, (P -> Q) -> ("Q -> "P).
and also Proof: revcontrap

which would be

Lemma revcontrap : forall P Q : Prop, ("Q -> "P) -> (P -> Q).

Follow the guidelines for submitting constructive proofs using Coq.
Problem 1.12 Generate Proof: add_iff for
VPQ : Prop,(QV P)A(-P = Q) < (PVQ). (1.14)

which would be
Lemma add_iff : forall P Q : Prop, (Q \/ P) /\ P > Q) <> (P \/ Q.
using constructive logic. Follow the guidelines for submitting constructive proofs

using Coq.

Problem I1.13 Generate Proof: weak_pierce for the Weak Pierce relation
VPQ : Prop,(((P = Q) = P) = P) = Q) = Q. (1.15)

which would be
Lemma weak_pierce : forall P Q : Prop, ((((P -> Q) ->P) -> P) -> Q) —->Q.
using constructive logic. Follow the guidelines for submitting constructive proofs

using Cogq.

Problem 1.14 Generate Proof: neg_imp for

P = (QAR) (1.16)
) (1.17)
I (1.18)

which is equivalent to
VPQR : Prop,(P = (QAR)) = (-Q) = (—P)
which would be
Lemma neg_imp : forall P Q R : Prop, (P -> (Q /\ R)) -> "Q -> "P.

using constructive logic. Follow the guidelines for submitting constructive proofs
using Cogq.
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Problem 1.15 Generate Proof: double_modus_ponens for

P = Q (1.19)
R=— S (1.20)
PAR (1.21)
" QAS (1.22)

which is equivalent to
VPQRS : Prop,(P = Q) = (R = S) = (PAR) = (QAS)
which would be

Lemma double_modus_ponens : forall P Q R S : Prop, (P->Q) -> (R->S) -> (P /\ R) -> (Q /\ S).

using constructive logic. Follow the guidelines for submitting constructive proofs
using Coq.
Problem 1.16 Prove that

P = Q = (P < Q) (1.23)

using the Coq syntax
Lemma bothtrue : forall P Q : Prop, P -> Q -> (P <> Q).

Problem 1.17 Prove that
P = -Q = (P < Q) (1.24)

using the Coq syntax
Lemma bothfalse : forall P Q : Prop, "P -> "Q -> (P <> Q).

Problem I.18 Prove the transitivity of logical equivalence
(P = Q) = (Q < R) = (P < R) (1.25)

using the Coq syntax
Lemma iff_trans : forall P Q R : Prop, (P <-> Q) -> (Q <-> R) -> (P <-> R).

Problem 1.19 Prove that functions with multiple arguments can be turned
into a series of function taking two arguments, one of which is another function,

(PANQ) = R) = (P = (Q = R)) (1.26)

using the Coq syntax
Lemma curry : forall P Q R : Prop, ((P /\ Q) ->R) -> (P -> (Q -> R)).

Also, prove the converse
Lemma uncurry : forall P Q R : Prop, (P -> (Q -> R)) -> ((P /\ Q@) -> R).



REFERENCES 41
Problem 1.20 Prove that disjunction in an implication can be split into two
simpler implications,

(PVQ) = R) — ((P = R)AN(Q = R)) (1.27)

using the Coq syntax

Lemma or_uni : forall P Q R : Prop, ((P \/ Q) -> R) <-> ((P -> R) /\ (Q -> R)).

Problem 1.21 Prove that conjunction in an implication can be split into two
simpler implications,

(P = (QAR)) < ((P = Q)N (P = R)) (1.28)

using the Coq syntax

Lemma and_uni : forall P Q R : Prop, (P -> (Q /\ R)) <-> ((P -> Q) /\ (P -> R)).

Problem 1.22 Prove that equality is a symmetric relation,
P=Q = Q=P (1.29)

using the Coq syntax

Lemma eq_symmetric : forall P Q : Prop, P=Q -> Q = P.

Problem 1.23 Prove that equality is a symmetric relation,
P=Q = Q=P (1.30)

using the Coq syntax

Lemma eq_transitive : forall P QR : Prop, P=Q ->Q =R -> P =R.
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CHAPTER 1. PROPOSITIONAL LOGIC



Chapter 2

Predicate Logic

Suppose that you want to teach the ’cat’ concept to a very young child. Do you
explain that a cat is a relatively small, primarily carnivorous mammal with retractible
claws, a distinctive sonic output, etc.? I’ll bet not. You probably show the kid a lot of
different cats, saying ’kitty’ each time, until it gets the idea. To put it more generally,
generalizations are best made by abstraction from experience.

— R. P. Boas

2.1 Predicates and Quantifiers

A predicate is a function from some domain D to the type Prop, or we can think
of it as a function which returns a proposition. We normally denote a predicate
as P(z). For example, the predicate P(z) : x > 5 applies to the domain of
natural numbers. A predicate may have any number of arguments, such as
P(z,y,z) :x+y > bz

In order to derive truth values from predicates, we constrain or quantify the
input values. If we want to know if a predicate P is true for every element of
the domain, we would use the universal quantifier

Vz € D, P(). (2.1)

which is translated as “for all z in D, P is true”. If instead we wanted to know
if P was true for any of the elements in the domain, we would use the existential
quantifier

3z € D, P(z). (2.2)

which is translated as “there exists an x in D such that P is true”. We often
omit the domain from the quantifier if it is clear from the context.

We can express the truth of a statement of predicate logic using a truth table
in the same way we treated propositional logic. Suppose that for the domain
D ={a,b,c}, P(x,y) has truth values

43
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where the first argument indicates the row (vertical), and the second indicates
the column (horizontal). The statement Jz3y, P(x,y) asks whether any entry
in this table is true. Since P(a,a) is true, the statement is true. The element
P(a,a) is called a witness, which is what is needed to establish the truth of
an existential statement. The statement VaVy, P(x,y) asks whether all the en-
tries in the table are true. Since P(b,b) is false, the statement is false. The
element P(b,b) is called a counterexample, which is what is needed to establish
the falsity of a universal statement. We can also use P to demonstrate that the
universal and existential quantifiers do not commute, although existential quan-
tifiers commute among themselves, as do universal quantifiers. The statement
JaxVy, P(x,y) asks whether there is a row where all entries are true. Since no
row has all trues, this statement is false. However Vy3z, P(z,y) asks whether
each column has a true entry, which is true.

In order to understand the negation of the existential quantifier, =3z, P(x),
we recall that the existence of a witness P(a) proves the statement. Thus, the
negation means that no witness can be found, so that all the evaluations of
P are false, or in predicate logic terms Vz, =P (z). Similarly, if we negate the
universal quantifier, =Vz, P(z), it means that a counterexample can be found,
or there exists an « which contradicts P, 3z, P (z). This is the analogue of the
De Morgan relation for quantifiers.

We can imagine the action of quantifiers by explicitly expanding them for a
given domain. Suppose that we are using the domain D from above with three
elements. Then the statement

Vz : D, P(x)

would be equivalent to the chain of conjunctions
P(a) A P(b) A P(c).

If we had an infinite type, like the natural numbers,

vn : N, P(n)
then the chain would be infinite.

PO)AP(I)AP(2)...AP(n)A ...

The existential quantifier

Jz: D, P(x)
behaves like a chain of disjunctions

P(a)V P(b) V P(c).
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since it needs to pick out just one witness, and the infinite version
In: N, P(n)
is similar
PO)VP()VP2)...VP(n)V...

We can reinterpret quantifiers from the point of view of our constructive
system by thinking of them as functions. Suppose that we know that a universal
statement is true,

Vn : N, P(n).

That means that we can produce a proof of P(n) for any natural number n.
Thus we can think of the universal quantifier as a function which takes in a
predicate P and any member n of the domain, producing a proof of P(n). In
this sense, universal quantification is just like implication, and we use exactly
the same tactics to handle it as we do for implication. When we prove a universal
statement by induction, we are constructing an infinite tower of implications, as
we will see in Section 4.2. In Coq, if a universal statement is in our hypotheses,
we can apply it to any member of the domain to generate a specific proof.
If an existential statement is true

In : N, P(n),

it means that there is some n for which we can prove P(n). Thus we can think of
the existential quantifier as a function that takes in a predicate P and produces
a member of the domain n, the witness, and a proof of P(n). When an existence
statement is one of our hypotheses, we can extract the witness using the destruct
tactic.

2.2 Using Coq

We must first setup our proof environment, initializing variables with the correct
types.

Coq < Section Pred_Examples.

Coq < Variables A : Set.
A is declared

Coq < Variables P Q : A->Prop.
P is declared
Q is declared

We see that the predicates P and ) map set elements to propositions, so that
if x € A, P(x) is a proposition. Since the proposition has a truth value, we can
also think of P as a Boolean function A — {T,F}.
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We will try and prove that the existential quantifier distributes over disjunc-
tion, meaning

Jr: A Px)VQ(r) <= (Fzr: A Px)V (3r:AQ=)). (2.3)
We can state the forward implication, ex_dist_or_for, use the introduction rule

for implication, and then eliminate the quantifier in the hypothesis.

Coq < Lemma ex_dist_or_for : (exists x:A, P x \/ Q x) -> (ex P) \/ (ex Q).
1 subgoal

A : Set
P, Q : A -> Prop

(exists x : A, P x \/ Q x) -> (exists y, P y) \/ (exists y, Q y)

ex_dist_or_for < intro H.
1 subgoal

A : Set
P, Q : A -> Prop
H: exists x : A, Px \/ Q x

(exists y, P y) \/ (exists y, Q y)

ex_dist_or_for < destruct H.

1 subgoal
A : Set
P, Q : A -> Prop
x : A
H:Px\/Qx

(exists y, P y) \/ (exists y, Q y)

As a counterpart to the introduction rule, eliminating a hypothesis containing
an existential quantification produces a variable that satisfies the quantified
formula, or witness, which here is x. Now we can treat the new hypothesis H
just as we did in propositional logic and do a proof by cases.

ex_dist_or_for < destruct H.
2 subgoals

: Set

, Q : A -> Prop
A
: P x

X Yo

(exists y, P y) \/ (exists y, Q y)

subgoal 2 is:

(exists y, P y) \/ (exists y, Q y)
For the first case, we use the introduction tactic for disjunction, and then a
new introduction tactic for the witness called exists that allows us to satisfy the
existence clause.

ex_dist_or_for < left.
2 subgoals
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exists y, Py

subgoal 2 is:
(exists y, P y) \/ (exists y, Q y)

ex_dist_or_for < exists x.
2 subgoals

: Set

, Q : A -> Prop
A
: P x

X Yo

P x

subgoal 2 is:
(exists y, P y) \/ (exists y, Q y)

ex_dist_or_for < assumption.

1 subgoal
A Set
P, Q : A -> Prop
x : A
H:Qx

(exists y, P y) \/ (exists y, Q y)

We do the same thing for the other case, and the lemma is proved.

ex_dist_or_for < right.

1 subgoal
A : Set
P, Q : A -> Prop
x : A
H:Qx

exists y, Qy

ex_dist_or_for < exists x.
1 subgoal

: Set

, Q : A -> Prop
A
:Q x

moX Yo

Q x

ex_dist_or_for < assumption.
No more subgoals.

ex_dist_or_for < Qed.
intro H.

(destruct H).
(destruct H).

left.

exists x.
assumption.

right.
exists x.
assumption.

Qed.
ex_dist_or_for is defined
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Coq <

The reverse implication is proved in Problem 3.

We can also try to prove the DeMorgan relation for the existential quantifier,
demorgan_forall. The forward implication is straightforward. We first use in-
troduction to eliminate the implication. Then we use the unfo1d tactic to replace
=P with P = F,

Coq < Lemma demorgan_forall : (forall x : A, P x) -> ~ (exists y : A, "P y).
1 subgoal

A : Set
P, Q : A -> Prop

(forall x : A, P x) -> ~ (exists y : A, " P y)

demorgan_forall < intro H.
1 subgoal

A : Set
P, Q : A -> Prop
H : forall x : A, P x

~ (exists y : A, " P y)

demorgan_forall < unfold not.
1 subgoal

A : Set
P, Q : A -> Prop
H : forall x : A, P x

(exists y : A, P y -> False) -> False

We eliminate the implication, and then use the destruct tactic to produce a
witness for the existential hypothesis.

demorgan_forall < intro.
1 subgoal

A : Set

P, Q : A -> Prop

H : forall x : A, P x

HO : exists y : A, P y —> False

False

demorgan_forall < destruct HO.

1 subgoal
A : Set
P, Q : A -> Prop
H : forall x : A, P x
x : A

HO : P x -> False

False

Now we apply hypothesis #o to generate the goal P(z). Finally we apply H,
since it says that P(z) is true for all z, so P(x) must be true.

demorgan_forall < apply HO.
1 subgoal
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: Set

, Q : A->Prop
: forall x : A, P x
: A

HO : P x -> False

=R

P x

demorgan_forall < apply H.
No more subgoals.

demorgan_forall < Qed.
intro H.

(unfold not).

intro.

(destruct HO).

(apply HO).

(apply H).

Qed.
demorgan_forall is defined

The proof done with shorthand, without unfolding the negation statements, is
given below.

Coq < Lemma demorgan_forall : (forall x : A, P x) -> ~ (exists y : A, "P y).
1 subgoal

A : Set
P, Q : A -> Prop

(forall x : A, P x) -> ~ (exists y : A, " P y)

demorgan_forall < intro H.
1 subgoal

A : Set
P, Q : A -> Prop
H : forall x : A, P x

~ (exists y : A, " P y)

demorgan_forall < intro H1.
1 subgoal

. Set
, Q : A->Prop

: forall x : A, P x
1 : exists y : A, ~

oo Yo

Py

False

demorgan_forall < destruct H1.
1 subgoal

A : Set

P, Q : A -> Prop

H : forall x : A, P x
X

False

demorgan_forall < destruct HO.
1 subgoal

A : Set
P, Q : A -> Prop
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H : forall x : A, P x
x : A

P x

demorgan_forall < apply H.
No more subgoals.

demorgan_forall < Qed.
intro H.

intro H1.

(destruct H1).
(destruct HO).

(apply H).

Qed.
demorgan_forall is defined

Coq <

The reverse implication, however, cannot be proved in intuitionistic logic, for
the same reason that we could not prove the converse of the contrapositive law.
In Problem 5, we construct a weaker version which can be proved.

2.3 Inductive Types

Induction is reasoning from the specific to the general, as opposed to its dual
deduction, which reasons from the general to the specific. In essence, induction
is no more than reasoning by cases, which is clear from finite induction. Infinite
induction makes use of chains of implications to fill out the entire universe of
cases. In the end, induction generates the general statement from which deduc-
tion begins. In fact, deduction is just the application of a universal quantification
to a specific proposition.

Inductive types are used by Coq to subsume the different type definitions
found in conventional programming languages. Each inductive type corresponds
directly to a computation, based on pattern matching and recursion. These com-
putation structures provide the basis for recursive programming and induction
in Coq.

The simplest inductive type is False, which has no members, and we say that
the type is not inhabited. It is the analogue of the empty set in type theory.
When we reason inductively using this type, there are no cases to consider as
we see from its definition,

Coq < Print False.
Inductive False : Prop :=

Coq < Print False_ind.
False_ind = fun P : Prop => False_rect P
: forall P : Prop, False -> P

which means that ' = P is true for any P. However, we do not actually
use the rule, since the type is not inhabited, unless we are doing a proof by
contradiction.

The type with only one member we call True, and its one member we can
call I, or sometimes triv for trivial. When using induction with this type, there
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is only one case to check, namely that the proposition itself can be proved.
Thus, T = P is true if and only if P can be proved.
Coq < Print True.

Inductive True : Prop := I : True

Coq < Print True_ind.
True_ind =
fun P : Prop => True_rect (P:=P)

: forall P : Prop, P -> True -> P

The type Bool has two members, true and false. Note that these are just
names, and do not relate to proving propositions. When using finite induction
for a predicate over the bool domain, we must check two cases, namely P(true)
and P(false). If these are both provable, then we have our general statement
Vb : bool, P(b).

Coq < Print bool.
Inductive bool : Set := true : bool | false : bool

Coq < Print bool_ind.
bool_ind =
fun P : bool -> Prop => bool_rect P
: forall P : bool -> Prop, P true -> P false -> forall b : bool, P b

2.3.1 Types without Recursion

Inductive types are capable of representing types without recursion, akin to the
record types with variants that are represented in C using struct and union types.
For example, for the boolean type in Coq
Coq < Print bool.
Inductive bool : Set := true : bool | false : bool
and we could imagine more elaborate enumerated types, such as
Inductive pdetype : Set :=

elliptic : pdetype | parabolic : pdetype | hyperbolic : pdetype.
The elements of the type are called constructors of the type, in analogy with
the constructors for objects of a given type.

In order to reason about and compute on data of this type, Coq adds induc-
tion theorems automatically when the type is defined. For the boolean type,
the first theorem is called voo1_ind, Which encapsulates the induction principle
associated with the inductive definition,

Coq < Check bool_ind.
bool_ind

: forall P : bool -> Prop, P true -> P false -> forall b : bool, P b
What is this induction theorem saying? If we take any predicate P over the
booleans, then proving that P(T) is true and P(F) is true implies that P holds
over all booleans. So induction over a finite set just means testing the predicate
on every member of the set. Therefore, a similar theorem exists for the PDE
type

Coq < Check pdetype_ind.
pdetype_ind
: forall P : pdetype -> Prop,
P elliptic -> P parabolic -> P hyperbolic -> forall p : pdetype, P p
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where again we see that the content of the theorem is that in order for some
predicate to hold for all members of the inductive type, it must hold for each one
individually. Coq also create variants pdetype_rec and pdetype_rect Which replace
the prop sort in the predicate with set and Type sorts respectively.

We can do a simple proof by induction for the paetype type, pde_equal

Coq < Theorem pde_equal : forall p : pdetype, p = parabolic \/ p = elliptic \/ p = hyperbolic.
1 subgoal

forall p : pdetype, p = parabolic \/ p = elliptic \/ p = hyperbolic

pde_equal < induction p.
3 subgoals

elliptic = parabolic \/ elliptic = elliptic \/ elliptic = hyperbolic

subgoal 2 is:

parabolic = parabolic \/ parabolic = elliptic \/ parabolic = hyperbolic
subgoal 3 is:

hyperbolic = parabolic \/ hyperbolic = elliptic \/ hyperbolic = hyperbolic

pde_equal < right.
3 subgoals

elliptic = elliptic \/ elliptic = hyperbolic

subgoal 2 is:

parabolic = parabolic \/ parabolic = elliptic \/ parabolic = hyperbolic
subgoal 3 is:

hyperbolic = parabolic \/ hyperbolic = elliptic \/ hyperbolic = hyperbolic

pde_equal < left.
3 subgoals

elliptic = elliptic

subgoal 2 is:

parabolic = parabolic \/ parabolic = elliptic \/ parabolic = hyperbolic
subgoal 3 is:

hyperbolic = parabolic \/ hyperbolic = elliptic \/ hyperbolic = hyperbolic

pde_equal < reflexivity.
2 subgoals

parabolic = parabolic \/ parabolic = elliptic \/ parabolic = hyperbolic

subgoal 2 is:
hyperbolic = parabolic \/ hyperbolic = elliptic \/ hyperbolic = hyperbolic

pde_equal < left.
2 subgoals

parabolic = parabolic

subgoal 2 is:
hyperbolic = parabolic \/ hyperbolic = elliptic \/ hyperbolic = hyperbolic

pde_equal < reflexivity.
1 subgoal
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hyperbolic = parabolic \/ hyperbolic = elliptic \/ hyperbolic = hyperbolic

pde_equal < right.
1 subgoal

hyperbolic = elliptic \/ hyperbolic = hyperbolic

pde_equal < right.
1 subgoal

hyperbolic = hyperbolic

pde_equal < reflexivity.
No more subgoals.

pde_equal < Qed.
(induction p).
right.

left.
reflexivity.

left.
reflexivity.

right.
right.
reflexivity.

Qed.
pde_equal is defined

We can analyze exactly what induction is doing here by going through the steps
by hand. First we introduce a hypothesis for the quantification,

Coq < Theorem pde_equal : forall p : pdetype, p = parabolic \/ p = elliptic \/ p = hyperbolic.
1 subgoal

forall p : pdetype, p = parabolic \/ p = elliptic \/ p = hyperbolic

pde_equal < intro p.
1 subgoal

p : pdetype

p = parabolic \/ p = elliptic \/ p = hyperbolic

Then we use the pattern tactic to make our goal a function application. This
gives us a predicate instead of a raw statement,

pde_equal < pattern p.
1 subgoal

p : pdetype

(fun pO : pdetype => p0 = parabolic \/ pO = elliptic \/ pO = hyperbolic) p

Finally, we apply the induction principle for this type,

pde_equal < apply pdetype_ind.
3 subgoals

p : pdetype

elliptic = parabolic \/ elliptic = elliptic \/ elliptic = hyperbolic
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subgoal 2 is:

parabolic = parabolic \/ parabolic = elliptic \/ parabolic = hyperbolic
subgoal 3 is:

hyperbolic = parabolic \/ hyperbolic = elliptic \/ hyperbolic = hyperbolic

We could also accomplish the same thing using the e1im tactic, which uses pattern
and apply behind the scenes. An even lower level tactic, case, takes a goal and
replaces it with several goals, each one derived from one part of the inductive
type.

We can make functions that act on an inductive type using pattern matching.
For example,

Definition mg_works (p : pdetype) :=

match p with
| hyperbolic => False

| other => True
end.

and evaluate them on input data

Coq < Eval compute in (mg_works elliptic).

= True

: Prop

We can use the simp1 tactic to replace a function call with the result when
using inductive types. For example, we can use it to prove the simple statement
below, no_hyp_mg

Coq < Theorem no_hyp_mg : mg_works hyperbolic = False.
1 subgoal

mg_works hyperbolic = False

no_hyp_mg < simpl.
1 subgoal

False = False

no_hyp_mg < reflexivity.
No more subgoals.

no_hyp_mg < Qed.
(simpl).
reflexivity.

Qed.
no_hyp_mg is defined

Sometimes, we end up with statements about the equality of constructors in
the inductive type. As a simple example, let us try to prove that

Coq < Lemma simple : ~ elliptic = hyperbolic.
1 subgoal

elliptic <> hyperbolic

simple < unfold not.
1 subgoal
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elliptic = hyperbolic -> False

simple < intro H.
1 subgoal

H : elliptic = hyperbolic

False

We need to show a contradiction here, and we can use the discriminate tactic,
which examines the inductive type to see which equalities are possible.

simple < discriminate.
No more subgoals.

simple < Qed.
(unfold not).
intro H.

discriminate.

Qed.
simple is defined

We can explain the operation of discriminate by replacing our goal with a function
that produces the same result using the change tactic. This replaces a term with
another convertible term, meaning that the definitions are equal. This is the
same process that the simp1 tactic uses, but with change we can precisely control
what will be substituted.

simple < change ((fun p:pdetype => match p with | elliptic => True

_ => False end) hyperbolic).
1 subgoal

H : elliptic = hyperbolic

(fun p : pdetype =>
match p with

| elliptic => True

| parabolic => False
| hyperbolic => False
end) hyperbolic

Now we can use the equality in hypothesis 1 to rewrite the goal, making the
proof trivial.

simple < rewrite <- H.
1 subgoal

H : elliptic = hyperbolic

True

simple < trivial.
No more subgoals.

simple < Qed.

(unfold not).

intro H.

(change

((fun p : pdetype => match p with

| elliptic => True
| _ => False
end) hyperbolic)).

(rewrite <- H).

trivial.
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Qed.
simple is defined

2.3.2 Types with Recursion

The natural numbers are the archetypal example of an inductive type which
uses recursion,

Coq < Print nat.
Inductive nat : Set := 0 : nat | S : nat -> nat

We obtain a natural number either by using 0, or by applying the successor
function S to an existing natural number. Thus if we want to prove that some
predicate holds for all natural numbers, we start by proving that it holds for 0,
and then we prove that if it holds for some natural number n, it holds for its
successor n+1. This inductive argument is encapsulated in the nat_ina function,

Coq < Print nat_ind.
nat_ind =
fun P : nat -> Prop => nat_rect P
: forall P : nat -> Prop,
PO -> (foralln : nat, Pn -> P (S n)) -> forall n : nat, Pn

As a simple example, let us prove that addition is associative. After introducing
hypotheses, we use induction on x with the e1im tactic, plus_assoc

Coq < Theorem plus_assoc : forall x y z:nat, (x+y)+z = x+(y+z).
1 subgoal

forall x y z : nat, x +y +z = x + (y + 2)

plus_assoc < intros x y z.
1 subgoal

X, ¥, z : nat

x+ty+tz=x+(y+z)

plus_assoc < elim x.
2 subgoals

X, ¥, z : nat

0O+y+z=0+(y+ 2)

subgoal 2 is:
forallnm : nat, n+y+z=n+(y+2) >Sn+y+z=8Sn+(y+2z)

The first goal produced just replaces x with 0, and we can simplify this expres-
sion easily (you could also use the pius_o_n lemma),

plus_assoc < simpl.
2 subgoals

X, ¥, z : nat

ytz=y+z

subgoal 2 is:
foralln : nat, n+y+z=n+(y+2) >Sn+y+z=8n+(y+ 2
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plus_assoc < reflexivity.
1 subgoal

X, ¥, z : nat

foralln : nat, n+y+z=n+ (y+2) >Sn+y+z=8n+(y+2z)
Next, we introduce the induction hypothesis (which would have been done au-
tomatically if we used induction),

plus_assoc < intros n IHn.
1 subgoal

X, ¥, Z, n : nat
IHn : n+y +2z=n+ (y + z)

Sn+y+z=8Sn+ (y+ 2

and rewrite the goal so that we can apply it,

plus_assoc < rewrite plus_Sn_m.
1 subgoal

X, ¥, Z, n : nat
IHn :n+y+z=n+ (y + 2)

Sm+y)+z=8n+(y+2z)

plus_assoc < rewrite plus_Sn_m.
1 subgoal

X, ¥, Z, n : nat
IHn : n+y+z=n+ (y + 2)

Sm+y+2z)=Sn+(y+2

plus_assoc < rewrite plus_Sn_m.
1 subgoal

X, y, z, n : nat
IHn : n+y +2z=n+ (y + 2z)

S+y+2z)=8((@+ (y+2)

plus_assoc < rewrite IHn.
1 subgoal

X, ¥, Z, n : nat
IHn : n+y +2z=n+ (y + 2z)

S+ (y+2) =5 @+ (y+2)

making the final goal trivial.

plus_assoc < reflexivity.
No more subgoals.

plus_assoc < Qed.
(intros x y z).
(elim x).
(simpl).
reflexivity.

(intros n IHn).
(rewrite plus_Sn_m).
(rewrite plus_Sn_m).
(rewrite plus_Sn_m).
(rewrite IHn).
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Tactic Purpose Example Use
(£ %) Apply a function f to x (H a)
pose Define a local variable pose (Ha := H a)
symmetry Reverse terms in an equality X =y
retlexivity | A quantity is equal to itself G: x=x
_ . . H: x*x + x*2 =x* (x + 2)
rewrite Substitute equal quantities G SR TP =SE G+ D)
discriminate | Determine whether two member H: 0=1
. . G: F
of an inductive type are equal
n, m: nat

inversion Determine how an expression H: Sn=Sm

with inductive types could have G: n=m

been constructed

Table 2.1: Additional Coq tactics for Induction and Inductive Types

reflexivity.

Qed.

plus_assoc is defined

2.4 Problems

Problem II.1 Using the truth tables for three predicates P, @, and R, over
the domain D = {a, b, ¢}, where the first argument is the row of our truth table
and the second is the column. For example, P(b,c) = F, whereas P(c,b) =T.

P‘abc Q‘abc R‘abc
a|T F T a | F T F a|F F F
b|F F F b|T F T b|F F F
c|T T T c|T T T c|F F F

Evaluate the truth values of the statements of predicate logic below, and given
a one line explanation for the truth value.

1. JaVy, P(y, x)

2. JaVy, P(z,y)

3. 323y, Q(x,y)

4. VaVy, - R(x,y)

Problem II.2 Using the truth tables for three predicates R, S, and T, over
the domain D = {x,y, z}, where the first argument is the row of our truth table
and the second is the column. For example, R(z,z) = T, whereas R(z,x) = F.
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N < M| =
el e e
H =<
HH 3N
N < K|
e leS eS| s
o 3 <
= N
N < M|
H e S
Sl SR 51
H 33N

Evaluate the truth values of the statements of predicate logic below, and given
a one line explanation for the truth value.

1. VaVy, -S(z,y)
2. J23y, R(z,vy)
3. Javy, T(y,x)
4. Favy, T (z,y)
Problem II.3 Generate Proof: ex_dist_or_bac, demonstrating that the exis-
tential predicate distributes over disjunction,
Fy:APy)vV(Ty: A Qy) = Jz: A PxVQr (2.4)

using the Coq syntax

Lemma ex_dist_or_bac : forall A : Set, forall P Q : A->Prop, (ex P) \/ (ex Q) -> (exists x:A, P x \/ Q x).

Note that the reverse of this implication is proved in the notes.

Problem II.4 Generate Proof: fa_dist_and, demonstrating that the universal
quantifier distributes over conjunction,

(Vo : A, Pr A Qx) < (Vx:A,Px)A(Vx: A, Qx) (2.5)

using the Coq syntax

Lemma fa_dist_and : forall A : Set, forall P Q : A->Prop, (forall x, P x) /\ (forall x, Q x) <-> (forall x :

Problem I1.5 We can construct a weaker version of De Morgan’s Law for the
existential quantifier, shown below. Generate Proof: demorgan_exists for the
statement,

dz: A —~—Pr = —Vy:A -Py (2.6)

using the Coq syntax

Lemma demorgan_exists : forall A : Set, forall P : A->Prop, (exists x : A, “"P x) -> “(forall y : A, "P y).

Problem I1.6 Prove the Frobenius Rule
J: A, QANP(z) < QATx: A P(z) (2.7)

using the Coq syntax

A, Px/\Qx).

Lemma frobenius : forall A : Set, forall P : A->Prop, forall Q : Prop, (exists x : A, Q /\ P x) <-> Q /\ (exists x : A, P x).
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Problem II.7 Prove the common inference technique
Ve : A Jy: A -P(x,y) = —-Jz: A Vy: A Plx,y) (2.8)

using the Coq syntax

Lemma hodges : forall A : Set, forall P : A -> A -> Prop, (forall x : A, exists y : A, “(P x y)) —->
(“exists x : A, forall y : A, (P x y)).

which can be found in the delightful An Editor Recalls Some Hopeless Papers
by Wilfred Hodges.
Problem I1.8 Prove that the existential quantifier distributes over conjunc-
tion

Jr: A, PrANQx = (Jx: A, Px)A(3Bx: A Q) (2.9)

using the Coq syntax

Lemma ex_dist_and : forall A : Set, forall P Q : A -> Prop,
(exists x : A, P x /\ Q x) -> (exists x : A, P x) /\ (exists x : A, Q x).

Problem I1.9 Prove that the universal quantifier distributes over disjunction
(Vo : A,Pr)Vv (Vr: A,Qxr) = Vr:A PxVQr (2.10)

using the Coq syntax

Lemma fa_dist_or : forall A : Set, forall P Q : A -> Prop,
(forall x : A, P x) \/ (forall x : A, Q x) -> (forall x : A, P x \/ Q x).

Problem II1.10 Prove that the universal quantifier distributes over implica-
tion

(Ve : A Pr = Q) = (Vz:A,Pr) = (Va:A Qux) (2.11)
using the Coq syntax

Lemma fa_dist_imp : forall A : Set, forall P Q : A -> Prop,
(forall x : A, Px -> Q x) -> (forall x : A, P x) -> (forall x : A, Q x).


http://www.logic.univie.ac.at/~ykhomski/ST2013/Hodges.pdf

Chapter 3

Sets, Relations, and
Functions

THE AXIOM OF CHOICE ALOWS
You To SELECT ONE ELEMENT
FRorl EACH SET A COLECTON

AND HAVE. IT” EXECUTED RS
AN EXAMPLE T0 THE OTHERS.

)

MY MATH TEACHER WAS A BIG
BELIEVER IN PROOF BY INTIMIDATION,

https://xked.com/982/

— Randall Munroe

3.1 Sets

A set is a collection of things, called elements, which compose it. A set A
supports one predicate, contains, which we could write C(A,x), but instead it
is typical to write in infix notation = € A, or its negation ¢ A. We will have a
special notation for the set with no elements (there is only one), which we will
call the empty set and denote (). Note that since this is the only predicate, it
would be impossible to know if a set contained duplicate elements, so they do
not, and the elements are not in any order. We say that two sets are equal if
they contain the same elements. We can ask whether all the elements in a set
B are in the set A, which we denote

BCA= \zeA (3.1)
zeB

61
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If B C A but B # A, then we say that B is a proper subset of A and write
B C A. Note that

A=B < BCAANACB (3.2)

which says that equality means that any element of B is in A and any element
of Aisin B.

Clearly, VA,0 C A. We will also have special notation for some sets which
are used frequently, such as the set of natural numbers (N), integers (Z), rational
numbers (Q), and real numbers (R). We will often add ’plus’ to restrict a set
to the positive elements, such as the set of positive integers Z. The elements
of a set can be arbitrary objects, and in particular can be other sets.

It might seem that sets are not a very powerful concept, however they were
invented to lay the foundation for all other mathematics. For example, we
can represent the integers with sets, called the von Neumann ordinals, in the
following way

0=10

1= {0}

2={0.{0}}

3= {0,{0},{0,{0}}}
4={0,{0},{0,{03},{0, {0}, {0, {0} }}}

where each number is the set of all numbers less than itself. Thus we could,
in principle, reduce all of arithmetic to the simple operations of set theory, and
this was indeed attempted in Principia Mathematica by Russell and Whitehead.
However, this formalist dream ran aground on the beach of the Gédel Incom-
pleteness Theorems. Nevertheless, set theory remains a fundamental area of
mathematics.

The most basic way to define a set is to list the elements in the set explicitly.
Suppose that we want the set S of odd natural numbers less than ten. We could
write it as

S =1{1,3,5,7,9}. (3.3)

However, if we wanted all odd numbers less than one hundred, this is less con-
venient. Thus we also employ a notation which specifies a set by some predicate
over a domain which is true for all set elements,

A={zeN|O(z) ANz < 100}. (3.4)

This is often called set-builder notation. We will often omit the domain when
it is clear from context, or non-essential.

We will call the size of a set its cardinality and denote it |A|. For example,
|S| = 5 and |A| = 50. But what does it mean to “count the elements” in a
set? Counting has to do with the natural numbers, and sets are supposed to be
more basic than those. Let us say that a set has size n is there is a one-to-one
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matching of the elements of the set to the elements of the set {0,1,...,n — 1},
which we see is the set representing n in the von Neumann ordinals. Thus all
sets with four elements can be matched one-to-one with the set {0, 1,2,3}. The
beautiful thing about this definition for counting is that it generalizes cleanly
to the case of an infinite number of elements, as discovered by Georg Cantor.
For example, suppose we ask if the set of even numbers is smaller than the set
of natural numbers. This seems very reasonable since we leave out all the odd
numbers, however we have the correspondence

0 < 0
1l < 2
2 <— 4

n <= 2n

showing us that the sets have the same size, since every natural number is
matched to one and only one even number and similarly for the even numbers.
The same argument can be made for odd numbers by matching n to 2n+ 1. In
Section 3.2.2, we will see that this matching divides sets into equivalence classes,
and each class represents a cardinality.

Another way to construct sets is to build them from smaller sets. The union
is a set which contains all the elements in the argument sets

AUB={x|z € AV € B}, (3.5)

and it is no accident that its symbol is reminiscent of the or symbol (V). It dual
is the intersection,

ANB={x|x€ ANz € B}, (3.6)

which is a set containing the elements in common between the argument sets.
It is clear how to extend these operations to any number of sets

UAZ'Z{.T|\/CL'€AZ'} (3.7)
ﬂAl- = {z| /\x € A} (3.8)

The intersection and union operations also obey many identities obeyed by the
conjuction and disjunction operators, which are easy to prove starting with the
logical relations. As with many set definitions, we start with a generic element
x which is a member of the set. Consider the set AU (B N C) and expand the
definition using our set-builder notation,

AUBNC)={z|zec Avze(BNC)}, (3.9)
={z|zecAV(reBArze(C)}. (3.10)
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Now we can use the logical distributive relation,

AUuBNC)={z|(re AvzeB)A(zc AVva e ()}, (3.11)
={zx|ze(AUB)Az e (AUC)}, (3.12)
=(AUB)N(AUC). (3.13)

There is also the analogue of negation for sets, called the complement,
A={x|x¢ A}, (3.14)

which consists of all the elements in the domain that are not in A. Note that
the domain is just some larger set D, such that A C D. Other operators which
are sometimes used are

A-B={z|z€e ANz ¢ B} =ANB, (3.15)
AeB={z|zcA®zecB}=(A-B)U(B—-A4) (3.16)

Much reasoning about set operations can be reduced to propositional reasoning
about the predicates defining the sets. For example, we wish to evaluate the
proposition

Ao B A=A (3.17)
We can put it into set builder notation

AeBoA={z|zrcAdrecB}aA (3.18)
={z|rcAdrcBprec A} (3.19)

which we can evaluate using a truth table

Ca Cp | Ca®Cp Ca®Cp®Cy

T T F T
T F T F
F T T T
F F F F

and thus the proposition is false, but clearly A B®A = B and also AOB®B =
A.

3.1.1 Power Set

The power set of a set A, denoted P(A), is the set consisting of all possible
subsets of A. For example, if A ={1,2,3} then

P(A) ={0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. (3.20)

The cardinality of the power set |P(A)| is 214l since we can imagine creating
it by taking the empty set and producing two sets from it, one containing the
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{a}/{}\
/N ,/\\

{a, b} {a} {b}

ATVATNA /\

{a,b,¢}{a,b} {a,c} {a} {b;c} {0} {¢}

Figure 3.1: Construction of the power set for {a,b, c}.

first element and one that does not, and then repeating this procedure for each
element on the new sets. Each decision, to include a given element or not, is
like an edge in a binary tree and each leaf of the tree will be a subset. There are
2! leaves in a binary tree of depth I, and we need to make a decision for each
element, so our tree has 2/4l leaves. The tree for our example set is shown in
Fig. 3.1.

Clearly, the size of the power set |P(A)] is greater than the size of the initial
set |A| when A is a finite set. However, what happens when A is an infinite set?
How do we compare the sizes of S and P(S) when |S] is infinite, for instance
when S is the set of natural numbers?

To attack this problem, we will start with the example of real numbers in
(0,1). This may seem counterintuitive, but if we imagine that real numbers are
represented by a finite or infinite series of digits, it seems clear that each real
number is a sequence of natural numbers, corresponding to its digit series. Now
suppose that we want to count the real numbers, so we line up each number,
with the row being a real number, and the ith column being the ith digit of the
number. We say that for each natural number i, f(¢) is a real number. Now we
construct a new real number 7 such that it is different from the first number in
the first digit, the second number in the second digit, and the ith number in
the ith digit. If we indicate the ith digit of number x by x;, then we have

r={ri € Nr; # f(i):}. (3.21)

or r is the collection of digits r; such that its ith digit is not the same as that
of f(¢). The number r cannot appear in our list, since it is always different in
some position from our original list of numbers. We can see this by assuming
that for some natural number j, f(j) = r. This means

fG)=r = Yef(i)e =1 (3.22)
= f(j);=rj (3.23)
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117 2 9 9 3
218 4 1 6 1
311 5 3 6 0
415 2 5 8 5
7T 9 2 4 0
Figure 3.2: Construction of a number » = 63279..., guaranteed not to be in

our infinite list of real numbers since it differs from each number at the diagonal
digit.

but from the definition of r, we have that

f@); #rj. (3.24)

This is a contradiction, and thus we reject the assumption that 3j, f(j) =
r. This is called a diagonal argument because we use the diagonal digit f(4);
to define our number. Note that for the definition of r, we had to choose
one member each from an infinite array of sets to construct our new set. It
turns out that this kind of construction employs the Axiom of Choice, which is
independent of the rest of the axioms of set theory. What we have shown is that
there are more real numbers than natural numbers, which might be a surprising
thing, since they are both infinite sets.

A slightly more abstract diagonal argument was used by Cantor to prove that
for every set S, the power set P(S) has a larger cardinality than S itself, which
is known as Cantor’s Theorem. We will prove the theorem by contradiction.
First we use the definition of cardinality as a one-to-one map between sets, so
consider the map f from S to P(S). If P(S) is larger than S, it means that
some element T' of P(S) is not equal to any f(s),s € S. So we will assume the
negation, namely that all elements of P(S) are mapped to by some element of
S. Cantor’s amazing insight was to explicitly construct a specific element which
cannot be in the map. Consider the subset T C S,

T={seS|s¢ f(s)} (3.25)

Our initial assumption means that there exists some s € S such that f(s) =7T.
But by construction of T, s € T <= s ¢ f(s) = T. This is a contradiction,
since it says that s is both in T" and not in 7. Thus our initial assumption, that
all elements of P(.5) are mapped to by some element of S, must be wrong. This
shows that P(S) is not the same size as S. On the other hand, the singleton map
o from S to P(S) defined by s — {s} means that |P(S)| > S. Consequently, we
must have |S| < |P(9)|.

Another way to explain this result is that for every s € S, either s is in T or
not. If s is in 7', then by definition of 7', s is not in f(s), so T is not equal to
f(s). On the other hand, if s is not in 7', then by definition of T, s is in f(s),
so again T is not equal to f(s). We can imagine a table similar to our table
for the real numbers. The columns correspond to set elements, and the rows
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a b ¢ d e
1/1 0 1 1 1
210 0 1 0 1
3/]0 1 1 1 0
411 0 0 1 O

0 1 0 1 O

Figure 3.3: Construction of a subset 7' = {b, e, ...}, guaranteed not to be in our
infinite list of subsets since it differs from each subset at the diagonal member.

correspond to subsets. The table has a one if the element is contained in the
subset, and a zero if not. Thus, each row of values, instead of corresponding
to a number, is the indicator function for that subset. When we choose T to
be different on the diagonal, we make its indicator function different from every
subset in our list, exactly as we made the digit sequence for r different from
every other real number in our list. In fact, if we expanded our real numbers in
binary, it would be nearly identical.

3.2 Relations

A n-ary relation R can be defined as a predicate R(z1,...,z,) taking n ar-
guments, although we will be most interested in binary relations taking two
arguments. The graph of the relation, G(R), is the set of all inputs, ordered
tuples (1, ...,x,), for which the relation is true. It is called a relation because
we often use this structure to relate a set of things, such as “things within one
foot of this pole”. However, it is easier to think about the relation between just
two things.

A binary relation R is usually expressed using infix notation, such as aRb.
For example, the < operator is a binary relation “is less than”. So for our
universe {1, 2,3}, the graph of < is

G(<) = {(1,2),(1,3),(2,3)}. (3.26)

It is also possible to have different spaces for the domain and range of a relation.
For example, suppose we have three students, {Alice, Bob, Carl}, and two
classes, {CSE191, CSE410}. For the relation “is registered for”, we could have
the graph

G(R) = {(Alice, CSE191), (Bob, CSE191),
(Alice, CSE410), (Carl, CSE410)}. (3.27)

This makes it clear that the order of arguments matters, which we had seen
before for multi-argument predicates. We can also express this graph as a
diagram
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I

It is clear from the diagram that some inputs (Alice) can map to more than one
output (CSE191, CSE410). This is what separates relations from functions, as
we will see in Section 3.3.

We can think of the relation as a directed graph, if we let all the elements of
the input sets be the vertices, and we insert an edge from z to y each time the
proposition z Ry is true. If the sets X and Y are different, as in our registration
example, then this is a bipartite directed graph, meaning arrows start in one set
of vertices and finish in another disjoint from the first. If instead the two sets
are the same, X = Y, we can arrive at more general kinds of directed graphs,
detailed below.

The graph of a relation is the set of elements from the product space X x Y
which satisfy the relation. You are probably more familiar with the graph of
a function, meaning the pairs (x,y) where y = f(x). Scalar functions, where
Y =R, has graphs which are simple lines. For example, in the figure below we
graph two functions, y = z (blue) and y = %xQ (red), where X = [0,4]. The
purple shared region is the graph of the relation éxz <y <z

f(z)
fla)=a
fle) = ba?
/ T

When drawing graph, we do not have to restrict ourselves to the domain of real
numbers. For example, suppose that X =Y = N, so that we are looking at
relations among the natural numbers. We can make graphs in the same way,
but they are not continuous. Below, we should the graph of the function y = =
(red) and also the relation y < « (blue) for X = {0,1,2,3,4}.
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Y
y==x
L.
°
e o o
- o o @

When we think about the logical definition of a relation, it is a function
taking in (x,y) and producing a proposition whose truth value tells us whether
that point is included in the graph. We can formalize this definition (relation),
in Coq

Definition relation (X Y : Type) := X -> Y -> Prop.

We will classify relations by their algebraic properties, which we will illustrate
using common relations from arithmetic. A relation which is always true along
the diagonal, aRa = T, is called reflexive. For example, “less than or equal
to” is reflexive since z < z, but “less than” is not since x ¢ z. A relation is
symmetric if aRb = bRa, so that “less than or equal” is not symmetric since
1 < 2 but 2 £ 1, whereas “equal to” is symmetric since v =y = y = .
Another symmetric relation is “is a blood relative of”. An asymmetric relation
obeys aRb = -bRa, so that “less than” is asymmetric. An antisymmetric
relation means that aRb A bRa — a = b, so “less than or equal to” is
antisymmetric since ¢ < y Ay < x = z = y. Note that “less than” is
also antisymmetric, but equality is always false (empty). Finally a relation
is transitive if aRb AN bRc = aRc, so that “less than” is transitive since
a<bAb<c = a<c Also “is an ancestor of” is transitive, but “is a parent
of” is not.
Consider the following relations on our domain {1, 2, 3},

Ro ={(1,1),(1,2),(2,1),(2,2),(3,1),(3,3)}
Ry ={(1,1),(1,3),(2,2), (3, 1)}

Ry = {(273)}

Ry ={(1,1),(1,3)}

e Which relations are reflexive?
Only Ry since it contains {(1,1),(2,2), (3,3)}.

e Which relations are symmetric?
Only R;. Ry is missing (1,3), Ry is missing (3,2), and Rz is missing
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(3,1). Notice that if we write Ry as a Boolean matrix, then the matrix is
symmetric.

e Which relations are asymmetric?
Ounly Rs. All other relations have the diagonal element (1,1).

e Which relations are antisymmetric?
Ry and Rj are antisymmetric. Ry has both (1,2) and (2,1), and Ry has
both (1,3) and (3,1).

e Which relations are transitive?
R1, Ry and Rj are transitive. Ry is missing (3, 2).

These properties are manifested in the directed graphs we can draw to
present the relation. For example, if the relation is symmetric, then every time
we have an edge in one direction (zRy), there is a companion edge in the op-
posite direction (yRzx), so that the graph is actually undirected. If the relation
is transitive, every time we have a directed path that is made up of edges, say
rRy—yRz—zRa—-aRb, then we have an edge from the first to last vertex zRb.
This means if any two vertices are connected by a path, they are connected by
a single edge. If the relation is reflexive, then there is an edge from every vertex
to itself, x Rz, sometimes called a self loop.

We can formalize these definition using predicate calculus in Coq. For ex-
ample, a reflexive relation

Definition reflexive {X: Type} (R: relation X X) := forall a : X, R a a.

and a transitive relation.

Definition transitive {X: Type} (R: relation X X) := forall abc : X, (Rab) -> (Rbc)-> (Rac).

We can define symmetry,

Definition symmetric {X: Type} (R: relation X X) := forall ab : X, (Rab) -> (Rb a).

A relation R is antisymmetric if
Rab =— Rba — a =10

meaning that there can be no two element cycles, or loops in the graph.

Definition antisymmetric {X: Type} (R: relation X X) := forall ab : X, (Rab) -> (Rba) -> a =b.

If we suppose the relation is also transitive, then any cycle in graph of R can be
reduced to a two element cycle, using transitvity to compress the path. Thus
we will show in Section 77 transitive antisymmetric relations are acyclic, except
for trivial cycles on a single element.

3.2.1 Partial Orders

A relation R on a set A is called a partial order if it is reflexive, transitive, and
antisymmetric. The prototypical partial order is < since we saw above that it
falls into these classes, and in general we denote a partial order by <. The set
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together with the relation, (A, <), is called a poset, short for partially ordered
set. Why do we say “partially ordered”? In the case of <, the order is total,
meaning either < y or y < x or both is true. However we only require that
our partial order be transitive and antisymmetric, not that all elements of A be
comparable, so its possible that both x <y and y < x are false.

For example, consider A = P({1,2,3}) and < = C. Is this a partial
order? It is reflexive, since S C S is true of any set. It is transitive, since
SCTANT CU = S C U, and it is antisymmetric since by our definition
of set equality S =T <= T C SAS CT. However, it is not a total order
because

{1,2} € {2,3} A {2,3} € {1,2}, (3.28)

so we say that {1,2} and {2,3} are incomparable.

Notice that the directed graph for a partial order cannot have a cycle. Sup-
pose a cycle exists in the directed graph. Then there is a path from some vertex
z to itself, going through another vertex y. Since there is a path from x to y,
there must be an edge x Ry since the relation is transitive. Since there is a cycle,
there is also a path from y to x, and thus an edge yRx. Having both of these
edges implies that x = y because the relation is antisymmetric, but we assumed
at the beginning that z! = y, so the original assumption of a cycle must be
wrong. A directed graph with no cycles is called a directed acyclic graph or
DAG, and these characterize partial orders.

The prototypical partial order (also a total order) is the “less than or equal
to” relation. We can define this using an inductive predicate

Inductive le (n : nat) : nat -> Prop :=

le_n : (le n n)
| le_.S : forallm : nat, (lenm) -> (len (S m)).
We can prove some simple things about this order, using the theorems in the
inductive definition. For example, a number n is always less than or equal to
its successor Sn, which we will call n_le_Sn,

Coq < Lemma n_le_Sn : forall n, (le n (S n)).
1 subgoal

forall n : nat, le n (S n)

n_le_Sn < intro.
1 subgoal

n : nat

le n (S n)

n_le_Sn < apply le_S.
1 subgoal

n : nat

lenn

n_le_Sn < apply le_n.
No more subgoals.
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n_le_Sn < Qed.
intro.

(apply le_S).
(apply le_n).

Qed.
n_le_Sn is defined

We can formalize the notion of partial order
Definition order {X:Type} (R: relation X X) := (reflexive R) /\ (antisymmetric R) /\ (transitive R).
and try to prove that 1e is one. It is straightforward to prove that 1e is
le_reflexive,

Coq < Theorem le_reflexive : reflexive le.
1 subgoal

reflexive le

le_reflexive < unfold reflexive.
1 subgoal

forall a : nat, le a a

le_reflexive < intro a.
1 subgoal

a : nat

a <= a

le_reflexive < apply le_n.
No more subgoals.

le_reflexive < Qed.
(unfold reflexive).
intro a.

(apply le_n).

Qed.
le_reflexive is defined

To prove that it is transitive, theorem le_trans, we first introduce the hypothe-
ses

Coq < Theorem le_trans : transitive le.
1 subgoal

transitive le

le_trans < unfold transitive.
1 subgoal

forall a bc : nat, leab -> 1le bc ->1le a c

le_trans < intros a b ¢ Hab Hbc.
1 subgoal

a, b, ¢ : nat
Hab : le a b
Hbc : le b ¢
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le ac

and then carry out induction on the mc hypothesis. We can see that this makes
sense by looking at the induction theorem for 1e,

Coq < Print le_ind.
le_ind =
fun (n : nat) (P : nat -> Prop) (f : P n)
(fO : forallm : nat, lenm -> Pm -> P (Sm)) =>
fix F (n0 : nat) (1 : le n n0) {struct 1} : P n0 :=
match 1 in (le _ n1) return (P ni1) with
| len _ => f
| 1le.S _m 10 => fO m 10 (F m 10)
end
: forall (n : nat) (P : nat -> Prop),
Pn >
(forallm : nat, lenm ->Pm ->P (Sm) ->
forall n0 : nat, le n n0 -> P n0

Suppose that my predicate p) = 1e a n, then what we want to prove is that
forall ¢ : nat, le bc -> P ¢
noting that we also have (1e a v as a hypothesis. The induction theorem tells

us that we can prove that, using » = b and no = ¢, if we can prove p®) = 1e a b,
which we know, and

forallm : nat, lenm ->Pm -> P (S m)
which after plugging in becomes
forall m : nat, le bm -> le am -> le a (S m)
The proof assistant will handle all of these details smoothly. We start with our

base case just p() = 1e a b,

le_trans < induction Hbc.
2 subgoals

a, b : nat
Hab : le a b

leab

subgoal 2 is:
leaSm

le_trans < assumption.
1 subgoal

a, b : nat

Hab : le a b

m : nat

Hbc : le bm
IHHbc : le am

leasSm

The induction step, 1e nm -> P m -> P (s m), can be reduced to our induction hy-
pothesis using the inductive definition of 1e.

le_trans < apply le_S.
1 subgoal

a, b : nat
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Hab : le a b
m : nat

Hbc : le bm
IHHbc : le a m

leam

le_trans < assumption.
No more subgoals.

le_trans < Qed.

(unfold transitive).
(intros a b c Hab Hbc).
(induction Hbc).
assumption.

(apply le_S).
assumption.

Qed.
le_trans is defined

Moreover, we can prove that if successors of two numbers are related, then the
numbers themselves are related, which we will call Sn_le_.Sm__n_le_m. We start
by introducing hypotheses, and then we use the inversion tactic on the main
hypothesis. This tells us that there are two ways to construct this expression
inductively.

Coq < Lemma Sn_le_Sm__n_le_m : forall n m, le (S n) (Sm) -> le n m.
1 subgoal

forall nm : nat, le (Sn) (Sm) -> lenmn

Sn_le_Sm__n_le_m < intros n m HSnm.
1 subgoal

n, m : nat
HSnm : le (S n) (S m)

lenm

Sn_le_Sm__n_le_m < inversion HSnm.
2 subgoals

n, m : nat
HSnm : le (S n) (S m)
HO : n=nm

lemm

subgoal 2 is:
lenm

First, the two numbers could be equal, so that 1e_n applies

Sn_le_Sm__n_le_m < apply le_n.
1 subgoal

n, m : nat
HSnm : le (S n) (S m)

m0 : nat
HO : le (Sn) m
H:mO=m

lenm
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Second, it could be the case that Sn < m (since Sm was larger than Sn). We
can apply transitivity of 1e with a = n, b = Sn and ¢ = m, which says that

len (8n) >1le (Sn)m->lenm
and generates two subproofs. However, we already have 1e (s n) m as a hypoth-
esis, and we have proved 1e n (s n) above.

Sn_le_Sm__n_le_m < apply le_trans with (b := S n).
2 subgoals

n, m : nat
HSnm : le (S n) (S m)

m0 : nat

HO : 1le (Sn) m
H:mO=m

le n (S n)

subgoal 2 is:
le (Sn)m

Sn_le_Sm__n_le_m < apply n_le_Sn.

1 subgoal

n, m : nat

HSnm : le (S n) (S m)
m0 : nat

HO : 1le (Sn) m
H:mO=m

le (Sn)m

Sn_le_Sm__n_le_m < apply HO.
No more subgoals.

Sn_le_Sm__n_le_m < Qed.
(intros n m HSnm).

(inversion HSnm).
(apply le_n).

(apply le_trans with (b := S n)).
(apply n_le_Sn).

(apply HO).
Qed.

We have defined antisymmetry of a relation in Eq. 3.28, so we start our
proof, le_antisymmetric, with induction on a.

Coq < Theorem le_antisymmetric : antisymmetric le.
1 subgoal

antisymmetric le

le_antisymmetric < unfold antisymmetric.
1 subgoal

forall a b : nat, leab ->leba->a=»>b

le_antisymmetric < induction a.
2 subgoals
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forall b : nat, le O b ->1le b0 ->0=0>»

subgoal 2 is:
forall b : nat, le (Sa) b->1leb (Sa) ->Sa=h>D

For the base case, we introduce hypotheses, and then we analyze the hypothesis
b <= 0. There is only one possibility for the inductive predicate, namely that b
is zero. We use the inversion tactic to evaluate the cases, and then reflexivity
to obtain the conclusion.

le_antisymmetric < intros b HOb HbO.
2 subgoals

b : nat
HOb : 1e O b
HbO : 1le b O

0=">O

subgoal 2 is:
forall b : nat, le (Sa) b->1leb (Sa) ->Sa=»bD

le_antisymmetric < inversion HbO.
2 subgoals

b : nat

HOb : 1le O b
HbO : 1le b O
H:b=0

0=0

subgoal 2 is:
forall b : nat, le (Sa) b->1leb (Sa)->Sa=>

le_antisymmetric < reflexivity.
1 subgoal

a : nat
IHa : forall b : nat, leab ->leba->a=»>

forall b : nat, le (Sa) b->1leb (Sa) >Sa=hb

For the inductive step, we begin by introducing hypotheses, and then we make
use of the definition of natural numbers. We use the destruct tactic on the natural
number b, which distinguishes two cases. First, b could be zero, and then we
can use the inversion tactic on hypothesis Hsab.

le_antisymmetric < intros b HSab HbSa.
1 subgoal

a : nat

IHa : forall b : nat, leab ->leba->a=>b
b : nat

HSab : le (S a) b

HbSa : le b (S a)

Sa=bD

le_antisymmetric < destruct b.
2 subgoals

a : nat
IHa : forall b : nat, leab ->leba->a=»>
HSab : le (S a) O
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HbSa : le 0 (S a)

Sa=0

subgoal 2 is:
Sa=8hb

le_antisymmetric < inversion HSab.
1 subgoal

a : nat

IHa : forall b : nat, leab ->leba->a=>b
b : nat

HSab : le (S a) (S b)

HbSa : le (S b) (S a)

Second b can be the successor of some number, and this is very good for us,
since now we recognize in the hypotheses the relation between successors which
we addressed above. Thus, we can apply the previous theorem twice,

le_antisymmetric < apply Sn_le_Sm__n_le_m in HSab.
1 subgoal

a : nat

IHa : forall b : nat, leab ->leba->a=>b
b : nat

HSab : le a b

HbSa : le (S b) (S a)

le_antisymmetric < apply Sn_le_Sm__n_le_m in HbSa.
1 subgoal

a : nat

IHa : forall b : nat, leab ->leba->a=b
b : nat

HSab : le a b

HbSa : le b a

and this allows us to apply our induction hypothesis, rewrite the conclusion
using the new equality, and apply reflexivity.

le_antisymmetric < apply IHa in HSab.
2 subgoals

a : nat

IHa : forall b : nat, leab ->leba->a=>b
b : nat

HSab : a =b

HbSa : le b a

subgoal 2 is:
le b a

le_antisymmetric < rewrite HSab.
2 subgoals

a : nat
IHa : forall b : nat, leab ->leba->a=>b
b : nat
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HSab : a =b
HbSa : le b a

Sb=Sb

subgoal 2 is:
le b a

le_antisymmetric < reflexivity.
1 subgoal

a : nat

IHa : forall b : nat, leab ->leba->a=»>b
b : nat

HSab : le a b

HbSa : le b a

le b a

Now all that remains to be done is note that the last assumption of the induction
hypothesis was already one of our hypotheses.

le_antisymmetric < exact HbSa.
No more subgoals.

le_antisymmetric < Qed.
(unfold antisymmetric).
(induction a).
(intros b HOb HbLO).
(inversion HbO).
reflexivity.

(intros b HSab HbSa).
(destruct b).
(inversion HSab).

(apply Sn_le_Sm__n_le_m in HSab).
(apply Sn_le_Sm__n_le_m in HbSa).
(apply IHa in HSab).

(rewrite HSab).

reflexivity.

(exact HbSa).
Qed.

Now we can use our previous results to prove the main theorem, le_order,

Coq < Theorem le_order : order le.
1 subgoal

order le

le_order < unfold order.
1 subgoal

reflexive le /\ antisymmetric le /\ transitive le

le_order < split.
2 subgoals

reflexive le

subgoal 2 is:
antisymmetric le /\ transitive le
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le_order < apply le_reflexive.
1 subgoal

antisymmetric le /\ transitive le

le_order < split.
2 subgoals

antisymmetric le

subgoal 2 is:
transitive le

le_order < apply le_antisymmetric.
1 subgoal

transitive le

le_order < apply le_tranms.
No more subgoals.

le_order < Qed.
(unfold order).
split.

(apply le_reflexive).

split.
(apply le_antisymmetric).

(apply le_tranms).

Qed.
le_order is defined

3.2.2 Equivalence Relations

A relation R on a set A is called an equivalence relation if it is reflexive, transi-
tive, and symmetric, and is denoted a ~ b. The prototypical equivalence relation
is =, but consider the relation “has the same birthday as”. It is reflexive since a
person always has the same birthday as themselves. It is transitive, since if Alice
and Bob have the same birthday, and Bob and Carl have the same birthday,
then Alice and Carl have the same birthday. And its symmetric, since if Alice
and Bob have the same birthday, so do Bob and Alice. Notice that underneath,
we are using the properties of = for the dates.

Definition equivalence {X:Type} (R: relation X X) := (reflexive R) /\ (symmetric R) /\ (transitive R).

3.3 Functions

A function is a relation with a distinguished last argument and the restriction
that for each combination of leading elements, there is a single last argument
for which the function is true. For example, our “is registered for” relation is
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not a function because its graph
G(R) = {(Alice, CSE191), (Bob, CSE191), (Alice, CSE410), (Carl, CSE410)}.

has two entries for input Alice. It is more conventional to think of a function
as a map f between the domain D and codomain R, denoted f : D — R with
individual values denoted f(x) =y for x € D and y € R, instead of the infix
x fy. The range is the subset of R covered by the function, namely the set

{yeR|FzeD, f(z) =y} (3.29)

We can formulate the function requirement as a statement of predicate logic. A
mapping f : D — R is a function if and only if

VeeD,JyeR, f(x)=yANVzeR,y# 2z = f(z)#2). (3.30)

The first part of this statement guarantees that f maps every element in the
domain to an element in the codomain, The second part guarantees that f does
not map z to multiple elements in the codomain. Alternatively, we can say
Definition partial_function {X Y: Type} (R: relation X Y) :=
forall x : X, forall y1 y2 : Y, R x yl -> R x y2 -> yl = y2.

Here we say partial_function because it might be that the relation R does not
map some x to anything, which we disallowed in our function definition. This
is just the negation of our previous definition. In some cases, we will need to
know that our relation is defined over the entire domain, so we will also define
a total_function,

Definition total_function {X Y: Type} (R: relation X Y) :=
partial_function R /\ (forall x : X, exists y : Y, R x y).

Consider the sets X =Z and Y = Z, and the mapping f : X — Y where

x if x is odd
fl)=L2® ifz>0 (3.31)
lz| ifz <0
f is not a function, because all positive odd numbers (except 1) are mapped to
multiple elements in the range, e.g. f(3) =3 and f(3) = 9.
In the same way that we classified relations by properties, we can classify

functions. The function we used for determining cardinality needed to be “one-
to-one”, which we term injective, meaning

V’I’l,ﬂig S D, f(JZl) = f(.’EQ) — T1 = T2, (332)

or no two inputs have the same output (injective)

Definition injective {X Y : Type} (R: relation X Y) :=
forall x1 x2: X, forally : Y, (R x1 y) -> (R x2 y) -> x1 = x2.
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A function is called surjective, or “onto”,
Yy e R,3x €D, f(z) =y. (3.33)
if it covers the entire codomain (surjective)

Definition surjective {X Y : Type} (R: relation X Y) := forall y : Y, exists x : X, Rx y.

A function which is both one-to-one and onto is called bijective

Definition bijective {X Y : Type} (R: relation X Y) := total_function R /\ injective R /\ surjective R.

A bijective function f has an inverse f~! defined by
Vo € D, f~Hf(x)) = 2. (3.34)

Our counting procedure basically says that if a bijection exists between two sets
A and B, then |A| = |B|. We can define the inverse formally

Definition inverse {X Y : Type} (R : relation X Y) (S : relation Y X) := forall (x : X) (y : ), Rxy =8y x.

and prove the existence in Coq, inverse_exists. We use injectivity of R to prove
that S is a partial function, and surjectivity of R to prove that it is indeed a
total function.

Coq < Lemma inverse_exists {X Y : Type} : forall R : relation X Y, bijective R -> exists S : relation Y X,
inverse R S /\ total_function S.

1 subgoal
X : Type
Y : Type

forall R : relation X Y,
bijective R -> exists S : relation Y X, inverse R S /\ total_function S
inverse_exists < Qed.
(intros R Rbij).
(pose (8 :=fun (y : Y) (x : X) => R x y)).
exists S.
split.
(unfold inverse).
(intros x y).
reflexivity.

(unfold total_function).

split.

(unfold partial_function).

(intros x y1 y2).

(intros H1 H2).

(unfold bijective in Rbij).
(destruct Rbij as [Rfunc Rinj Rsurl).
(destruct Rinj as [Rinj Rsurl).
(unfold injective in Rinj).
(apply Rinj with (x1 := y1) (x2 := y2) (y := x) in H1 as H3).
exact H3.

exact H2.

intro x.

(unfold bijective in Rbij).
(destruct Rbij as [Rfunc Rinjl).
(destruct Rinj as [Rinj Rsurl).
(unfold surjective in Rsur).
(destruct (Rsur x) as [y H1l).
exists y.
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exact H1.

Qed.
inverse_exists is defined

Another important function construction is composition, which means feed-
ing the output of one function as the input to another. So for functions
f:X—=>Yandg:Y — Z, we have

fog: X = Z:=g(f(z)), (3.35)

and formally (composition)

Definition composition {X Y Z : Type} (R : relation X Z) (S : relation Z Y) (T : relation X Y) :=
forall (x : X) (y : Y), (exists z : Z, Rxz /\Szy) <->Txy.

We can again prove that such a function exists and is a total function
(comp_exists).

Lemma comp_exists {X Y Z : Type} : forall (R : relation X Z) (S : relation Z Y),
bijective R -> bijective S -> exists T : relation X Y, composition R S T /\ total_function T.

comp_exists < Qed.
(intros R S RBij SBij).
(pose (T := fun (x : X) (y : Y) => exists z : Z, Rxz /\ S z y)).
exists T.
split.
(unfold composition).
(intros x y).
split.
intro H1.
(destruct H1 as [z H1]).
exists z.
exact H1.

intro Hi.
(destruct H1 as [z H1l).
exists z.
exact H1.

(unfold total_function).
split.
(unfold partial_function).
(intros x y1 y2 H1 H2).
(destruct H1 as [z1 H1]).
(destruct H2 as [z2 H2]).
(destruct H1 as [H1R H1S]).
(destruct H2 as [H2R H2S]).
(destruct RBij as [RTot RInjSurl).
(destruct SBij as [STot SInjSur]).
(destruct RTot as [RPartial RTot]).
(destruct STot as [SPartial STot]).
(unfold partial_function in RPartial).
(apply RPartial with (y1 := z1) (y2 := z2) in HiR as H3R).
(rewrite <- H3R in H2S).
(unfold partial_function in SPartial).
(apply SPartial with (y1 := y1) (y2 := y2) in H1S as H3S).
exact H3S.

exact H2S.
exact H2R.

intro x.
(destruct RBij as [RFunc RInjSur]).
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(destruct RFunc as [RPartial RTotl).
(destruct (RTot x) as [z H1R]).
(destruct SBij as [SFunc SInjSur]).
(destruct SFunc as [SPartial STot]).
(destruct (STot z) as [y H1SI).
exists y.

exists z.

split.

exact HiR.

exact H1S.

Qed.
comp_exists is defined

3.3.1 Examples

Before we start with the examples, we should go over some proof techniques that
will help us solve the problems in the end of the chapter. When considering
injectivity, or the lack of it, very often we must pick out a proposition from
the universal quantification that defines it. For example, suppose I would like
to prove that the natural numbers are not all equal to one (notone). This
is obvious, but how do I prove that it is true? The proof begins simply by
introducing our main hypothesis.

Coq < Lemma notone : ~ forall n: nat, n = 1.
1 subgoal

~ (forall n : nat, n = 1)

notone < intro H.
1 subgoal

H : foralln : nat, n =1

False

Now what we want to do is pick out a particular proposition from & which is
false, generating a contradiction. Suppose we choose the proposition o = 1. We
can pick this out from u using the pose tactic. Then all we have to do is use
discriminate t0 let Coq know that the equality is impossible.

notone < pose (HO := H 0).
1 subgoal

H : forall n : nat, n = 1
HO :=HO : 0

]
-

False

notone < discriminate.
No more subgoals.

notone < Qed.

intro H.

(pose (HO :=H 0)).
discriminate.

Qed.
notone is defined
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We can attack this problem in a slightly different way by instead proving an
absurd implication. We begin the same way, but then we use assert to introduce
a statement, which we then have to prove as a subgoal.

Coq < Lemma notone2 : ~ forall n: nat, n = 1.
1 subgoal

~ (forall n : nat, n = 1)

notone2 < intro H.
1 subgoal

H : forall n : nat, n =1

False

notone2 < assert (Absurd : 0 = 1 -> False).
2 subgoals

H : foralln : nat, n =1

0 =1 -> False

subgoal 2 is:
False

After we prove the subgoal using the same discriminate tactic, we can apply out
assertion and then apply the main hypothesis =.

notone2 < intro Absurd.
2 subgoals

H : forall n : nat, n =1
Absurd : 0 =1

False

subgoal 2 is:
False

notone2 < discriminate.

1 subgoal
H : forall n : nat, n =1
Absurd : 0 = 1 -> False
False

notone2 < apply Absurd.
1 subgoal

H : forall n : nat, n =1
Absurd : 0 = 1 -> False

0=1

notone2 < apply H.
No more subgoals.

notone2 < Qed.
intro H.
(assert (Absurd : O = 1 -> False)).
intro Absurd.
discriminate.

(apply Absurd).
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(apply H).

Qed.
notone2 is defined

We can see that the two proofs are slightly different, but they rely on the same
ingredients, namely the induction rule raise_ina which we use when we have a
contradiction, and eq_ind which is used by discriminate to check if two terms of
the same inductive type are equal.

Coq < Print notone.

notone =

fun H : forall n : nat, n = 1 =>
let HO :=H O : 0 =1 in

let H1 :=
eq_ind 0 (fun e : nat => match e with
| 0 => True
| S _ => False
end) I 1 HO
False in

False_ind False H1
: ~ (forall n : nat, n = 1)

Coq < Print notone2.

notone2 =
fun H : forall n : nat, n = 1 =>
let Absurd :=
(fun Absurd : 0 = 1 =>
let HO :=
eq_ind O (fun e : nat => match e with
| 0 => True
| S _ => False
end) I 1 Absurd
False in

False_ind False HO)

0 =1 -> False in
Absurd (H 0)
: ~ (forall n : nat, n = 1)

Now we would like to prove something slightly more difficult, namely that
there is no natural number ¢ such that all others are equal to it (notconstant).
We introduce the main hypothesis and then ask for the witness from the exis-
tential quantifier.

Coq < Lemma notconstant :
1 subgoal

exists ¢ : nat, forall n : nat, n = c.

~ (exists ¢ : nat, forall n : nat, n = c)

notconstant < intro H.
1 subgoal

H : exists ¢ : nat, forall n : nat, n = ¢

False

notconstant < destruct H as [c Hcl.
1 subgoal

c : nat
Hc : forall n : nat, n = ¢
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False

Now we again need to pick out the false proposition from the universal quantifier.
What natural number is guaranteed to be different from <? How about the
successor of ¢, which we pick out again using the pose tactic and reverse to make
it look a little nicer.

notconstant < pose (HSc := Hc (S ¢)).
1 subgoal

c : nat
Hc : forall n : nat, n = ¢
HSc :=Hc (Sc) : Sc=c

False

notconstant < symmetry in HSc.
1 subgoal

c : nat
Hc : forall n : nat, n = ¢
HSc : ¢ =S¢

False

It turns out that the fact that no number is equal to its successor is a theorem
built-in to Coq. We can use this to finish our proof. We will see later that it
can be proved by induction.

notconstant < Print n_Sn.
Fetching opaque proofs from disk for Coq.Init.Peano
n_Sn =
fun n : nat =>
nat_ind (fun nO : nat => n0 <> S n0) (0_S 0)
(fun (n0 : nat) (IHn : nO0 <> S n0) => not_eq_S n0 (S n0) IHn) n
: forall n : nat, n <> S n

Argument scope is [nat_scope]

notconstant < apply n_Sn in HSc.
1 subgoal

c : nat
Hc : forall n : nat, n = ¢
HSc : False

False

notconstant < exact HSc.
No more subgoals.

notconstant < Qed.

intro H.

(destruct H as [c Hcl).
(pose (HSc := Hc (S ¢))).
symmetry in HSc.

(apply n_Sn in HSc).
exact HSc.

Qed.
notconstant is defined

If you are wondering how to prove that theorem (n_not_Sn), we can use induction
and the axiom that the successor function is injective.
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Coq < Lemma n_not_Sn : forall n : nat, n <> S n.
1 subgoal

forall n : nat, n <> S n

n_not_Sn < Qed.
(induction n).
intro H.
discriminate.

intro H.

(apply IHn).

(apply PeanoNat.Nat.succ_inj in H).
exact H.

Qed.
n_not_Sn is defined

For the homework, we will also need a lemma (two_not_sq) which is not
simple to prove by hand. First we can use the nonlinear integer arithmetic
tactic (there is a nice example here).

Coq < Lemma two_not_sq : forall x : nat, x*x <> 2.
1 subgoal

forall x : nat, x * x <> 2
two_not_sq < Require Import Psatz.

two_not_sq < intro x.
1 subgoal

X : nat

X * x <> 2

two_not_sq < destruct x.
2 subgoals

0% 0<>2

subgoal 2 is:
Sx*x 8 x<>2

two_not_sq < discriminate.
1 subgoal

X : nat

Sx*xSx<>2

two_not_sq < destruct x.
2 subgoals

1 x1<>2

subgoal 2 is:
S(Sx) xS (Sx)<>2

two_not_sq < discriminate.
1 subgoal

X : nat
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S (Sx)*S (8x)<>2

two_not_sq < destruct x.
2 subgoals

2 % 2<>2

subgoal 2 is:
S (8 (8x)) *8 (8 (8x)) <2

two_not_sq < discriminate.
1 subgoal

X : nat

S (8 (8 x)) xS (S (8Sx)) <>2

two_not_sq < nia.
No more subgoals.

two_not_sq < Qed.
Require Import Psatz.
intro x.

(destruct x).
discriminate.

(destruct x).
discriminate.

(destruct x).
discriminate.

nia.

Qed.
two_not_sq is defined

However, we can show this by hand by pushing a little further.

two_not_sq < discriminate.
1 subgoal

X : nat

S (S (8x) *8(S(8x)) <>2

two_not_sq < intro H.
1 subgoal

X : nat
H:S5 (S (B8x) x5 (S (Bx)=2

False

two_not_sq < simpl in H.
1 subgoal

X : nat

H: S B x+8 (B x+8 (8BS (x+x*8(S(53x)))))N)) =2

False

two_not_sq < inversion H.
No more subgoals.

Qed.
two_not_sq is defined
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The 2 on the right hand side is made using two calls to s, whereas the left hand
side has three calls to s, so we know that they cannot be equal.

A different approach can be taken to proving statements about functions
which requires some theorems about the division on numbers based on a total
order. We can define a trichotomy, or a division into three parts, based on the
“less than“ order. We start out the proof (trichotomy) by introducing variables
and beginning an induction on m,

Coq < Theorem trichotomy : forall nm : nat, n <m \/ n=m \/ m < n.
1 subgoal

forallnm : nat, n<m\/ n=m\/m<n

trichotomy < intros n m.
1 subgoal

n, m : nat

n<m\/n=m\/m<n

trichotomy < induction m.
2 subgoals

n : nat

n<0\/n=0\0<n

subgoal 2 is:
n<Sm\/n=8Sm\/Sm<n

Obviously different cases can be true for different values of n, so we have to
divide them up. Since = is an inductive type, we can split the proof into cases
using destruct, and for natural numbers there are two possible cases. The first
case is trivial.

trichotomy < destruct n.
3 subgoals

0<0\N 0=0\0¢<0

subgoal 2 is:
Sn<0\/Sn=0\0<Sn
subgoal 3 is:
n<Sm\/n=Sm\/Sm<n

trichotomy < right.
3 subgoals

0=0\/0<0

subgoal 2 is:
Sn<0\Sn=0\0<Sn
subgoal 3 is:
n<Sm\/n=Sm\/Sm<n

trichotomy < left.
3 subgoals
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subgoal 2 is:
Sn<0\/Sn=0\0<Sn
subgoal 3 is:
n<Sm\/ n=Sm\/Sm<n

trichotomy < reflexivity.
2 subgoals

n : nat

Sn<0\ Sn=0\/0<Sn

subgoal 2 is:
n<Sm\/n=Sm\/Sm<n

For the second case, we know that sn > o, but how do we show that? Luckily,
Coq has this theorem built-in,
trichotomy < Check neq_O_lt.

neq_0_1t
: forall n : nat, 0 <>n ->0<n

and we can use it to prove the second case.

trichotomy < right.
2 subgoals

n : nat

Sn=0\/0<Sn

subgoal 2 is:
n<Sm\/n=Sm\/Sm<n

trichotomy < right.
2 subgoals

n : nat

0<Sn

subgoal 2 is:
n<Sm\/n=Sm\/Sm<n

trichotomy < apply neq_O_lt.
2 subgoals

n : nat

0<>Sn

subgoal 2 is:
n<Sm\/n=Sm\/Sm<n

trichotomy < discriminate.
1 subgoal

n, m : nat
IHn : n<m\/n=m\/m<n

n<Sm\/n=8Sm\/Sm<n

Now we have to use the induction hypothesis to prove the new goal. We will
split it into cases using destruct, and the first case is an easy consequence of the
1le_s theorem.

trichotomy < destruct IHm.
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2 subgoals

n, m : nat
H:n<m

n<Sm\/n=Sm\/Sm<n

subgoal 2 is:
n<Sm\/n=8Sm\/Sm<n

trichotomy < left.
2 subgoals

n, m : nat
H:n<m

n<Smn

subgoal 2 is:
n<Sm\/n=8Sm\/Sm<n

trichotomy < apply le_S.
2 subgoals

n, m : nat
H:n<nmn

Sn<=nm

subgoal 2 is:
n<Sm\/n=Sm\/Sm<n

trichotomy < exact H.
1 subgoal

n, m : nat
H:n=m\/m<n

n<Sm\/ n=Sm\/Sm<n
We again destruct the hypothesis, and the second case is handled in much the
same way.

trichotomy < destruct H.
2 subgoals

n<Sm\/n=Sm\/Sm<n

subgoal 2 is:
n<Sm\/n=8Sm\/Sm<n

trichotomy < left.
2 subgoals

n<Sm

subgoal 2 is:
n<Sm\/n=Sm\/Sm<n

trichotomy < rewrite H.
2 subgoals
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m<Sm

subgoal 2 is:
n<Sm\/n=Sm\/Sm<n

trichotomy < apply le_n.
1 subgoal

n, m : nat
H:m<n

n<Sm\/n=Sm\/Sm<n

The last case is tricky because it could correspond to m + 1 = n (the middle
case of the goal), or m + 1 < n (the final case of the goal). Thus we would like
to split up these two cases, which we again do using destruct.

trichotomy < destruct H.
2 subgoals

m : nat

Sm<Sm\/Sm=Sm\/Sm<Sm

subgoal 2 is:
SmO<Sm\/SmO=S8m\/ Sm<Sm

trichotomy < right.
2 subgoals

m : nat

Sm=8Sm\/ Sm<Sm

subgoal 2 is:
SmO<Sm\/SmO=8m\/ Sm<Sm

trichotomy < left.
2 subgoals

m : nat

subgoal 2 is:
SmO<Sm\/SmO=S8m\/ Sm<Smo

trichotomy < reflexivity.
1 subgoal

m, mO : nat
H: Sm<=m0

Sm0O<Sm\/ SmO=Sm\/ Sm< S m0

For the final case, we use an small lemma that we have proved above for 1e,
trichotomy < Check 1lt_n_S.

1lt_n_S
: forall nm : nat, n <m ->Sn<Sm

so that

trichotomy < right.
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1 subgoal

m, mO : nat
H: Sm<=m0

SmO=8m\/ Sm< S m

trichotomy < right.
1 subgoal

H: Sm<=m0

Sm < S mo

trichotomy < apply 1lt_n_S.
1 subgoal

m, mO : nat
H: Sm<=m0

m < mO0

trichotomy < exact H.
No more subgoals.

trichotomy < Qed.
(intros n m).
(induction m).
(destruct n).
right.
left.
reflexivity.

right.

right.

(apply neq_O_1t).
discriminate.

(destruct IHm).
left.

(apply le_S).
exact H.

(destruct H).
left.
(rewrite H).
(apply le_n).

(destruct H).
right.
left.
reflexivity.

right.

right.

(apply 1lt_n_S).
exact H.

Qed.
trichotomy is defined

The other ingredient that we will need in our proofs is the monotonicity of the
function involved, meaning the fact that if the argument increases, the result
increases as well. We will show this for the square function, using the fact that
multiplying an inequality on both sides by the same positive number does not
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change the inequality.

Coq < Check mult_lt_compat_1.
mult_lt_compat_1
: forallnmp : nat, n <m ->0<p->p*xn<px*mn

We begin by introducing variables, and then particular instances of this proof,
as well as a helpful version of a lemma (sq-monotonic) we previously used.

Coq < Theorem sq_monotonic : forall nm : nat, n <m ->n * n <m * m.
1 subgoal

forall nm : nat, n <m ->n *n<m=*m

sq_monotonic < intros n m H.
1 subgoal

n, m : nat
H:n<mn

n* n<m*m

sq_monotonic < pose proof mult_lt_compat_l n m n H.
1 subgoal

n, m : nat
H:n<nmn
HO : 0<Kn->n*n<mn=x*m

n* n<m*xm

sq_monotonic < pose proof mult_lt_compat_l n m m H.
1 subgoal

n, m : nat
H:n<nmn
HO : 0<Kn->n*n<ns*m
H : 0<Km->m*n<m=*m

n* n<m*m

sq_monotonic < assert (forall n : nat, 0 < S n).
2 subgoals

HO : 0<Kn->n*n<n=x*m
H : 0<Km->m*n<m=*m

forall nO : nat, O < S n0

subgoal 2 is:
n*n<m=*mn

sq_monotonic < intro nO.
2 subgoals

HO : 0<Kn->n*n<ns*m
H : 0}<Km->m*n<m=*m
n0 : nat

0 < S n0

subgoal 2 is:
n*n<m=*mn
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sq_monotonic < apply (neq_0_1t (S n0)).
2 subgoals

n, m : nat

H:n<mn

HO : 0<Kn->n*n<mn=*m
Hi : 0<Km->m*n<m=*m
n0 : nat

0 <> S n0

subgoal 2 is:
n*n<ms*m

sq_monotonic < discriminate.
1 subgoal

n, m : nat

H:n<m

HO : 0<Kn->n*n<ns*m

H : 0<Km->m*n<m=*m

H2 : forall n : nat, 0 < S n

n*n<ms*xm

We must now handle the case that m = 0, which we can do using inversion on
our original hypothesis,

sq_monotonic < destruct m.

2 subgoals
n : nat
H:n<2o0

HO : 0<Kn->n*n<n=x*20
HL : 0<0->0*n<0=*0
H2 : forall n : nat, 0 < S n

n*xn<0x*0

subgoal 2 is:
n*n<Sm*xSm

sq_monotonic < inversion H.
1 subgoal

n, m : nat

H:n<Snmn

HO : 0<Kn->n*n<n=x*3S3Smn

H : 0<Sm->Sm*n<Sm>*Sm
H2 : forall n : nat, 0 < S n

n*n<Sm*3Smn

Similarly, we need to handle the n = 0 case, which we can do using our conve-
nience lemma.

sq_monotonic < destruct n.

2 subgoals
m : nat
H:0<Sm

HO : 0<K0->0*x0<0x*Sm
H : 0<Sm->Sm*x0<Sm*S8Sm
H2 : forall n : nat, 0 < S n

O*x0<Sm=*3Sm
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subgoal 2 is:
Sn*xSn<Sm*Sm

sq_monotonic < simpl.

2 subgoals
m : nat
H:0<S8Sm

HO : 0<0->0*x0<0*Sm
H : 0<Sm->Sm*x0<Sm*Sm
H2 : forall n : nat, 0 < S n

0<S (m+m=*$Sm

subgoal 2 is:
Sn*xSn<Sm*Sm

sqg_monotonic < exact (H2 (m + m * (S m))).
1 subgoal

n, m : nat

H:Sn<Sm

HO : 0<KSn->Sn*Sn<S8Sn*Smn
H : 0<Sm->Sm*x3Sn<Smx*Sm
H2 : forall n : nat, 0 < S n

Sn*Sn<Sm*Sm

Next, we use the same lemma again, to simplify our hypotheses,

sq_monotonic < pose proof H2 n.
1 subgoal

n, m : nat

H:Sn<Smn

HO : 0<Sn->Sn*xSn<Snx*Smn
H : 0<Sm->Sm*xSn<Smx*3Sm
H2 : forall n : nat, 0 < S n

H3 : 0<Sn

Sn*xSn<Smx*Sm

sq_monotonic < pose proof H2 m.
1 subgoal

n, m : nat

H:Sn<Sm

HO : 0<Sn->Sn*xSn<Snx*Smn
H : 0<Sm->Sm*Sn<8Sm*Sm
H2 : forall n : nat, 0 < S n

H3 : 0<Sn

H4 : 0<Sm

Sn*xSn<Sm*Sm

sq_monotonic < apply HO in H3.
1 subgoal

n, m : nat

H: Sn<Snmn

HO : 0<Sn->Sn*xSn<Snx*Smn
H : 0<Sm->Sm*x3Sn<Sm*Sm
H2 : forall n : nat, 0 < S n

H3 : Sn*Sn<Sn*xS8Sm

H : 0<Snm

Sn*Sn<Sm*Sm
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sq_monotonic < apply H1 in H4.
1 subgoal

n, m : nat

H:Sn<Smn

HO : 0<Sn->Sn*xS8Sn<Snx*Smn
H : 0<Sm->Sm*Sn<Sm=*3Smn
H2 : forall n : nat, 0 < S n

H3 : Sn*Sn<Sn*xSm

H4 : Sm*Sn<Sm*Smn

Sn*xSn<Smx*Smn

Finally, we can use the transitivity of the relation to establish our theorem.

sq_monotonic < rewrite (mult_comm (S n) (S m)) in H3.
1 subgoal

n, m : nat

H:Sn<Sm

HO : 0<Sn->8Sn*8n<Sn *
H : 0<Sm->Sm*Sn<S_Smx*
H2 : forall n : nat, 0 < S n

H3 : Sn*Sn<Sm*3Sn

H4 : Sm*Sn<Sm*Sm

0 wn
8B B

Sn*xSn<Smx*Smn

sq_monotonic < apply (lt_trans (Sn * Sn) (Sm * Sn) (Sm * Sm)).
2 subgoals

n, m : nat

H:Sn<Sm

HO : 0<Sn->Sn*38Sn<Sn *
Hi : 0<Sm->Sm*Sn<Sm=x*
H2 : forall n : nat, 0 < S n

H3 : Sn*Sn<Sm*Sn

H4 : Sm*Sn<Sm*Sm

w0 n

8 B

Sn*xSn<Smx*Sn

subgoal 2 is:
Sm*38Sn<Sm*Smn

sq_monotonic < exact H3.
1 subgoal

n, m : nat

H:Sn<Smn

HO : 0<Sn->Sn*xS8Sn<Snx*Smn
H : 0<Sm->Sm*x3Sn<Smx*3Smn
H2 : forall n : nat, 0 < S n

H3 : Sn*Sn<Sm*3Sn

H4 : Sm*Sn<Sm*Sm

Sm* Sn<Smx*Smn

sq_monotonic < exact H4.
No more subgoals.

sq_monotonic < Qed.

(intros n m H).

(pose proof (mult_lt_compat_l n mn H)).
(pose proof (mult_lt_compat_l nmm H)).
(assert (forall n : nat, 0 < S n)).
intro noO.

(apply (neq_0_1t (S n0))).
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discriminate.

(destruct m).
(inversion H).

(destruct n).
(simpl).
exact (H2 (m + m * S m)).

(pose proof (H2 n)).

(pose proof (H2 m)).

(apply HO in H3).

(apply H1 in H4).

(rewrite (mult_comm (S8 n) (S m)) in H3).

(apply (1t_trans (Sn * Sn) (Sm*Smn) (Sm*Sm)).
exact H3.

exact H4.

Qed.
sq_monotonic is defined

3.4 Functions Redux

It is possible to treat functions from a slightly higher level of abstraction, so
they look more similar to the familiar presentation in elementary mathematics.
In order to do this, we will need some more sophisticated machinery from Coq,
but it will allow us to shorten our proofs from Section 3.3. We would like a
way to use the exists tactic with type type rather than prop, without using the
machinery of X-types. We will see how this is used below.

From Coq Require Import Bool.Bool.
From Coq Require Import Classes.RelationClasses.

Variable (choice : forall {A P} (prf : exists a : A, P a), A).
Hypothesis (choice_ok : forall {A P} (prf : exists a : A, P a), P (choice prf)).

We will again define a function as a special kind of binary relation mapping
some domain to a codomain. Now we will incorporate the idea of totality directly
into the definition, so that all functions are total, and refer to the partial function
property as functionality.

Record Func (dom cod : Type) : Type :=
mkFunc {
rel : dom -> cod -> Prop
; total : forall x : dom, exists y : cod, rel x y

; functional : forall x : dom, forall y z : cod, rel xy ->rel xz >y =2z

}.

The Recora construct allows us to make a data structure with constructor mkrunc,
for which we need to specify a domain, a codomain, a relation, a proof of totality,
and a proof of functionality.

Most of the simplification in our proofs will come from defining a notion a
function application, meaning applying the function to an element of the domain
to generate and element of the codomain. We need to prove that such as map
exists for a given function f. However, totality of f tells us that all elements
of the domain are mapped to some element of the codomain. We can access
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parts of a record using the dot operator, just as in Python and C, so that
£.(total dom cod) iS our proof of totality. Given an element x of the domain, it
returns an existence statement for the corresponding y in the codomain.

Definition app : forall {dom cod}, Func dom cod -> dom -> cod.
Proof.

intros dom cod f x.

exact (choice (f.(total dom cod) x)).
Defined.

We would normally destruct this existence statement to get the witness y. How-
ever, this is not possible for Type. Thus, we feed this existence statement to the
choice Operator above to extract the type cod itself. Notice also that we end with
Defined. This makes a transparent definition that can be unfolded by tactics like
simpl, rather than an opaque defintion that you get from ged.

We can prove that this notion of function application is equivalent to the
relational notion in Section 3.3. We define our totality proof up front in order
to simplify the derivation. Notice that we can unfold the app because it is a
transparent definition.

Coq < Lemma app_iff_rel : forall {dom cod} (f : Func dom cod) (x : dom) (y : cod),
app f x =y <-> (f.(rel dom cod) x y).
1 subgoal

forall (dom cod : Type) (f : Func dom cod) (x : dom) (y : cod),
app f x =y <-> rel dom cod f x y

app_iff_rel < intros dom cod f x y.
1 subgoal

dom : Type

cod : Type

f : Func dom cod
x : dom

y : cod

app f x =y <-> rel dom cod f x y

app_iff_rel < pose (s := total dom cod f x).

1 subgoal
dom : Type
cod : Type
f : Func dom cod
x : dom
y : cod
s := total dom cod f x : exists y : cod, rel dom cod f x y

app f x = y <-> rel dom cod f x y

app_iff_rel < unfold app.

1 subgoal
dom : Type
cod : Type
f : Func dom cod
x : dom
y : cod
s := total dom cod f x : exists y : cod, rel dom cod f x y

choice (total dom cod f x) =y <-> rel dom cod f x y

app_iff_rel < fold s.
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1 subgoal
dom : Type
cod : Type
f : Func dom cod
x : dom
y : cod
s := total dom cod f x : exists y : cod, rel dom cod f x y

choice s =y <-> rel dom cod f x y

app_iff_rel < split.

2 subgoals
dom : Type
cod : Type
f : Func dom cod
x : dom
y : cod
s := total dom cod f x : exists y : cod, rel dom cod f x y

choice s =y -> rel dom cod f x y

subgoal 2 is:
rel dom cod f x y -> choice s =y

We can prove the first direction by replacing y with our choice operator applied
to the existence statement, and then using the choice_ok theorem.

app_iff_rel < intro fapp.

2 subgoals
dom : Type
cod : Type
f : Func dom cod
x : dom
y : cod
s := total dom cod f x : exists y : cod, rel dom cod f x y

fapp : choice s =y

rel dom cod f x y

subgoal 2 is:
rel dom cod f x y -> choice s =y

app_iff_rel < rewrite <- fapp.

2 subgoals
dom : Type
cod : Type
f : Func dom cod
x : dom
y : cod
s := total dom cod f x : exists y : cod, rel dom cod f x y

fapp : choice s =y

rel dom cod f x (choice s)

subgoal 2 is:
rel dom cod f x y -> choice s =y

app_iff_rel < pose (H := choice_ok s).

2 subgoals
dom : Type
cod : Type

f : Func dom cod
x : dom
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y : cod

s := total dom cod f x : exists y : cod, rel dom cod f x y
fapp : choice s =y

H := choice_ok s : rel dom cod f x (choice s)

rel dom cod f x (choice s)

subgoal 2 is:
rel dom cod f x y -> choice s =y

app_iff_rel < exact H.

1 subgoal
dom : Type
cod : Type
f : Func dom cod
x : dom
y : cod
s := total dom cod f x : exists y : cod, rel dom cod f x y

rel dom cod f x y -> choice s =y

For the reverse implication, we use the functionality of f, namely that the same
input x cannot generate two different outputs. We can use the same choice_ok
hypothesis from before to prove one side, and our original hypothesis for the
other.

app_iff_rel < intro frel.

1 subgoal
dom : Type
cod : Type
f : Func dom cod
x : dom
y : cod
s := total dom cod f x : exists y : cod, rel dom cod f x y

frel : rel dom cod f x y

choice s =y

app_iff_rel < apply (f.(functional dom cod)) with (x := x).

2 subgoals
dom : Type
cod : Type
f : Func dom cod
x : dom
y : cod
s := total dom cod f x : exists y : cod, rel dom cod f x y

frel : rel dom cod f x y

rel dom cod f x (choice s)

subgoal 2 is:
rel dom cod f x y

app_iff_rel < exact (choice_ok s).

1 subgoal
dom : Type
cod : Type
f : Func dom cod
x : dom
y : cod
s := total dom cod f x : exists y : cod, rel dom cod f x y

frel : rel dom cod f x y
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rel dom cod f x y

app_iff_rel < exact frel.
No more subgoals.

app_iff_rel < Qed.

(intros dom cod f x y).

(pose (s := total dom cod f x)).
(unfold app).

(fold s).
split.

intro fapp.

(rewrite <- fapp).

(pose (H := choice_ok s)).
exact H.

intro frel.
(apply f.(functional dom cod) with (x := x)).
exact (choice_ok s).

exact frel.

Qed.
app_iff_rel is defined

In order to simplify the creation of functions, we would like to show that
normal Coq functions are equivalent, so that we can define a function “by for-
mula”. Notice that we make a transparent defintion here as well. Ideally we
would just like to create a function object out of the pieces from our Coq func-
tion. However, typing the the proofs of functionality and totality directly is
difficult. Therefore, instead of the pose tactic, we use refine. This allows us to
leave the proofs unspecified, and it turns them into subgoals.

Coq < Definition by_formula : forall {dom cod : Type}, (dom -> cod) -> Func dom cod.
1 subgoal

forall dom cod : Type, (dom -> cod) -> Func dom cod

by_formula < intros dom cod f.

1 subgoal
dom : Type
cod : Type

f : dom -> cod

Func dom cod

by_formula < refine (mkFunc dom cod (fun x y => f x =y) _ _).
2 subgoals

dom : Type
cod : Type
f : dom -> cod

forall x : dom, exists y : cod, f x =y

subgoal 2 is:

forall (x : dom) (y z : cod), fx=y >fx=2z->y=z

In order to prove totality of our Coq function, we just apply it to the input =z,
which is guaranteed to succeed.

by_formula < intro x.
2 subgoals
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dom : Type

cod : Type

f : dom -> cod
x : dom

exists y : cod, f x =y

subgoal 2 is:
forall (x : dom) (yz : cod), fx =y >fx=2z->y=2z

by_formula < exists (f x).
2 subgoals

dom : Type

cod : Type

f : dom -> cod
x : dom

fx=1fx

subgoal 2 is:
forall (x : dom) (y z : cod), fx =y >fx=2z->y =2z

by_formula < reflexivity.

1 subgoal
dom : Type
cod : Type

f : dom -> cod

forall (x : dom) (y z : cod), fx =y >fx=2z->y =2z

To prove functionality, we just use reflexivity of f(z).

by_formula < intros x y z H1 H2.
1 subgoal

dom : Type

cod : Type

f : dom -> cod
x : dom

y, z : cod

Hi : fx=y
H2 : f x =2z

y=z

by_formula < rewrite <- HI1.
1 subgoal

dom : Type

cod : Type

f : dom -> cod
x : dom

y, z : cod

H1 : £fx=y
H2 : f x =2z

fx=2z

by_formula < rewrite <- H2.

1 subgoal
dom : Type
cod : Type

f : dom -> cod
x : dom

103
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m
=
[T
el
N <

by_formula < reflexivity.
No more subgoals.

by_formula < Defined.

(intros dom cod f).
refine (mkFunc dom cod (fun x y => f x =y) _ _).
intro x.

exists (f x).

reflexivity.

(intros x y z H1 H2).
(rewrite <- H1).
(rewrite <- H2).
reflexivity.

Defined.
by_formula is defined

We can prove the application of the Coq function is equivalent to application
of our function type. If we unfold all definitions and simplify, we are left with a
choice statement.
Coq < Lemma by_formula_ok : forall {dom cod : Type} (formula : dom -> cod) (x : dom),

app (by_formula formula) x = formula x.
Coq < 1 subgoal

forall (dom cod : Type) (formula : dom -> cod) (x : dom),
app (by_formula formula) x = formula x

by_formula_ok < intros dom cod f x.
1 subgoal

dom : Type

cod : Type

f : dom -> cod
x : dom

app (by_formula f) x = f x

by_formula_ok < unfold by_formula.
1 subgoal

dom : Type

cod : Type

f : dom -> cod
x : dom

app
{l
rel := fun (x0 : dom) (y : cod) => f x0 = y;
total := fun x0 : dom =>
ex_intro (fun y : cod => f x0 = y) (f x0) eq_refl;
functional := fun (x0 : dom) (y z : cod) (eql : f x0 = y)
(eq2 : f x0 = z) =>
eq_ind (f x0) (fun yO : cod => y0 = z)
(eq_ind (f x0) (fun z0 : cod => f x0 = 2z0) eq_refl z eq2)
yeql I} x =1 x

by_formula_ok < unfold app.
1 subgoal
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dom : Type

cod : Type

f : dom -> cod

x : dom

choice

(total dom cod

{l
rel := fun (x0 : dom) (y : cod) => f x0 = y;
total := fun x0 : dom =>

ex_intro (fun y : cod => f x0 = y) (f x0) eq_refl;
functional := fun (x0 : dom) (y z : cod) (eql : f x0 = y)
(eq2 : f x0 = z) =>
eq_ind (f x0) (fun yO : cod => y0 = z)
(eq_ind (f x0) (fun z0 : cod => f x0 = z0) eq_refl z
eq2) y eql |} x) = f x

by_formula_ok < simpl.
1 subgoal

dom : Type

cod : Type

f : dom -> cod
x : dom

choice (ex_intro (fun y : cod => f x = y) (f x) eq_refl) = f x

This goal is exactly the same as our choice_ok theorem, so we can just plug in.

by_formula_ok < pose (H := choice_ok (ex_intro (fun y : cod => f x = y) (f x) eq_refl)).
1 subgoal

dom : Type
cod : Type
f : dom -> cod
x : dom
H := choice_ok (ex_intro (fun y : cod => f x = y) (f x) eq_refl)

: f x = choice (ex_intro (fun y : cod => f x = y) (f x) eq_refl)

choice (ex_intro (fun y : cod => f x = y) (f x) eq_refl) = f x

by_formula_ok < symmetry.
1 subgoal

dom : Type
cod : Type
f : dom -> cod

x : dom

H := choice_ok (ex_intro (fun y : cod => f x = y) (f x) eq_refl)

: f x = choice (ex_intro (fun y : cod => f x = y) (f x) eq_refl)

f x = choice (ex_intro (fun y : cod => f x = y) (f x) eq_refl)

by_formula_ok < exact H.
No more subgoals.

by_formula_ok < Qed.

(intros dom cod f x).

(unfold by_formula).

(unfold app).

(simpl).

(pose (H := choice_ok (ex_intro (fun y : cod => f x = y) (f x) eq_refl))).
symmetry.

exact H.

Qed.
by_formula_ok is defined
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In order to make it easier to compare functions, we introduce extensionality.
This means that two functions are the same, if they always produce the same
outputs. This means that the implementation is irrelevant, we just care about
what we can measure. For example, the functions f(x) = 2(x 4+ 1) and g(z) =
2x + 2 are equal. This is the same idea as proof irrelevance.

Hypothesis funext : forall {dom cod} (f g : Func dom cod),
(forall x : dom, app f x = app g x) > f = g.

We can define a surjective function in exactly the same way as in Section 3.3,
but we use our new function application operator. Notice that this defintion is
dual to our totality definition.

Definition surjective {dom cod} (f : Func dom cod) :=
forall y : cod, exists x : dom, app f x = y.
Similarly, an injective function can be defined as the dual to our functionality
definition.
Definition injective {dom cod} (f : Func dom cod) :=
forall x xp : dom, app f x = app f xp -> x = xp.

We can now give a concise proof that the composition of two functions exists.
Notice we can use our app defintion to define our new function, rather than the
relational definition we used in Section 3.3.

Coq < Definition comp : forall {A B C}, Func B C -> Func A B -> Func A C.
1 subgoal

forall A B C : Type, Func B C -> Func A B -> Func A C

comp < intros ABC g f.

1 subgoal
A : Type
B : Type
C : Type
g : Func B C
f : Func A B
Func A C

comp < pose (h := by_formula (fun a => app g (app f a))).

1 subgoal
A : Type
B : Type
C : Type
g : Func B C
f : Func A B
h := by_formula (fun a : A => app g (app f a)) : Func A C

Func A C

comp < exact h.
No more subgoals.

comp < Defined.

(intros A B C g £).

(pose (h := by_formula (fun a => app g (app f a)))).
exact h.

Defined.
comp is defined
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Our composite function must agree with the usual definition. We know this
because we previously proved that formula definitions are valid.

Coq < Corollary comp_ok : forall {A B C} (g : Func B C) (f : Func A B) (a : A),
app (comp g f) a = app g (app f a).
1 subgoal

forall (A B C : Type) (g : Func B C) (f : Func A B) (a : A),
app (comp g f) a = app g (app f a)

comp_ok < intros AB C g f a.

1 subgoal
A : Type
B : Type
C : Type
g : Func B C
f : Func A B
a: A

app (comp g £f) a = app g (app f a)

comp_ok < unfold comp.

1 subgoal
A : Type
B : Type
C : Type
g : Func B C
f : Func A B
a: A

app (by_formula (fun a0 : A => app g (app f a0))) a = app g (app f a)

comp_ok < rewrite by_formula_ok.

1 subgoal
A : Type
B : Type
C : Type
g : Func B C
f : Func A B
a: A

app g (app f a) = app g (app f a)

comp_ok < reflexivity.
No more subgoals.

comp_ok < Qed.

(intros AB C g £ a).
(unfold comp).

(rewrite by_formula_ok).
reflexivity.

Qed.
comp_ok is defined

And we can easily prove that function composition is associative. The idea is
to first use extensionality, so that I am only comparing outputs, not functions.
Then use the fact that composition can always be turned into a repeated series
of function applications.

Cog> Lemma comp_assoc : forall {A B C D} (f : Func C D) (g : Func B C) (h : Func A B), comp f (comp g h) = comp (comp f g) h.
comp_assoc < intros ABCD f g h.
1 subgoal
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: Type
: Type
: Type
: Type
: Func CD
: Func B C
: Func A B

B O QW

comp f (comp g h) = comp (comp f g) h

comp_assoc < apply funext.

1 subgoal
A : Type
B : Type
C : Type
D : Type
f : Func CD
g : Func B C
h : Func A B

forall x : A, app (comp f (comp g h)) x = app (comp (comp f g) h) x

comp_assoc < intro a.
1 subgoal

: Type
: Type
: Type
: Type
: Func C
: Func B C
: Func
A

o

P 5@ HOQW >
=
w

app (comp f (comp g h)) a = app (comp (comp f g) h) a

comp_assoc < repeat rewrite comp_ok.
1 subgoal

: Type

: Type

: Type

: Type

: Func C D
: Func B C
: Func A B
A

P 5@ HOQW >

app f (app g (app h a)) = app f (app g (app h a))

comp_assoc < reflexivity.
No more subgoals.

comp_assoc < Qed.

(intros ABCD f g h).
(apply funext).

intro a.

(repeat rewrite comp_ok).
reflexivity.

Qed.

comp_assoc is defined

This definition of function composition allows us to define an algebra of
functions, and we can start to see why certain operations work. For example,
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suppose I have a statement such as

gof=holf. (3.36)

By extensionality, I know that this means the two composed functions have equal
outputs for every input. If the function f is surjective, then every point b € B
is produced by some input a € A. This means that if g and i produce the same
output for every point of B, then the composition produces the same output for
every point of A, and we could cancel f from both sides of the equation. This
means that the function f is right cancellable. We first introduce hypotheses
and use extensionality.

Coq < Theorem sur_then_rc : forall {A B} (f : Func A B),

surjective f -> forall C (g h : Func B C), comp g f = comp h f -> g = h.
Coq < 1 subgoal

forall (A B : Type) (f : Func A B),
surjective f ->
forall (C : Type) (g h : Func BC), comp g f = comp h f ->g=nh

sur_then_rc < intros A B f Surj C g h H.

1 subgoal
A : Type
B : Type

f : Func A B

Surj : surjective f

C : Type

g, h : Func B C

H: comp g £f = comp h f

g=h

sur_then_rc < apply funext.
1 subgoal

A : Type

B : Type

f : Func A B

Surj : surjective f

C : Type

g, h : Func B C

H: comp g £ = comp h £

forall x : B, app g x = app h x

sur_then_rc < intro b.

1 subgoal
A : Type
B : Type

f : Func A B

Surj : surjective f

C : Type

g, h : Func B C

H: comp g £ = comp h £
b:B

app g b =app h b

Now we can extract the witness from the sujectivity statement, and use it to
rewrite the goal.
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sur_then_rc < destruct (Surj b) as [a H2].

1 subgoal
A : Type
B : Type

f : Func A B

Surj : surjective f

C : Type

g, h : Func B C

H: comp g £ = comp h £
b:B

a: A

H2 : app f a =D

app g b = app h b

sur_then_rc < rewrite <- H2.
1 subgoal

A : Type

B : Type

f : Func A B

Surj : surjective f

C : Type

g, h : Func B C

H: comp g £ = comp h f
b:B

A
H2 : app f a = Db

app g (app f a) = app h (app f a)

Now we can replace repeated application with composition, and use our original
assumption to complete the proof.

sur_then_rc < rewrite <- comp_ok.

1 subgoal
A : Type
B : Type

f : Func A B

Surj : surjective f

C : Type

g, h : Func B C

H: comp g £ = comp h f
b:B

a: A

H2 : app f a = Db

app (comp g £) a = app h (app f a)

sur_then_rc < rewrite <- comp_ok.

1 subgoal
A : Type
B : Type

f : Func A B

Surj : surjective f

C : Type

g, h : Func B C

H: comp g £ = comp h f
b:B

a: A

H2 : app f a = b

app (comp g f) a = app (comp h f) a

sur_then_rc < rewrite H.
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1 subgoal
A : Type
B : Type

f : Func A B

Surj : surjective f

C : Type

g, h : Func B C

H: compgf =comphf
b: B

a: A

H2 : app f a = b

app (comp h f) a = app (comp h f) a

sur_then_rc < reflexivity.
No more subgoals.

sur_then_rc < Qed.

(intros A B f Surj C g h H).

(apply funext).
intro b.

(destruct (Surj b) as [a H2]).

(rewrite <- H2).
(rewrite <- comp_ok).
(rewrite <- comp_ok).
(rewrite H).
reflexivity.

Qed.
sur_then_rc is defined
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Similarly, every injective function is left cancellable. We can see this by reasoning
in the same way. Appealing to extensionality, the two composed functions are
equal if the outputs are equal. Since f is injective, the inputs are equal if the
outputs are equal. Thus we can reduce the problem to establishing the equailty

of g and h. We start by introducing hypotheses and using extensionality.

Coq < Theorem inj_then_lc

injective f -> forall A (g h :

Coq < 1 subgoal

: forall {B C} (f :
Func A B), comp f g = comp f h -> g = h.

forall (B C : Type) (f :
injective f ->
forall (A : Type) (g h :

inj_then_lc < intros B C f Inj A g h H.

Func A B), comp f g = comp f h -> g=h

1 subgoal
B : Type
C : Type
f : Func B C
Inj : injective f
A : Type
g, h : Func A B
H: compfg=compfh
g=h
inj_then_lc < apply funext.
1 subgoal
B : Type
C : Type

f : Func B C
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Inj : injective f

A : Type

g, h : Func A B

H: comp f g =comp fh

forall x : A, app g x = app h x

inj_then_lc < intro a.
1 subgoal

B : Type

C : Type

f : Func B C

Inj : injective f

A : Type

g, h : Func A B

H: comp f g =comp fh
a: A

app g a = app h a

We apply injectivity, which says that the inputs to f in the goal will be equal
if the outputs from f are equal. Then we replace repeated application with
composition to complete the proof.

inj_then_lc < apply Inj.
1 subgoal

: Type
: Type
Func B C
: injective f
Type
h : Func A B
: comp f g =comp fh
A

HHh QW
=]
WA

M T >

app f (app g a) = app f (app h a)

inj_then_lc < rewrite <- comp_ok.
1 subgoal

B : Type

C : Type

f : Func B C

Inj : injective f
A : Type

g, h : Func A B
H: compfg=compfh
a: A

app (comp f g) a = app £ (app h a)

inj_then_lc < rewrite <- comp_ok.
1 subgoal

B : Type

C : Type

f : Func B C

Inj : injective f
A : Type

g, h : Func A B
H: compfg=compfh
a: A

app (comp f g) a = app (comp f h) a
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inj_then_lc < rewrite H.
1 subgoal

: Type
: Type
Func B C
: injective f
Type
h : Func A B
: comp f g =comp fh
: A

=]

P MM = HH QW

app (comp f h) a = app (comp f h) a

inj_then_lc < reflexivity.
No more subgoals.

inj_then_lc < Qed.

(intros B C f Inj A g h H).
(apply funext).

intro a.

(apply Inj).

(rewrite <- comp_ok).
(rewrite <- comp_ok).
(rewrite H).

reflexivity.

Qed.
inj_then_lc is defined

In order to define the inverse function, we will first define the identity
function. This is the simplest possible function, which just returns its input,
f(x) = z. Notice we use a transparent definition so that we can unfold this
during proofs.

Definition id : forall {A}, Func A A.
Proof.

intros A.

exact (by_formula (fun x => x)).
Defined.

We can prove that this function has the action we expect. The strange syntax
is needed because the type A is an implicit argument to our function.

Coq < Corollary id_ok : forall {A : Type} x, app (@id A) x = x.
1 subgoal

forall (A : Type) (x : A), app id x = x

id_ok < intros A x.

1 subgoal
A : Type
x : A

app id x = x

id_ok < unfold id.
1 subgoal

A : Type
X @

app (by_formula (fun x0 : A => x0)) x = x
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id_ok < rewrite by_formula_ok.

1 subgoal
A : Type
x : A
X =X

id_ok < reflexivity.
No more subgoals.

id_ok < Qed.

(intros A x).

(unfold id).

(rewrite by_formula_ok) .
reflexivity.

Qed.
id_ok is defined

Now we can define invertibility. A function f is invertible if there exists
a function g such that there composition, in either order, gives the identity
function. Notice that the inverse ¢ maps in the opposite direction from f, from
codomain to domain.
Definition invertible {A B} (f : Func A B) :=

exists g : Func B A, comp f g = id /\ comp g f = id.

We can now rewrite our proof from Section 3.3 that every bijective function is
invertible. We begin by introducing hypotheses and unfolding the definitions of
invertibility and surjectivity.

Coq < Theorem bij_then_inv : forall {A B} (f : Func A B), injective f -> surjective f -> invertible f.
1 subgoal

forall (A B : Type) (f : Func A B),
injective f -> surjective f -> invertible f

bij_then_inv < intros A B f Inj Sur.
1 subgoal

A : Type

B : Type

f : Func A B

Inj : injective f
Sur : surjective f

invertible f

bij_then_inv < unfold invertible.
1 subgoal

A : Type

B : Type

f : Func A B

Inj : injective f
Sur : surjective f

exists g : Func B A, comp f g = id /\ comp g f = id

bij_then_inv < unfold surjective in Sur.
1 subgoal

A : Type
B : Type
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f : Func A B
Inj : injective f
Sur : forall y : B, exists x : A, app f x =y

exists g : Func B A, comp f g = id /\ comp g f = id

Now we need to define the inverse function g. What we want is a function
that takes in an element b € B and returns the x € A from the statement of
surjectivity. We use the choice operator to extract this witness. After providing
the function, we split the proof of the conjunction.

bij_then_inv < exists (by_formula (fun b => choice (Sur b))).
1 subgoal

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y

comp f (by_formula (fun b : B => choice (Sur b))) = id /\
comp (by_formula (fun b : B => choice (Sur b))) f = id

bij_then_inv < split.

2 subgoals
A : Type
B : Type

f : Func A B
Inj : injective f
Sur : forall y : B, exists x : A, app f x =y

comp f (by_formula (fun b : B => choice (Sur b))) = id

subgoal 2 is:
comp (by_formula (fun b : B => choice (Sur b))) f = id

To prove equality of functions, we make use of extensionality, and introduce the
element of B.

bij_then_inv < apply funext.
2 subgoals

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y

forall x : B,
app (comp f (by_formula (fun b : B => choice (Sur b)))) x = app id x

subgoal 2 is:
comp (by_formula (fun b : B => choice (Sur b))) f = id

bij_then_inv < intro b.

2 subgoals
A : Type
B : Type
f : Func A B

Inj : injective f
Sur : forall y : B, exists x : A, app f x =y
b:B

app (comp f (by_formula (fun bO : B => choice (Sur b0)))) b = app id b
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subgoal 2 is:
comp (by_formula (fun b : B => choice (Sur b))) f = id

We now turn composition into repeated application, and evaluate app on our
formula.

bij_then_inv < rewrite comp_ok.
2 subgoals

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y
b:B

app f (app (by_formula (fun bO : B => choice (Sur b0))) b) = app id b

subgoal 2 is:
comp (by_formula (fun b : B => choice (Sur b))) f = id

bij_then_inv < rewrite by_formula_ok.

2 subgoals
A : Type
B : Type
f : Func A B

Inj : injective f
Sur : forall y : B, exists x : A, app f x =y
b:B

app f (choice (Sur b)) = app id b

subgoal 2 is:
comp (by_formula (fun b : B => choice (Sur b))) f = id

We use the choice_ok theorem to extract the value from our choice statement, or
more precisely define an equality for that value.

bij_then_inv < pose (H := choice_ok (Sur b)).
2 subgoals

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y

b:B

H := choice_ok (Sur b) : (fun x : A => app f x = b) (choice (Sur b))

app f (choice (Sur b)) = app id b

subgoal 2 is:
comp (by_formula (fun b : B => choice (Sur b))) f = id

bij_then_inv < simpl in H.

2 subgoals
A : Type
B : Type
f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y

b:B

H := choice_ok (Sur b) : app f (choice (Sur b)) =b
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app f (choice (Sur b)) = app id b

subgoal 2 is:
comp (by_formula (fun b : B => choice (Sur b))) f = id

Lastly, we eliminate the identity function and finish the proof with our choice
equality.

bij_then_inv < rewrite id_ok.
2 subgoals

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y
b: B
H := choice_ok (Sur b) : app f (choice (Sur b)) = b

app f (choice (Sur b)) =b

subgoal 2 is:
comp (by_formula (fun b : B => choice (Sur b))) f = id

bij_then_inv < exact H.

1 subgoal
A : Type
B : Type

f : Func A B
Inj : injective f
Sur : forall y : B, exists x : A, app f x =y

comp (by_formula (fun b : B => choice (Sur b))) f = id

For the other direction, we also use extensionality, rewrite composition as re-
peated application, and evaluate our formula.

bij_then_inv < apply funext.
1 subgoal

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y

forall x : A,
app (comp (by_formula (fun b : B => choice (Sur b))) f) x = app id x

bij_then_inv < intro a.
1 subgoal

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y
a: A

app (comp (by_formula (fun b : B => choice (Sur b))) f) a = app id a

bij_then_inv < rewrite comp_ok.
1 subgoal

A : Type
B : Type
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f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y
a: A

app (by_formula (fun b : B => choice (Sur b))) (app f a) = app id a

bij_then_inv < rewrite by_formula_ok.
1 subgoal

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y
a: A

choice (Sur (app f a)) = app id a

We again use choice_ok to extract the value from the surjectivity definition, and
evaluate the identity function.

bij_then_inv < pose (H := choice_ok (Sur (app f a))).
1 subgoal

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y

a: A

H := choice_ok (Sur (app f a))

(fun x : A => app f x = app f a) (choice (Sur (app f a)))

choice (Sur (app f a)) = app id a

bij_then_inv < simpl in H.
1 subgoal

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y

a: A

H := choice_ok (Sur (app f a)) : app f (choice (Sur (app f a))) = app f a

choice (Sur (app f a)) = app id a

bij_then_inv < rewrite id_ok.
1 subgoal

A : Type

B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y

a: A

H := choice_ok (Sur (app f a)) : app f (choice (Sur (app f a))) = app f a

choice (Sur (app f a)) = a

As the last step, we use injectivity, meaning that the two inputs in the goal
will be equal if the outputs when f is applied are equal, and finish by using our
choice equality.

bij_then_inv < apply Inj.
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1 subgoal
A : Type
B : Type

f : Func A B

Inj : injective f

Sur : forall y : B, exists x : A, app f x =y

a: A

H := choice_ok (Sur (app f a)) : app f (choice (Sur (app f a))) = app f a

app f (choice (Sur (app f a))) = app f a

bij_then_inv < exact H.
No more subgoals.

bij_then_inv < Qed.

(intros A B f Inj Sur).

(unfold invertible).

(unfold surjective in Sur).
exists (by_formula (fun b => choice (Sur b))).
split.

(apply funext).

intro b.

(rewrite comp_ok).

(rewrite by_formula_ok).

(pose (H := choice_ok (Sur b))).
(simpl in H).

(rewrite id_ok).

exact H.

(apply funext).

intro a.

(rewrite comp_ok).

(rewrite by_formula_ok) .

(pose (H := choice_ok (Sur (app f a)))).
(simpl in H).

(rewrite id_ok).

(apply Inj).

exact H.

Qed.
bij_then_inv is defined

We can also reproduce the proof that the composition of invertible functions
is invertible, but first we will need to simple results. We need to establish that
the identity function is an identity element for the composition operation. All
we need to do is use extensionality, and the definitions of composition and the
identity function.

Coq < Theorem id_left : forall {dom cod} (f : Func dom cod), comp f id = f.
1 subgoal

forall (dom cod : Type) (f : Func dom cod), comp f id = f

id_left < intros dom cod f.

1 subgoal
dom : Type
cod : Type

f : Func dom cod

comp f id = £

id_left < apply funext.
1 subgoal
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dom : Type
cod : Type
f : Func dom cod

forall x : dom, app (comp f id) x = app f x

id_left < intro x.
1 subgoal

dom : Type

cod : Type

f : Func dom cod
x : dom

app (comp f id) x = app f x

id_left < rewrite comp_ok.
1 subgoal

dom : Type

cod : Type

f : Func dom cod
x : dom

app f (app id x) = app f x

id_left < rewrite id_ok.
1 subgoal

dom : Type

cod : Type

f : Func dom cod
x : dom

app f x = app f x

id_left < reflexivity.
No more subgoals.

id_left < Qed.
(intros dom cod f).
(apply funext).
intro x.

(rewrite comp_ok).
(rewrite id_ok).
reflexivity.

Qed.
id_left is defined

The reverse order is proved in exactly the same way.

Coq < Theorem id_right : forall {dom cod} (f : Func dom cod), comp id f = f.
1 subgoal

forall (dom cod : Type) (f : Func dom cod), comp id f = f

id_right < intros dom cod f.

1 subgoal
dom : Type
cod : Type

f : Func dom cod

comp id f = f
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id_right < apply funext.

1 subgoal
dom : Type
cod : Type

f : Func dom cod

forall x : dom, app (comp id f) x = app f x

id_right < intro x.
1 subgoal

dom : Type

cod : Type

f : Func dom cod
x : dom

app (comp id f) x = app f x

id_right < rewrite comp_ok.
1 subgoal

dom : Type

cod : Type

f : Func dom cod
x : dom

app id (app f x) = app f x

id_right < rewrite id_ok.
1 subgoal

dom : Type

cod : Type

f : Func dom cod
x : dom

app f x = app f x

id_right < reflexivity.
No more subgoals.

id_right < Qed.
(intros dom cod f).
(apply funext).
intro x.

(rewrite comp_ok).
(rewrite id_ok).
reflexivity.

Qed.
id_right is defined

We start our proof for the composition of invertible functions by unfolding
the defintion of invertibility, extracting witnesses from the existence statements,
and constructing the inverse function (g o f)~!, which is just the composition
of the individual inverses f~! o g~*

Coq < Theorem inv_closed_under_comp : forall {A B C} (g : Func B C) (f : Func A B),

invertible g -> invertible f -> invertible (comp g f).
1 subgoal

forall (A B C : Type) (g : Func B C) (f : Func A B),
invertible g -> invertible f -> invertible (comp g f)

inv_closed_under_comp < intros A B C g £ Invg Invf.



122 CHAPTER 3. SETS, RELATIONS, AND FUNCTIONS

1 subgoal
A : Type
B : Type
C : Type
g : Func B C
f : Func A B

Invg : invertible g
Invf : invertible f

invertible (comp g f)

inv_closed_under_comp < unfold invertible.
1 subgoal

: Type

: Type

: Type

: Func B C

: Func A B

Invg : invertible g
Invf : invertible f

Fhoa Q W >

exists g0 : Func C A, comp (comp g f) g0 = id /\ comp g0 (comp g f) = id

inv_closed_under_comp < unfold invertible in Invg.

1 subgoal
A : Type
B : Type
C : Type
g : Func B C
f : Func A B

Invg : exists g0 : Func C B, comp g g0 = id /\ comp g0 g = id
Invf : invertible f

exists g0 : Func C A, comp (comp g f) g0 = id /\ comp g0 (comp g f) = id

inv_closed_under_comp < unfold invertible in Invf.

1 subgoal
A : Type
B : Type
C : Type
g : Func B C
f : Func A B

Invg : exists g0 : Func C B, comp g g0 = id /\ comp g0 g = id
Invf : exists g : Func B A, comp f g = id /\ comp g f = id

exists g0 : Func C A, comp (comp g f) gO = id /\ comp g0 (comp g f) = id

inv_closed_under_comp < destruct Invf as [fi [Hf1 Hf2]].
1 subgoal

: Type

: Type

: Type

: Func B C

: Func A B

Invg : exists g0 : Func C B, comp g g0 = id /\ comp g0 g = id
fi : Func B A

Hf1 : comp f fi = id

Hf2 : comp fi f = id

Fhoa Q W >

exists g0 : Func C A, comp (comp g f) g0 = id /\ comp g0 (comp g f) = id

inv_closed_under_comp < destruct Invg as [gi [Hgl Hg2]].
1 subgoal
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A : Type
B : Type
C : Type
g : Func B C
f : Func A B

gi : Func C B
Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A
Hf1l : comp f fi = id
Hf2 : comp fi f = id

exists g0 : Func C A, comp (comp g f) g0 = id /\ comp g0 (comp g f) = id

inv_closed_under_comp < exists (comp fi gi).

1 subgoal
A : Type
B : Type
C : Type
g : Func B C

f : Func A B

gi : Func C B

Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A

Hf1 : comp f fi = id
Hf2 : comp fi f = id

comp (comp g f) (comp fi gi) = id /\ comp (comp fi gi) (comp g f) = id

inv_closed_under_comp < split.

2 subgoals
A : Type
B : Type
C : Type
g : Func B C
f : Func A B

gi : Func C B
Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A
Hf1l : comp f fi = id
Hf2 : comp fi f = id

comp (comp g f) (comp fi gi) = id

subgoal 2 is:
comp (comp fi gi) (comp g f) = id

For the first proof, since composition is associative, we can bring together each
function and its inverse, producing the identity. We can also use our simple
theorem to eliminate composition with the identity.

inv_closed_under_comp < rewrite comp_assoc.

2 subgoals
A : Type
B : Type
C : Type
g : Func B C

f : Func A B
gi : Func C B
Hgl : comp g gi = id
Hg2 : comp gi g = id



124 CHAPTER 3. SETS, RELATIONS, AND FUNCTIONS

fi : Func B A
Hf1 : comp f fi id
Hf2 : comp fi f = id

comp (comp (comp g f) fi) gi = id

subgoal 2 is:
comp (comp fi gi) (comp g £) = id

inv_closed_under_comp < rewrite <- comp_assoc with (h := fi).
2 subgoals

A : Type

B : Type

C : Type

g : Func B C

f : Func A B

gi : Func C B

Hgl : comp g gi = id

Hg2 : comp gi g = id
fi : Func B A

Hf1 : comp f fi = id
Hf2 : comp fi f = id

comp (comp g (comp £ fi)) gi = id

subgoal 2 is:
comp (comp fi gi) (comp g £) = id

inv_closed_under_comp < rewrite Hf1.

2 subgoals
A : Type
B : Type
C : Type
g : Func B C

f : Func A B

gi : Func C B
Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A

Hf1 : comp f fi
Hf2 : comp fi f

id
id

comp (comp g id) gi = id

subgoal 2 is:
comp (comp fi gi) (comp g f) = id

inv_closed_under_comp < rewrite id_left.

2 subgoals
A : Type
B : Type
C : Type
g : Func B C

f : Func A B

gi : Func C B

Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A

Hf1 : comp f fi = id
Hf2 : comp fi £ id

comp g gi = id

subgoal 2 is:
comp (comp fi gi) (comp g f) = id
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inv_closed_under_comp < rewrite Hgl.

2 subgoals
A : Type
B : Type
C : Type
g : Func B C

f : Func A B

gi : Func C B

Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A

Hf1 : comp f fi = id
Hf2 : comp fi f = id

id = id

subgoal 2 is:
comp (comp fi gi) (comp g f) = id

inv_closed_under_comp < reflexivity.

1 subgoal
A : Type
B : Type
C : Type
g : Func B C

f : Func A B

gi : Func C B

Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A

Hfl : comp f fi = id
Hf2 : comp fi f = id

comp (comp fi gi) (comp g f) = id

The second half is proved in exactly the same way, and the proof is complete.

inv_closed_under_comp < rewrite comp_assoc.

1 subgoal
A : Type
B : Type
C : Type
g : Func B C
f : Func A B

gi : Func C B
Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A
Hf1 : comp f fi = id
Hf2 : comp fi f = id

comp (comp (comp fi gi) g) f = id

inv_closed_under_comp < rewrite <- comp_assoc with (h := g).
1 subgoal

A : Type

B : Type

C : Type

g : Func B C

f : Func A B
gi : Func C B
Hgl : comp g gi = id
Hg2 : comp gi g = id
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fi : Func B A
Hf1 : comp f fi = id
Hf2 : comp fi f = id

comp (comp fi (comp gi g)) f = id

inv_closed_under_comp < rewrite Hg2.

1 subgoal
A : Type
B : Type
C : Type
g : Func B C

f : Func A B

gi : Func C B

Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A

Hf1 : comp f fi = id
Hf2 : comp fi f = id

comp (comp fi id) f = id

inv_closed_under_comp < rewrite id_left.
1 subgoal

A : Type

B : Type

C : Type

g : Func B C

f : Func A B

gi : Func C B

Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A

Hf1 : comp f fi = id
Hf2 : comp fi f = id

comp fi f = id

inv_closed_under_comp < rewrite Hf2.

1 subgoal
A : Type
B : Type
C : Type
g : Func B C

f : Func A B

gi : Func C B

Hgl : comp g gi = id
Hg2 : comp gi g = id
fi : Func B A

Hf1l : comp f fi = id
Hf2 : comp fi f = id

id = id

inv_closed_under_comp < reflexivity.
No more subgoals.

inv_closed_under_comp < Qed.
(intros A B C g f Invg Invf).
(unfold invertible).

(unfold invertible in Invg).
(unfold invertible in Invf).
(destruct Invf as [fi [Hf1 Hf2]]).
(destruct Invg as [gi [Hgl Hg2]l).
exists (comp fi gi).
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split.

(rewrite comp_assoc).

(rewrite <- comp_assoc with (h := fi)).
(rewrite Hf1).

(rewrite id_left).

(rewrite Hgl).

reflexivity.

(rewrite comp_assoc).

(rewrite <- comp_assoc with (h := g)).
(rewrite Hg2).

(rewrite id_left).

(rewrite Hf2).

reflexivity.

Qed.
inv_closed_under_comp is defined

3.4.1 Particular Functions
The Identity Function

We can use our methodology to prove things about particular functions. For
instance, we can prove that the identity function is both injective and surjective.
It has to be injective because it returns the input, so if the outputs are equal,
the inputs must be equal.

Coq < Lemma id_inj : forall {A}, injective (@id A).
1 subgoal

forall A : Type, injective id

id_inj < intro A.
1 subgoal

A : Type

injective id

id_inj < unfold injective.
1 subgoal

A : Type

forall x y : A, app id x =app idy -> x =y

id_inj < intros x y H.
1 subgoal

A : Type
X,y : A
H : app id x = app id y

X =Yy

id_inj < rewrite id_ok in H.
1 subgoal

: Type

A
X,y : A
H: x=app idy

X =Yy
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id_inj < rewrite id_ok in H.
1 subgoal

A : Type
X,y : A
H:x=y

X =y

id_inj < exact H.
No more subgoals.

id_inj < Qed.

intro A.

(unfold injective).
(intros x y H).
(rewrite id_ok in H).
(rewrite id_ok in H).
exact H.

Qed.
id_inj is defined

It is also surjective, because each element of the output type is mapped to by
itself.

Coq < Lemma id_sur : forall {A}, surjective (@id A).
1 subgoal

forall A : Type, surjective id

id_sur < intro A.
1 subgoal

A : Type

surjective id

id_sur < unfold surjective.
1 subgoal

A : Type

forall y : A, exists x : A, app id x =y

id_sur < intro y.

1 subgoal
A : Type
y : A

exists x : A, app id x =y

id_sur < exists y.
1 subgoal

A : Type
y : A

app id y =y

id_sur < rewrite id_ok.
1 subgoal

A : Type
y : A
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y=y
id_sur < reflexivity.

No more subgoals.

id_sur < Qed.

intro A.

(unfold surjective).
intro y.

exists y.

(rewrite id_ok).
reflexivity.

Qed.
id_sur is defined

The Shift Function

Let’s consider the shift function Sh : N — N defined by Sh(z) = = + 1, which
can also be written as the relation Sh : N — N — Prop defined by Sh(z,y) =
z+1=y. In Coq, we will write it as

Definition plus_1 := fun x : nat => x + 1.

The shift function is injective, but not surjective. It is injective because x1+1 =
zo+1 implies that £1 = x5, so no two natural numbers map to the same number.
It is not surjective, however, because nothing maps to zero.

We start by stating the problem (plus_1_inj), unfolding our definitions, and
introducing hypotheses. We use by_formula_ok to turn runc objects back into
standard functions, and we will need standard arithmetic for the natural num-
bers.

Coq < Require Import Arith.

[Loading ML file z_syntax_plugin.cmxs ... donel
[Loading ML file quote_plugin.cmxs ... done]
[Loading ML file newring_plugin.cmxs ... done]

Coq < Theorem plus_1_inj : injective (by_formula plus_1).
1 subgoal

injective (by_formula plus_1)

plus_1_inj < unfold injective.
1 subgoal

forall x xp : nat,
app (by_formula plus_1) x = app (by_formula plus_1) xp -> x = xp

plus_1_inj < intros x xp.
1 subgoal

X, Xp : nat

app (by_formula plus_1) x = app (by_formula plus_1) xp -> x = xp

plus_1_inj < rewrite by_formula_ok.
1 subgoal

X, Xp : nat
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plus_1 x = app (by_formula plus_1) xp -> x = xp

plus_1_inj < rewrite by_formula_ok.
1 subgoal

X, Xp : nat

plus_1 x = plus_1 xp -> x = xp

plus_1_inj < unfold plus_1.
1 subgoal

X, Xp : nat

x+1=xp+1->x=xp

plus_1_inj < intro H.
1 subgoal

X, Xp : nat
H:x+1=xp+1

X = Xp

Now it turns out that one of the Peano Axioms, which define arithmetic with
natural numbers, is that for all natural numbers m and n, m = n if and only
if S(m) = S(n). That is, the successor function S is an injection. We will use
this fact, and also rewrite our hypotheses in terms of S.

plus_1_inj < apply Nat.succ_inj.
1 subgoal

X, Xp : nat
H:x+1=xp+1

S x =8 xp

plus_1_inj < repeat rewrite Nat.add_1_r in H.
1 subgoal

S x =38 xp

plus_1_inj < exact H.
No more subgoals.

plus_1_inj < Qed.
(unfold injective).
(intros x xp).

(rewrite by_formula_ok) .
(rewrite by_formula_ok) .
(unfold plus_1).

intro H.

Require Import Arith.
(apply Nat.succ_inj).
(repeat rewrite Nat.add_1_r in H).
exact H.

Qed.
plus_1_inj is defined

Proving that Sh is not surjective is simpler, but conceptually a little harder.
We begin again by stating our problem (plus_1_not_sur), unfolding definitions,
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and introducing hypotheses.

Coq < Theorem plus_1_not_sur : “surjective (by_formula plus_l).
1 subgoal

~ surjective (by_formula plus_1)

plus_1_not_sur < unfold surjective.
1 subgoal

~ (forall y : nat, exists x : nat, app (by_formula plus_1) x = y)

plus_1_not_sur < intro H.
1 subgoal

H : forall y : nat, exists x : nat, app (by_formula plus_1) x =y

False

Since our goal is Faise, this will be a proof by contradiction. Our initial reasoning
was that zero could never be the output of our function. Thus, we would like to
consider our hypothesis H in the case that y = 0. We can get that statement
by applying H to 0, which will leave us with an existence statement. We can
use destruct on the existence statement to produce a witness, and these two
operations can be combined in one Coq statement,

plus_1_not_sur < destruct (H 0) as [x Hx].

1 subgoal

H : forall y : nat, exists x : nat, app (by_formula plus_1) x =y
X : nat
Hx : app (by_formula plus_1) x = 0

False

plus_1_not_sur < rewrite by_formula_ok in Hx.
1 subgoal

H : forall y : nat, exists x : nat, app (by_formula plus_1) x =y
X : nat
Hx : plus_1 x =0

False

plus_1_not_sur < unfold plus_1 in Hx.
1 subgoal

H : forall y : nat, exists x : nat, app (by_formula plus_1) x =y
X : nat
Hx : x+1=0

False

plus_1_not_sur < rewrite Nat.add_1_r in Hx.
1 subgoal

H : forall y : nat, exists x : nat, app (by_formula plus_1) x =y
X : nat
Hx : Sx=0

False

which produces a witness x satisfying Hz, which is H for y = 0. We rewrite
this new hypothesis in terms of S in order for Coq to apply the natural number
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axioms correctly. Now Coq can infer that no number x has 0 as a successor, by
looking at the recursive definition of the natural numbers. This kind of intro-
spection can be carried out by the inversion Or discriminate tactics. Inversion tells
us that s x = o is false, and thus implies anything, so our proof by contradiction
is complete.

plus_1_not_sur < inversion Hx.
No more subgoals.

plus_1_not_sur < Qed.

(unfold surjective).

intro H.

(destruct (H 0) as [x Hx]).
(rewrite by_formula_ok in Hx) .
(unfold plus_1 in Hx).
(rewrite Nat.add_1_r in Hx).
(inversion Hx).

Qed.
plus_1_not_sur is defined

The Double Function

As a second example, we can look at the function that doubles its input

Definition double := fun x : nat => 2 * x.

It is injective because we can always divide by two to get the original input (dou-
ble_inj). To prove this, we first unfold the definitions and introduce hypotheses,
and rewrite our hypothesis to get the equality we expect.

Coq < Theorem double_inj : injective (by_formula double).
1 subgoal

injective (by_formula double)

double_inj < unfold injective.
1 subgoal

forall x xp : nat,
app (by_formula double) x = app (by_formula double) xp -> X = xp

double_inj < intros x xp H.
1 subgoal

X, Xp : nat
H : app (by_formula double) x = app (by_formula double) xp

X = Xp

double_inj < repeat rewrite by_formula_ok in H.
1 subgoal

X, Xp : nat
H : double x = double xp

X = Xp

double_inj < unfold double in H.
1 subgoal

X, Xp : nat



3.4. FUNCTIONS REDUX 133

H:2x*x=2x%zxp

X = Xp

It would be nice if we had a function like nat.na1f that we could apply to both
sides of H2 using f_equa1. That does not exist in the standard library, so we look
for another lemma,

double_inj < Search (_ * _).

H2: 2 % x2 = 2 * x1
Hi: 2 * x1 =y

mult_assoc_reverse: forall nm p : nat, n *m * p = n * (m * p)
mult_is_0: forallnm : nat, n *m=0->n=0\/m=0
mult_is_one: forall nm : nat, n*m=1->n=1/\m=1

Nat.mul_cancel_1l: forall nmp : nat, p<>0 ->p *n=p*m<->n=m
Nat.mul_cancel_r: forall nmp : nat, p<> 0 ->n *p=m* p <->n=m

We can apply the cancellation lemma, and use symmetry of equality in the goal
to prove our statement,

double_inj < apply Nat.mul_cancel_l in H.
2 subgoals

X, Xp : nat
H: x=xp

X = Xp

subgoal 2 is:
2<>0

double_inj < exact H.
1 subgoal

X, Xp : nat
H:2%x=25%xp
HO : forallnmp : nat, p<>0 ->p*n=p*m->n=mn

2<>0

but we still have to prove the assumption from the cancellation lemma.

double_inj < intro H1.
1 subgoal

X, Xp : nat

H:2%*x=25%*zxp

HO : forallnmp : nat, p<>0 ->p*n=p*m->n=mn
H1 : 2=0

False

double_inj < discriminate.
No more subgoals.

double_inj < Qed.

(unfold injective).

(intros x xp H).

(repeat rewrite by_formula_ok in H).
(unfold double in H).

(apply Nat.mul_cancel_l in H).

exact H.

intro H1.
discriminate.
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Qed.

double_inj is defined

The double function is not surjective (double_not_sur) because nothing can be
doubled to give one, since one half is not a natural number. To prove this, we
will need an auxiliary library of tactics

Require Import Lia.
and then we can unfold the definitions and introduce hypotheses. We then apply
our hypothesis to the case y = 1 and extract the witness.

Coq < Theorem double_not_sur: ~surjective (by_formula double).
1 subgoal

~ surjective (by_formula double)

double_not_sur < unfold surjective.
1 subgoal

~ (forall y : nat, exists x : nat, app (by_formula double) x = y)

double_not_sur < intro H.
1 subgoal

H : forall y : nat, exists x : nat, app (by_formula double) x

n
~<

False

double_not_sur < destruct (H 1) as [x Hx].
1 subgoal

H : forall y : nat, exists x : nat, app (by_formula double) x =y
X : nat
Hx : app (by_formula double) x = 1

False

double_not_sur < rewrite by_formula_ok in Hx.
1 subgoal

H : forall y : nat, exists x : nat, app (by_formula double) x =y
X : nat
Hx : double x =1

False

double_not_sur < unfold double in Hx.
1 subgoal

H : forall y : nat, exists x : nat, app (by_formula double) x =y
X : nat
Hx : 2 xx =1

False

At this point we would like Coq to recognize that 11 is impossible. It is possible
to prove this by hand, but it is quite laborious. Instead, we will use the 11ia tactic
which can solve linear equations and inequalities over the natural numbers.

double_not_sur < lia.
No more subgoals.
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double_not_sur < Qed.

(unfold surjective).

intro H.

(destruct (H 1) as [x Hx]).
(rewrite by_formula_ok in Hx).
(unfold double in Hx).

lia.

Qed.
double_not_sur is defined

3.5 Automating Cantor’s Proof

In order to automate the proof of Cantor’s Theorem from Section 3.1.1 (Cantor),
we will show that no function f mapping a set to its power set is surjective.
Remember that the power set P(X) of a set X is a collection of all the subsets of
X. One way of thinking of a subset is as a function mapping each member of the
set to a proposition, true for inclusion and false for exclusion. Thus members of
the power set can be thought of as functions from X to Prop. Cantor’s Theorem
thus shows that no function f from X to X — Prop can be surjective.
We will first prove this from the relational point of view. In order to reuse
our previous definition 3.33, we write surjective as a predicate on relations.
Coq < Theorem Cantor X : “exists f : X -> X -> Prop, surjective (fun (x : X) (y : X => Prop) => (f x = y)).

1 subgoal

X : Type

“(exists f : X -> X -> Prop, surjective (fun (x : X) (y : X -> Prop) => f x = y))

We begin the proof by eliminating the negation, extracting the witness from the
existence hypothesis, and unfolding the definition of surjectivity.

Cantor < intro.
1 subgoal

X : Type
H : exists f : X -> X -> Prop,
surjective (fun (x : X) (y : X -> Prop) => f x = y)

False

Cantor < destruct H as [f A].
1 subgoal

X : Type
f : X ->X -> Prop
A : surjective (fun (x : X) (y : X -> Prop) => f x = y)

False

Cantor < unfold surjective in A.
1 subgoal

X : Type
f : X ->X ->Prop
A : forall y : X -> Prop, exists x : X, f x =y

False

We now insert the special function that Cantor proposed to define our set T,
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Cantor < pose (g := fun x : X => ~ f x x).
1 subgoal

X : Type

f : X ->X ->Prop

A : forall y : X -> Prop, exists x : X, f x =y
g:=funx : X=>"f xx: X -> Prop

False

We can apply our hypothesis A to it, which generates an existence statement
from which we extract a witness . What this means is that there has to be
some element z of X such that our function f maps it to the subset defined g.
This is the meaning of surjectivity.

Cantor < destruct (A g) as [x B].
1 subgoal

X : Type

f : X ->X ->Prop

A : forall y : X -> Prop, exists x : X, f x =y
g:=funx : X=>"f xx : X -> Prop
x : X
B fx=g

False

Using B, we can prove a simple auxiliary hypothesis C using that witness, which
we assert,

Cantor < assert (C : g x <-> f x x).
2 subgoals

X : Type

f : X ->X -> Prop

A : forall y : X -> Prop, exists x : X, f x =y
g:=funx : X=>"f xx : X -> Prop

x

B

gx<>fxx

subgoal 2 is:
False

Cantor < rewrite B.
2 subgoals

X : Type

f : X ->X -> Prop

A : forall y : X -> Prop, exists x : X, f x =y
g:=funx : X=>"f xx : X -> Prop
x : X
B fx=g

gx<>gx

subgoal 2 is:
False

Cantor < reflexivity.
1 subgoal

X : Type
f : X ->X -> Prop
A : forall y : X -> Prop, exists x : X, f x =y
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g:=funx : X=>"f xx : X ->Prop
x : X

B:fx=g

C:gx<>fxx

False

Now we unfold the definition of g in our hypothesis C' to expose a contradiction,
and our theorem is proved.

Cantor < unfold g in C.

1 subgoal
X : Type
f : X ->X -> Prop
A : forall y : X -> Prop, exists x : X, f x =y
g:=funx : X=>7"f xx : X ->Prop
x : X
B:fx=g
C: " fxx<>fzxx
False

Cantor < tauto.
No more subgoals.

Cantor < Qed.
intro.
(destruct H as [f A]).
(unfold surjective in A).
(pose (g := fun x : X => ~ £ x x)).
(destruct (A g) as [x Bl).
(assert (C : g x <-> f x x)).
(rewrite B).
reflexivity.

(unfold g in C).
tauto.

Qed.
Cantor is defined

We used tauto to prove the contradiction, but we could have done this by hand,

Coq < Lemma test (S : Prop) : (S <-> ~S) -> False.
1 subgoal

S : Prop

S <-> 7 S -> False

test < Qed.
intro.
(destruct H).
(unfold not in H).
(apply H).
(apply HO).
intro.
(apply H).
assumption.

assumption.

(apply HO).
intro.
(apply H).
assumption.
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assumption.

Qed.

We can now rewrite our proof of Cantor’s Theorem using the new definition
of functions. We create the same “diagonal” function, but this time we can use
a formula. It proceeds along the same line as our early proof, but with easier
to read function representations.

Coq < Theorem Cantor : forall {A} (f : Func A (Func A Prop)), “surjective f.
1 subgoal

forall (A : Type) (f : Func A (Func A bool)), ~ surjective f

Cantor < intros A f Sur.
1 subgoal

A : Type
f : Func A (Func A Prop)
Sur : surjective f

False

Cantor < pose (g := by_formula (fun a => ~“(app (app f a) a))).
1 subgoal

A : Type

f : Func A (Func A Prop)

Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop

False

Cantor < destruct (Sur g) as [a HI].
1 subgoal

A : Type
f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

False

Cantor < assert (H2 : app (app f a) a <-> app g a).
2 subgoals

A : Type

f : Func A (Func A Prop)

Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

app (app f a) a <-> app g a

subgoal 2 is:
False

Cantor < split.
3 subgoals

A : Type
f : Func A (Func A Prop)
Sur : surjective f
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g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A
H:appfa=g

app (app f a) a -> app g a

subgoal 2 is:

app g a -> app (app f a) a
subgoal 3 is:

False

Cantor < rewrite H.
3 subgoals

A : Type

f : Func A (Func A Prop)

Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

app g 2 -> app g a

subgoal 2 is:

app g a —> app (app f a) a
subgoal 3 is:

False

Cantor < intro H2.
3 subgoals

A : Type

f : Func A (Func A Prop)

Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

H2 : app g a

app g a

subgoal 2 is:

app g a > app (app f a) a
subgoal 3 is:

False

Cantor < exact H2.
2 subgoals

A : Type

f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

app g a -> app (app f a) a

subgoal 2 is:
False

Cantor < rewrite H.
2 subgoals

A : Type

f : Func A (Func A Prop)

Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
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a: A
H:appfa=g

app g 2 -> app g a

subgoal 2 is:
False

Cantor < intro H2.
2 subgoals

A : Type

f : Func A (Func A Prop)

Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

H2 : app g a

app g a

subgoal 2 is:
False

Cantor < exact H2.
1 subgoal

A : Type

f : Func A (Func A Prop)

Sur : surjective f

g := by_formula (fun a : A =>
a: A

H:appfa=g

H2 : app (app f a) a <-> app g a

app (app f a) a) : Func A Prop

False

Cantor < unfold g in H2.
1 subgoal

A : Type
f : Func A (Func A Prop)
Sur : surjective f
g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A
H:appfa=g
H2 : app (app f a) a <>
app (by_formula (fun a : A => ~ app (app f a) a)) a

False

Cantor < rewrite by_formula_ok in H2.
1 subgoal

A : Type

f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A =>
a: A

H:appfa=g

H2 : app (app f a) a <->

app (app f a) a) : Func A Prop

app (app f a) a

False

We can prove this last step with tauto, but here we will do it by hand.

Cantor < assert (H3 : forall P : Prop, "(P <-> "P)).
2 subgoals
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A : Type
f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a)

a: A
H:appfa=g
H2 : app (app f @) a <-> ~ app (app f a) a

forall P : Prop, ~ (P <-> " P)

subgoal 2 is:
False

Cantor < intros P H3.
2 subgoals

A : Type
f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a)

a: A

H:appfa=g

H2 : app (app f a) a <-> ~ app (app f a) a
P : Prop

H3 : P <> " P

False

subgoal 2 is:
False

Cantor < destruct H3.
2 subgoals

A : Type
f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a)

a: A
H:appfa=g
H2 : app (app f a) a <->

app (app f a) a

P : Prop

HO : P > " P
H1 : P ->P
False

subgoal 2 is:
False

Cantor < apply HO.
3 subgoals

A : Type
f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a)

a: A
H:appfa=g
H2 : app (app f a) a <>

app (app f a) a

P : Prop

HO : P > " P
H1 : " P ->P
P

subgoal 2 is:

: Func A Prop

: Func A Prop

: Func A Prop

: Func A Prop
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P
subgoal 3 is:
False

Cantor < apply H1.
3 subgoals

A : Type

f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

H2 : app (app f a) a <->

app (app f a) a

P : Prop

HO : P->"P
H1 : " P ->P
~ P

subgoal 2 is:
P

subgoal 3 is:
False

Cantor < intro p.
3 subgoals

A : Type

f : Func A (Func A Prop)

Sur : surjective f

g := by_formula (fun a : A =>
a: A

H:appfa=g

H2 : app (app f @) a <-> ~ app (app f a) a

app (app f a) a) : Func A Prop

P : Prop

HO : P> " P
HlL : " P->P
p:P

False

subgoal 2 is:
P

subgoal 3 is:
False

Cantor < apply HO.
4 subgoals

A : Type

f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

H2 : app (app f a) a <->

app (app f a) a

P : Prop

HO : P->" P
H1 : " P ->P
p:P

P

subgoal 2 is:
P
subgoal 3 is:
P



3.5. AUTOMATING CANTOR’S PROOF 143

subgoal 4 is:
False

Cantor < exact p.
3 subgoals

A : Type

f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

H2 : app (app f a) a <->

app (app f a) a

P : Prop

HO : P->"P
H1 : " P ->P
p:P

P

subgoal 2 is:
P

subgoal 3 is:
False

Cantor < exact p.
2 subgoals

A : Type

f : Func A (Func A Prop)

Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

H2 : app (app f @) a <-> ~ app (app f a) a

P : Prop

HO : P->"P
HlL : " P ->P
P

subgoal 2 is:
False

Cantor < apply Hi.
2 subgoals

A : Type

f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a) : Func A Prop
a: A

H:appfa=g

H2 : app (app f a) a <>

app (app f a) a

P : Prop

HO : P->"P
HlL : " P ->P
" P

subgoal 2 is:
False

Cantor < intro p.
2 subgoals

A : Type
f : Func A (Func A Prop)
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Sur : surjective f

g := by_formula (fun a : A
a: A

H:appfa=g

H2 : app (app f a) a <-> ~

=> ~ app (app f a) a)

app (app f a) a

P : Prop

HO : P->"P
H1 : " P ->P
p:P

False

subgoal 2 is:
False

Cantor < apply HO.
3 subgoals

A : Type

f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A
a: A

H:appfa=g

H2 : app (app f a) a <>

=> ~ app (app f a) a)

app (app f a) a

P : Prop

HO : P> " P
H1 : " P ->P
p:P

P

subgoal 2 is:
P

subgoal 3 is:
False

Cantor < exact p.
2 subgoals

A : Type

f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A
a: A

H:appfa=g

H2 : app (app f a) a <-> ~

=> ~ app (app f a) a)

app (app f a) a

P : Prop

HO : P -> " P
H1 : " P ->P
p:P

P

subgoal 2 is:
False

Cantor < exact p.
1 subgoal

A : Type

f : Func A (Func A Prop)
Sur : surjective f

g := by_formula (fun a : A
a: A

H:appfa=g

H2 : app (app f a) a <-> ~
H3 : forall P : Prop, ~ (P

=> ~ app (app f a) a)

app (app f a) a
<=> " P)
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: Func A Prop

: Func A Prop

: Func A Prop

: Func A Prop
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False
Cantor < pose (H4 := H3 (app (app f a) a)).
1 subgoal

A : Type

f : Func A (Func A Prop)

Sur : surjective f

g := by_formula (fun a : A => ~ app (app f a) a)
a: A
H:appfa=g
H2 : app (app f @) a <-> ~ app (app f a) a
H3 : forall P : Prop, ~ (P <-> ~ P)
H4 := H3 (app (app f a) a) : ~ (app (app f a) a <->
False
Cantor < apply H4.
1 subgoal
A : Type
f : Func A (Func A Prop)
Sur : surjective f
g := by_formula (fun a : A => ~ app (app f a) a)
a: A
H:appfa=g
H2 : app (app f a) a <-> ~ app (app f a) a
H3 : forall P : Prop, ~ (P <-> ~ P)

H4 := H3 (app (app f a) a) : ~ (app (app f a) a <->

app (app f a) a

app (app f a) a <->
Cantor < exact H2.
No more subgoals.

Cantor < Qed.
(intros A f Sur).
(pose (g := by_formula (fun a => ~
(destruct (Sur g) as [a H]).
(assert (H2 : app (app f a) a <-> app g a)).
split.

(rewrite H).

intro H2.

exact H2.

app (app £ a) a)))

(rewrite H).
intro H2.
exact H2.

(unfold g in H2).
(rewrite by_formula_ok in H2).
(assert (H3 : forall P : Prop,
(intros P H3).
(destruct H3).
(apply HO).

(apply H1).

intro p.

(apply HO).

exact p.

~ (P <>~ P))).

exact p.

(apply H1).
intro p.
(apply HO).
exact p.
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exact p.

(pose (H4 := H3 (app (app f a) a))).
(apply H4).
exact H2.

Qed.
Cantor is defined

Another way of looking at this proof is to imagine programs instead of sets.
We can think of a program as some function that takes binary input (which
we can encode as some natural number) and produces binary output (another
natural number). We imagine that we can number all possible programs (since
they too are binary code), so that we could produce the function executed by
that program given its number. We will prove that this function is not surjective,
meaning that some function cannot be computed by any program, or they are
uncomputable. Notice that we use the successor function instead of negation to
make each diagonal element different.

Coq < Theorem uncomputable : forall (f : Func nat (Func nat nat)), “surjective f.
1 subgoal

forall f : Func nat (Func nat nat), ~ surjective f

uncomputable < intros f Sur.
1 subgoal

f : Func nat (Func nat nat)
Sur : surjective f

False

uncomputable < pose (k := by_formula (fun n => S (app (app f n) n))).
1 subgoal

f : Func nat (Func nat nat)
Sur : surjective f
k := by_formula (fun n : nat => S (app (app f n) n)) : Func nat nat

False

uncomputable < destruct (Sur k) as [n H].
1 subgoal

f : Func nat (Func nat nat)
Sur : surjective f

k := by_formula (fun n : nat => S (app (app f n) n)) : Func nat nat
n : nat

H:appfn=k

False

uncomputable < pose (m := app (app f n) n).
1 subgoal

f : Func nat (Func nat nat)

Sur : surjective f

k := by_formula (fun n : nat => S (app (app f n) n)) : Func nat nat
n : nat

H:app fn=k

m := app (app f n) n : nat

False
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uncomputable < assert (H2 : m = app k n).
2 subgoals

f : Func nat (Func nat nat)
Sur : surjective f

k := by_formula (fun n : nat => S (app (app f n) n)) : Func nat nat
n : nat

H:appfn=k

m := app (app f n) n : nat

m=app kn

subgoal 2 is:
False

uncomputable < unfold m.
2 subgoals

f : Func nat (Func nat nat)

Sur : surjective f

k := by_formula (fun n : nat => S (app (app f n) n)) : Func nat nat
n : nat

H:appfn=k

m := app (app f n) n : nat

app (app f n) n = app k n

subgoal 2 is:
False

uncomputable < rewrite H.
2 subgoals

f : Func nat (Func nat nat)

Sur : surjective f

k := by_formula (fun n : nat => S (app (app f n) n)) : Func nat nat
n : nat

H:app fn=k

m := app (app f n) n : nat

app k n = app k n

subgoal 2 is:
False

uncomputable < reflexivity.
1 subgoal

f : Func nat (Func nat nat)

Sur : surjective f

k := by_formula (fun n : nat => S (app (app f n) n)) : Func nat nat
n : nat

H:app fn=k

m := app (app f n) n : nat

H2 : m = app k n

False

uncomputable < unfold k in H2.
1 subgoal

f : Func nat (Func nat nat)

Sur : surjective f

k := by_formula (fun n : nat => S (app (app f n) n)) : Func nat nat
n : nat

H:appfn=k

m := app (app f n) n : nat
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H2 : m = app (by_formula (fun n :

False

uncomputable < rewrite by_formula_ok in H2.
1 subgoal

f : Func nat (Func nat nat)
Sur : surjective f
k := by_formula (fun n :
n : nat
H:app fn=k
m := app (app f n) n :
H2 : m = S (app (app f

nat => S (app (app f n) n))

nat
n) n)

False
uncomputable < fold m in H2.
1 subgoal

f : Func nat (Func nat nat)
Sur : surjective f

:= by_formula (fun n :

: nat

k nat => S (app (app f n) n))
n

H:app fn=k

m

:= app (app f n) n : nat
H2 :m=8Sm
False
uncomputable < pose (H3 := n_Sn m).

1 subgoal

f : Func nat (Func nat nat)

Sur : surjective f

k := by_formula (fun n : nat => S (app (app f n) n))
n : nat

H:appfn=k

m := app (app £ n) n : nat

H2 :m=8m

H3 :=n_Snm : m<>Sm

False

uncomputable < contradiction.
No more subgoals.

uncomputable < Qed.

(intros f Sur).

(pose (k := by_formula (fun n => S (app (app f n) n)))).
(destruct (Sur k) as [n H]).

(pose (m := app (app f n) n)).
(assert (H2 : m = app k n)).
(unfold m).

(rewrite H).

reflexivity.

(unfold k in H2).

(rewrite by_formula_ok in H2).
(fold m in H2).

(pose (H3 := n_Sn m)).
contradiction.

Qed.
uncomputable is defined
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nat => S (app (app f n) n))) n

: Func nat nat

: Func nat nat

: Func nat nat
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3.6 Problems

Problem III.1 What is the cardinality of a union, |A U B|? Express it in
terms of |A], |B|, and any other operators you need.

Problem III.2 Construct the following relations on our domain {1, 2, 3},
e A relation that is both symmetric and antisymmetric.

e A relation that is transitive and symmetric, but not reflexive or antisym-
metric.

e A relation that is both transitive and not symmetric.

Problem III.3 A partition of a set A is a list of one or more non-empty
subsets of A such that each element of A appears in exactly one of the subsets.
Notice that this means that these subsets are pairwise disjoint.

Suppose that we are given an equivalence relation on a set A. We will show
that this relation generates a partition of the set. Each of these subsets [a] is
called an equivalence class, and is defined as

la] ={be A|b~a} (3.37)
where a € A.
1. Prove that Ya € A,a € [a].

2. Prove that Va,b € A,[a] = [b] V [a] N [b] = (), which means every two
equivalence classes [a] and [b] are either equal or disjoint.

3. Prove that the equivalence classes form a partition.

Problem II1.4 The function f(z) = 22 for € N is injective, but not surjec-
tive. To prove injectivity in Coq, start with

Definition square := fun x y : nat => x*x = y.
and generate Proof: sq_inj
Theorem sq_inj : injective square.

You will hkely need the f_equal, Nat.sqrt, and Nat.sqrt_square theorems from COq.
Next, generate Proof: sq_not_sur
Theorem sq_not_sur : “surjective square.

I recommend using the two_not_sq proof from the text showing that 2 cannot be
the square of any number.
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Problem IIL.5 The constant function f(z) = ¢ for € N is not injective or
surjective. For Coq, again we define our function

Definition constant {X:Type} (c:X) := funxy : X =>y = c.

Generate Proof: const_not_inj,

Theorem const_not_inj : forall c:nat, “injective (constant c).

Here, I used the trick of asserting an absurd hypothesis in the form, A = F,
where A is a false statement, in order to generate a proof by contradiction.
Next, generate Proof: const_not_sur,

Theorem const_not_sur : forall c:nat, “surjective (constant c).

Here you may find it useful to use the n_sn theorem from the Coq standard
library.

Problem II1.6 The inverse of a bijective function is bijective. In Coq, you
can start with a definition of the inverse of a function from Eq. (3.34), and
generate Proof: inverse_bij,

Theorem inverse_bij {X Y:Type} : forall (f : relation X Y) (g : relation Y X),
bijective f -> inverse f g -> bijective g.

Note that the inverse_exists proof in the text asserts that such a map exists. Here
you need only show it is bijective.

Problem III.7 The composition of two bijective functions is bijective. In
Coq, you can start with a definition of the composition of two functions from
Eq. (3.35), and generate Proof: comp_bij,

Theorem comp_bij {X Y Z : Type} : forall (f : relation X Z) (g : relation Z Y) (h : relation X Y),
bijective f -> bijective g -> composition f g h -> bijective h.

Note that the composition_exists proof in the text asserts that such a map exists.
Here you need only show it is bijective.

Problem III.8 How many distinct Boolean functions of n variables exist?

Problem IIL.9 Prove that a function from S to P(S) cannot be surjective.
This is somewhat involved using constructive logic, so students may also prove
it using a non-constructive argument based on the sizes of the sets.

Problem II1.10 Prove that the relation “has a bijection to” is an equivalence
relation on sets in the class of sets S. We can define this property formally as

Definition hasBijection (X Y : Type) := exists R : relation X Y, bijective R.
and then our statement, Proof: bij_equiv, becomes

Theorem bij_equiv : equivalence hasBijection.

The proofs done in Problems 6 and 7 may be used here, and I also suggest using
the inverse_exists and comp_exists theorems that we proved in this section.
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Problem III.11 We would like to prove that the composition of surjective
functions is surjective.

Theorem sur_closed_under_comp : forall {A B C} (g : Func B C) (f : Func A B),
surjective g -> surjective f -> surjective (comp g f).

Problem III.12 We would like to prove that the composition of injective
functions is injective.

Theorem inj_closed_under_comp : forall {A B C} (g : Func B C) (f : Func A B),
injective g -> injective f -> injective (comp g f).

Problem II1.13 Show that invertible functions must be injective.

Theorem inv_then_inj : forall {A B} (f : Func A B), invertible f -> injective f.

Problem IIT.14 Show that invertible functions must be surjective.

Theorem inv_then_sur : forall {A B} (f : Func A B), invertible f -> surjective f.

Problem III.15 Prove that the relation “has a bijection to” is an equivalence
relation on sets in the class of sets S. We can define this property formally as

Definition has_bijection (A B : Type) := exists (f : Func A B), injective f /\ surjective f.

and then our statement, Proof: bij_equiv, becomes

Theorem bij_equiv : equivalence has_bijection.

Problem II1.16 Let f: D — C and g,h : C— > D be functions. The function
f together with g and h form a quasi-inverse if

fog=1d
hof=1Id

Clearly, every invertible function and its inverse form a quasi-inverse. As it
turns out, every quasi-inverse determines an invertible function. We will prove
that in any quasi-inverse (f,g,h), we have g = h. Hint: Consider using the
id_left and id_right theorems.

Theorem quasi : forall {dom cod} (f : Func dom cod) (g : Func cod dom) (h : Func cod dom),
comp f g = id -> comp h f = id -> g = h.

Problem IIT.17 The constant function f(z) = ¢ for € A is not injective or
surjective. For Coq, again we define our function

Definition constant {A} (¢ : A) := by_formula (fun x : A => c).

Generate Proof: const_not_inj,

Theorem const_not_inj : forall c : nat, “injective (constant c).
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Here, we should think about what arguments to the injective hypothesis would
generate a contradiction.
Next, generate Proof: const_not_sur,

Theorem const_not_sur : forall c : nat, “surjective (constant c).

Here you may find it useful to use the n_sn theorem from the Coq standard
library.



Chapter 4

Mathematical Induction

I think some intuition leaks out in every step of an induction proof.
— Jim Propp

If we have no idea why a statement is true, we can still prove it by induction.
— Gian-Carlo Rota

Induction makes you feel guilty for getting something out of nothing, and it is
artificial, but it is one of the greatest ideas of civilization.

— Herbert Wilf

4.1 Well Ordering

The Well Ordering Principle is
Every nonempty set of nonnegative integers has a smallest element.

It appears self-evident, but is the basis for much of our reasoning about integers
and rational numbers. Notice that the empty set is not well-ordered, because
having no elements, it has no smallest element. It does not apply to sets of
negative integers, as they clearly have no lower bound. It also does not apply
to sets of positive rational numbers, as you can always find another rational
between any given rational number and zero.

An excellent template for proofs using the Well Ordering Principle is given
in (Lehman, Leighton, and Meyer 2015). To prove Vn € N, P(n) using the Well
Ordering Principle,

e Define the set C of counterexamples to P being true. Specifically, define
C:={neN|-Pn)} (4.1)
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Assume for proof by contradiction that C' is nonempty.

By the Well Ordering Principle, there will be a smallest element, n, in C.

e Reach a contradiction somehow, often by showing that P(n) is actually
true or by showing that there is another member of C' that is smaller than
n. This is the open-ended part of the proof task.

Conclude that C' must be empty, that is, no counterexamples exist.

As an example, we can use the Well Ordering Principle to prove that every
non-prime natural number n > 1 can be factored into a product of primes. To
begin, we define C' as the set of non-prime natural numbers which cannot be
factored into a product of primes, and assume that it is non-empty. By the Well
Ordering Principle, it must have a least element ng. Since ng is not prime, it
can be factored into two numbers a and b, which are both less than ng. Since
a,b < ng we conclude that a,b ¢ C and a can be factored as a product of primes
Da,1*Pak, as can b. However, this means that no = pa1- - Pa,kDb.1 - Pb,i,
contradicting the claim that ng € C, or proving that

(no € C)A(ng ¢ C)=F. (4.2)

4.2 Induction

Mathematical induction is based on our simple appiy, or modus ponens, con-
struction

P = Q@

.Q
however, we would like to use many hypotheses,

Py
Py = P
P = P

P,y = P

.'.Pk
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The same reasoning pattern still holds, k app1y tactics and the initial assumption.
In fact, we can extend this to a countable number of hypotheses,

Py
VkeN,P,_1 = P

~Vk e N, Py

Typically, we define the propositions Py using a predicate P over the natural
numbers. We can write induction over the natural numbers more formally as

VP :nat = Prop,
P(0) = (¥n:nat,P(n) = P(Sn)) = Vn :nat, P(n). (4.3)

An induction proofs usually proceeds in several steps. First, define the
predicate P which should be true for each k, which is referred to as the inductive
hypothesis. Then prove the proposition P(0), which is called the base case.
Next, prove the implication P(k) = P(k+ 1), commonly called the inductive
step, and finally invoke induction to justify the conclusion.

As an example, consider the rule to differentiate products of function, also
called the Leibnitz Rule,

(fo) =g+ fg. (4.4)
We can generalize this rule to the product of n functions,
(fofi- - fa) = fofv- ot fofiforfut -t for faifi (4.5)
- H?=0 fj /
— —I=0 0 ¢! 4.6
; T (4.6)

and use induction to justify this. We will first do this in the old-style of induction
proofs. The predicate P for the inductive hypothesis is

+1 n+1

P(n) = (fOfl'“f”“'l)/:ZTfr (47)
i=0 ¢
The trivial case (n = —1) is immediate
P(=1) = (fo)' = fo, (4.8)

but we will need to make our base case the Leibnitz Rule

P(0) := (fof1)" = fofr + fofi- (4.9)
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Then for n > 0, assuming P(n), we have

P(n+1) (4.10)
n+2 n+2
:(fOfl"'f7z+2)/ :ZH f fjf (411)
i=0 ’
n+1 n+1 n+1 n—%2 n—k2
:(H fj)/fn+2+(H fi)Frse :ZH 7, fyf + Hf fjfn+2 (4.12)
=0 =0 =0 ‘ nt2
n4+1 n4+1 n4+1 n+1f n4+1
= (IT 1) o + (1 ) Fliso _ﬁw2§: f° *f IIE ni2 (413)
3=0 3=0

n+1 n+1 n—%l

= ([ £ fns2 =fat2 Z (4.14)
7=0

n+1 nt1 Fyntl
~ (15 :ZHfo (115)
Jj=0 i=0 v
:= P(n). (4.16)

In the second step, we use the Leibnitz Rule, P(0), on the left hand side, and
split off the last term in the sum on the right hand side. In the third step,
we pull out f,12 from the sum and cancel it from the last term on the right
hand side. In the fourth step, we subtract the same term from each side of the
equality, and in the fifth step we cancel f,, ;12 from each side. Thus our inductive
step is proved, and appealing to induction our theorem is true.

We can rewrite this proof in our informal style, meaning using the style
of the proof assistant, but allowing assertions that we do not prove, such as
cumbersome arithmetic expressions. We start again with our predicate on the
natural numbers,

n+1 Hn+1f
P(n) = (fofi-- fasr1) = = =0 (4.17)
i=0 ¢

and we would like to prove

Step Tactic
GO :Vn : nat, P(n)

In order to do this, we will apply the induction theorem for natural numbers
VP : nat — Prop, P(0) — (Vn : nat, P(n) = P(n+ 1)) = Vn : nat, P(n)

which in Coq is

Coq < Print nat_ind.
nat_ind =
fun P : nat -> Prop => nat_rect P
: forall P : nat -> Prop,
PO -> (foralln : nat, Pn -> P (S n)) -> forall n : nat, Pn
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We can apply this theorem, or more precisely the specialization of this theorem
to P, to our goal

Step  Tactic
GO :Vn : nat, P(n) 1 apply (nat_ind P)
G1:P(0) A (Vn :nat, P(n) = P(n+1))

We need to prove both preconditions for the theorem, so we split the proof into
two pieces.

GO :¥n : nat, P(n) Step  Tactic .
G1:P(0) A (Vn : nat, P(n) = P(n+1)) ; :gi)tly (nat_ind P)
G2a :P(0)

G2b :¥n :nat, P(n) = P(n+1)

The first goal can be proved using the Leibnitz Rule. This is what we mean
by an informal proof, namely that we can use the Leibnitz Rule without proof.
The second goal can be simplified by introducing the antecedent, which is the
inductive hypothesis.

n :nat
THn :P(n) Step Tactic
1 apply (nat_ind P)

GO :¥n : nat, P(n) 2 split

G1:P(0) A (Vn :nat, P(n) = P(n+1)) 3a Leibnitz Rule
G2a :P(0) 3b intros n IHn
G2b :Vn :nat, P(n) = P(n+1)
G3b:P(n+1)

Finally, since this is an informal proof, we can use our derivation about to prove
that after some algebra, P(n + 1) = P(n), and our proof is done.
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n mat
IHn :P(n) Step Tactic
1 apply (nat-ind P)
GO :¥n : nat, P(n) 2 iplilz .
3a eibnitz Rule
G1:P(0) A (Vn:nat, P(n) = P(n+1)) o e THn
G2a :P(0) 4b  Eq. (4.16)
G2b :¥n : nat, P(n) = P(n+1) 5b exact THn
G3b:P(n+1)
G4b :P(n)

Induction is naturally related to recursion, in the sense that recursive al-
gorithms can often be proved correct using induction. For example, we can
construct a recursive algorithm for determining if two natural numbers are the
same. As we learned in Section 2.3.2; zero is a designated natural number, and
all others are built from zero with the successor function. We can therefore
distinguish three cases:

1. both numbers are zero,
2. one number is zero, and the other is not,
3. both numbers are successor of some number.

We can encode this logic in a binary predicate using the rixpoint construct,

Fixpoint nat_eq (n : nat) (m : nat) : Prop :=
match n, m with

We can prove that our predicate is implied by equailty using induction. First,
we state the lemma, introduce variables, and begin the induction on m. Note
that we clear our initial hypthesis. We need to do this so that we do not have
have extra assumptions in the induction.

Coq < Lemma eq_imp_nat_eq : forall nm : nat, n = m -> nat_eq n m.
1 subgoal

forall nm : nat, n =m -> nat_eq nm

eq_imp_nat_eq < intros n m H.
1 subgoal
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eq_imp_nat_eq < rewrite H.
1 subgoal

nat_eq m m

eq_imp_nat_eq < clear H.
1 subgoal

n, m : nat

nat_eq m m

eq_imp_nat_eq < induction m.
2 subgoals

n : nat

nat_eq 0 O

subgoal 2 is:
nat_eq (S m) (S m)

The base case m = 0 can be handled by simplifcation.

eq_imp_nat_eq < simpl.
2 subgoals

n : nat

True

subgoal 2 is:
nat_eq (S m) (S m)

eq_imp_nat_eq < trivial.
1 subgoal

n, m : nat
IHm : nat_eq m m

nat_eq (S m) (S m)

The induction step is proved using simplification and the induction hypothesis.

eq_imp_nat_eq < simpl.
1 subgoal

n, m : nat
IHm : nat_eq m m

nat_eq m m

eq_imp_nat_eq < exact IHm.
No more subgoals.

eq_imp_nat_eq < Qed.
(intros n m H).
(rewrite H).
clear H.

(induction m).
(simpl) .

trivial.

(simpl).
exact IHm.
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Qed.
eq_imp_nat_eq is defined

We can prove the other direction, but we will need induction on both vari-
ables. We begin induction on n, but to prove the base case we will need induction
on m.

Coq < Lemma nat_eq_imp_eq : forall nm, nat_eq n m -> n = m.
1 subgoal

forall nm : nat, nat_eqnm ->n =m

nat_eq_imp_eq < induction n.
2 subgoals

forall m : nat, nat_eq Om -> 0 = m

subgoal 2 is:
forall m : nat, nat_eq (Sn) m -> Sn =m

nat_eq_imp_eq < induction m.
3 subgoals

nat_eq 0 0 -> 0 =0
subgoal 2 is:
nat_eq 0 (Sm) -> 0 =Sm

subgoal 3 is:
forall m : nat, nat_eq (Sn) m -> Sn =m

The base case m = 0 is trivial.

nat_eq_imp_eq < intro H.
3 subgoals

H : nat_eq 0 O

0=0

subgoal 2 is:

nat_eq 0 (Sm) -> 0 =Sm

subgoal 3 is:

forall m : nat, nat_eq (Sn) m -> Sn=m

nat_eq_imp_eq < reflexivity.
2 subgoals

m : nat
IHm : nat_eq Om -> 0 =m

nat_eq 0 (Sm) -> 0 =S8m

subgoal 2 is:
forall m : nat, nat_eq (Sn) m -> Sn=m

The induction step is true because the premise is false, namely that s n can be
Zero.

nat_eq_imp_eq < intro H.
2 subgoals

m : nat
IHm : nat_eq Om -> 0 =m
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H : nat_eq 0 (S m)

0=8Sm

subgoal 2 is:
forall m : nat, nat_.eq (Sn) m ->Sn=m

nat_eq_imp_eq < simpl in H.
2 subgoals

m : nat
IHm : nat_.eq Om -> 0 =m
H : False

0=8m

subgoal 2 is:
forall m : nat, nat_eq (Sn) m -> Sn=m

nat_eq_imp_eq < contradiction.
1 subgoal

n : nat
IHn : forall m : nat, nat_eqnm ->n =m

forall m : nat, nat_.eq (Sn) m -> S n=m
For the induction step for n, we again use induction on m, and the base case is
true by contradiction.

nat_eq_imp_eq < induction m.
2 subgoals

n : nat
IHn : forall m : nat, nat_eqnm ->n =m

nat_eq (Sn) 0 ->Sn=0

subgoal 2 is:
nat_eq (Sn) (Sm) ->Sn=Sm

nat_eq_imp_eq < intro H.
2 subgoals

n : nat
IHn : forall m : nat, nat_eqnm ->n =m
H : nat_eq (Sn) O

Sn=0

subgoal 2 is:
nat_eq (Sn) (Sm) ->Sn=Sm

nat_eq_imp_eq < simpl in H.
2 subgoals

n : nat
IHn : forall m : nat, nat_eqnm ->n =m
H : False

Sn=0

subgoal 2 is:
nat_eq (Sn) (Sm) ->Sn=Sm

nat_eq_imp_eq < contradiction.
1 subgoal
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n : nat
IHn : forall m : nat, nat_eqnm ->n =m
m : nat

IHm : nat_eq (Sn) m -> Sn =m

nat_eq (Sn) (Sm) ->Sn=Sm

For the remaining induction step, we use simplification and then the induction
hypothesis for n.

nat_eq_imp_eq < intro H.
1 subgoal

n : nat

IHn : forall m : nat, nat_eqnm ->n =m
m : nat

IHm : nat_eq (Sn) m ->Sn=m

H : nat_eq (8 n) (S m)

nat_eq_imp_eq < simpl in H.
1 subgoal

n : nat

IHn : forall m : nat, nat_eqnm ->n =m
m : nat

IHm : nat_eq (Sn) m -> Sn =m

H : nat_eq n m

nat_eq_imp_eq < apply IHn in H.
1 subgoal

n : nat

IHn : forall m : nat, nat_eqnm ->n =m
m : nat

IHm : nat_eq (Sn) m -> Sn =nm

nat_eq_imp_eq < rewrite H.
1 subgoal

n : nat

IHn : forall m : nat, nat_eqnm ->n =m
m : nat

IHm : nat_eq (Sn) m ->Sn=m

H:n=m

nat_eq_imp_eq < reflexivity.
No more subgoals.

nat_eq_imp_eq < Qed.

(induction n).
(induction m).
intro H.
reflexivity.

intro H.
(simpl in H).

contradiction.

(induction m).



4.2. INDUCTION

intro H.
(simpl in H).
contradiction.

intro H.

(simpl in H).
(apply IHn in H).
(rewrite H).
reflexivity.

Qed.
nat_eq_imp_eq is defined

163

We can use our predicate to prove fundamental properties of the natural
number system. For example, we can prove that the successor function is in-
jective, meaning that if the successors of two numbers are equal, then those
numbers themselves are equal. We do this by converting from equality to our

predicate, we explicitly encodes

Coq < Lemma suc_inj : forall nm, S n
1 subgoal

forallnm : nat, Sn=Sm->n=m

suc_inj < intros n m H.
1 subgoal

suc_inj < apply nat_eq_imp_eq.
1 subgoal

n, m : nat
H:Sn=Sm

nat_eq n m

suc_inj < apply eq_imp_nat_eq in H.
1 subgoal

n, m : nat
H : nat_eq (8 n) (8 m)

nat_eq nm

suc_inj < simpl in H.
1 subgoal

n, m : nat
H : nat_eqnm

nat_eq n m

suc_inj < exact H.
No more subgoals.

suc_inj < Qed.

(intros n m H).

(apply nat_eq_imp_eq) .
(apply eq_imp_nat_eq in H).
(simpl in H).

exact H.

this behavior.

=Sm->n=nm.
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Qed.

suc_inj is defined

We can also prove that zero is not the successor of any number, again because
we explicitly encoded this in our equality predicate.

Coq < Lemma O_neq_suc : forall n, 0 <> S n.
1 subgoal

forall n : nat, 0 <> S n

O_neg_suc < intros n H.
1 subgoal

n : nat
H:0=8n

False

O_neq_suc < apply eq_imp_nat_eq in H.
1 subgoal

n : nat
H : nat_eq O (S n)

False

O_neqg_suc < simpl in H.
1 subgoal

n : nat
H : False

False

O_neqg_suc < exact H.
No more subgoals.

O_neq_suc < Qed.

(intros n H).

(apply eq_imp_nat_eq in H).
(simpl in H).

exact H.

Qed.
O_neqg_suc is defined

4.3 Strong Induction

When we introduced the induction derivation, we left some information on the
table. Instead of just using P(k — 1) to derive P(k), we could use all the prior
propositions. Formally, strong induction, is given by

Fo
k—1

VkeN, \ P, = P
j=0

~Vk e N, Py
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This is very useful when addressing inductive hypotheses that depend on more
than one prior result. However, all strong inductive proofs can be mechanically
rewritten as simple inductive proofs by altering the inductive hypothesis.

As an example of strong induction, let us show that any natural number
m > 8 can be written as a sum of a multiple of 3 and 5. The induction
hypothesis will be

P(n) :=3a,beN,n+8=3a+5b (4.18)

where we use m = n + 8 so that m > 8 for all natural numbers n. Our base
case for n = 0 is

P(0) := 3Ja,b € N,8 = 3a + 5b, (4.19)
=8 =3(1) +5(1). (4.20)

However, since this is strong induction, we will need additional base cases

P(1) :=3da,b e N,9 = 3a + 5b, (4.21)
:=9=3(3) + 5(0). (4.22)
and
P(2) :=3a,b € N, 10 = 3a + 50, (4.23)
:=10 = 3(0) + 5(2). (4.24)

For the inductive step n > 2, we assume P(k) holds for all £ < n, and prove
that P(n + 1) holds,

P(n+1):=3a,b € N,n+1+8=3a-+5b, (4.25)
‘= 3Ja,beN,n—2+8+3=3a+5b, (4.26)
:=da,b € N,3r + 5s + 3 = 3a + 5, (4.27)
:=3a,b € N,3(r + 1) + 5s = 3a + 5b. (4.28)

In the second step, we use the identity 1 = 3 — 2. In the third step, since n > 2,
we have that n — 2 is a natural number and that n 4+ 8 is expressable as 3r + 5s
for some 7, s € N. In the fourth step, we show that a = r + 1 and b = s. Thus,
by strong induction, our theorem is proved.

We will now do the same thing in the Coq, but we will change it slightly
so as to have fewer base cases. Suppose I would like to prove that all natural
numbers greater than one can be decomposed into a sum of multiples of two
and three,

Theorem two_and_three : forall n : nat, 2 <= n -> exists (a b : nat), n =2 *x a + 3 % b.
I would like to retain all my previous hypotheses, but the induction tactic does

not support this. Instead, we will prove the result in steps, where we bound the
size of n and gradually increase this using induction on the bound.
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Coq < Lemma two_and_three_strong : forall (mn : nat), n <=m -> 2 <=n -> exists (a b : nat), n =2 * a + 3 * b.
1 subgoal

forall mn : nat, n <=m -> 2 <=n -> exists ab : nat, n =2 *x a + 3 * b

two_and_three_strong < induction m ; intros.
2 subgoals

n : nat
HO : n<=0
Hl : 2 <=n

exists a b : nat, n =2 x a+ 3 b

subgoal 2 is:
exists a b : nat, n =2 x a+ 3 *xb

The first thing we see is that n can only be zero, but that violates our require-
ment that n be greater than two, so the base case is proved.

two_and_three_strong < inversion HO.
2 subgoals

n : nat
HO :
H1 :
H2 :

<=0
<=n
=0

BNoB

exists a b : nat, 0 =2 x a+ 3 *x b

subgoal 2 is:
exists a b : nat, n =2 xa + 3 xb

two_and_three_strong < rewrite H2 in H1.
2 subgoals

n : nat
HO :
H1 :
H2 :

<=0
<=0
=0

B OB

exists a b : nat, 0 = 2 x a+ 3 *b

subgoal 2 is:
exists a b : nat, n =2 x a + 3 *x b

two_and_three_strong < inversion H1.
1 subgoal

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2*xa+ 3 *xb

n : nat
HO : n<=Sm
Hl : 2 <=n

exists a b : nat, n =2 x a+ 3 *b
Now we must prove all the base cases for n, which we do by destructing n several
times. The first two values of n are illegal,

two_and_three_strong < destruct n.
2 subgoals

m : nat
IHm : forall n : nat,
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-> 2 <=n ->exists ab : nat, n=2 % a+ 3 *xb

n <=m
HO 0<=Sm
Hi : 2<=0

exists a b : nat, 0 =2 x a + 3 x b

subgoal 2 is:
exists ab : nat, Sn=2%a+ 3 *xb

two_and_three_strong < inversion H1.
1 subgoal

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2*a+ 3 xb
n : nat
HO : Sn<=Sm
Hi : 2<=S8n

exists ab : nat, Sn=2%a+ 3 *xb

two_and_three_strong < destruct n.
2 subgoals

m : nat
IHm : forall n : nat,
n<=m->2+<=n ->exists ab :nat, n=2 *x a+ 3 *xb
HO : 1 <=Sm
H1 : 2<=1

exists a b : nat, 1 =2 x a+ 3 *x b

subgoal 2 is:
exists a b : nat, S (Sn) =2 *xa+3*bD

two_and_three_strong < inversion H1.
2 subgoals

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 *xa+ 3 *xb

HO : 1 <=Sm

H1 : 2 <=1
m0 : nat

H3 : 2 <=0
H2 : m0O = 0

exists a b : nat, 1 =2 *x a+ 3 *b

subgoal 2 is:
exists ab : nat, S (Sn) =2*xa+3*b

two_and_three_strong < inversion H3.
1 subgoal

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2*a+ 3 xb
n : nat
HO : S (Sn) <=Sm
H1 : 2 <= S (S n)

exists a b : nat, S (Sn) =2 *xa+3*bDb

The next two values of n are the base cases two and three,

two_and_three_strong < destruct n.
2 subgoals
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m : nat
IHm : forall n : nat,
n<=m->2+<=n ->exists ab :nat, n=2 % a+ 3 *xb
HO : 2<=Sm
H1 : 2 <=2

exists a b : nat, 2 =2 % a + 3 xb

subgoal 2 is:
exists a b : nat, S (S (Sn)) =2 *a+3x*Db

two_and_three_strong < exists 1. exists 0.
2 subgoals

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 % a+ 3 *xb
HO : 2<=Sm
H1 : 2 <=2

exists b : nat, 2 =2 *x 1 + 3 x b

subgoal 2 is:
exists a b : nat, S (S (Sn)) =2 *a+ 3 *b

2 subgoals

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 % a+ 3 *xb
HO : 2 <=8 m
H1 : 2 <=2

2=2%1+3x%0

subgoal 2 is:
exists ab : nat, S (S (Sn)) =2*a+3xb

two_and_three_strong < reflexivity.
1 subgoal

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 % a+ 3 *xb
n : nat
HO : S (8 (Sn)) <=Sm
H1 : 2 <=8 (S (S n))

exists a b : nat, S (S (Sn)) =2 *a+3x*Db

two_and_three_strong < destruct n.
2 subgoals

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2x*xa+ 3 *xb
HO : 3<=Sm
H1 : 2 <=3

exists a b : nat, 3 =2 % a + 3 *xb

subgoal 2 is:
exists ab : nat, S (S (S (Sn))) =2*a+3x*b

two_and_three_strong < exists 0. exists 1.
2 subgoals
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m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n =2 *xa+ 3 *xb
HO : 3<=Sm
H1 : 2 <=3

exists b : nat, 3 =2 *x 0+ 3 x Db

subgoal 2 is:
exists a b : nat, S (S (S (Sn))) =2%*a+3x*b

2 subgoals

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 x a+ 3 *xb
HO : 3<=Sm
H1 : 2 <=3

3=2%0+3*1

subgoal 2 is:
exists ab : nat, S (S (S (Sn))) =2*a+3x*xb

two_and_three_strong < reflexivity.
1 subgoal

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab : nat, n=2 x a+ 3 *xb
n : nat
HO : S (S (S (Sm)) <=Sm
H1 : 2 <=8 (S (s (8§ m)))

exists a b : nat, S (S (S (Smn))) =2*a+3x*b

Now we can finally use our induction hypothesis. Just as we did in our proof
by hand, we will use this hypothesis when the argument is n + 2,

two_and_three_strong < pose (IHn := IHm (S (S n))).
1 subgoal

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab : nat, n=2 x a+ 3 *xb
n : nat
= IHm (S (8 n))
: S (8 n)<=m-—>
2<=S (Sn) ->existsab :mnat, S(Sn) =2*xa+3x*b

S (S (S (8n))) <=Sm >
2<=8S (S (8 (Sn))) ->existsab :nat, S(S (S (Sn))) =2%*a+3*b

Calling destruct on 1n lets us prove the preconditions in order to get the exis-
tence statement we want.

two_and_three_strong < destruct IHn.
3 subgoals

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 *xa+ 3 *xb
n : nat
HO : S (S (S (Sm))) <=Sm
H1 : 2 <=5 (8 (8 (8§ n)))

S (Sn) <=m
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subgoal 2 is:
2 <=8 (S n)
subgoal 3 is:
exists ab : nat, S (S (S (Sn))) =2%*a+3x*b

The first inequality can be proved using the transitivity of the 1e relation,

two_and_three_strong < apply le_S_n in HO.
3 subgoals

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 % a+ 3 *xb
n : nat
HO : S (S (Sn)) <=m
H1 : 2 <=8 (8 (8 (8 n)))

S (Sn) <=m

subgoal 2 is:
2 <=8S (S n
subgoal 3 is:
exists ab : nat, S (S (S (Sn))) =2*a+3x*b

two_and_three_strong < apply (le_trans (S (S n)) (S (S (S mn))) m).
4 subgoals

m : nat
IHm : forall n : nat,
n<=m->2<=n ->existsab :nat, n=2 % a+ 3 *xb
n : nat
HO : S (S (8 1n)) <=m
H1 : 2 <=5 (8 (8 (8§ n)))

S (Sn) <=8 (8 (Smn))

subgoal 2 is:

S (S (8m)) <=m

subgoal 3 is:

2 <=8 (S n)

subgoal 4 is:

exists ab : nat, S (S (S (Sn))) =2*a+3x*b

We can apply the 1e theorems here, but we can also use the constructor tactic,
which applies the correct theorem at each step that would have generated the
current goal.

two_and_three_strong < repeat constructor.
3 subgoals

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2%*a+ 3 x*xb
n : nat
HO : S (S (Smn)) <=m
H1 : 2 <=8 (S (s (8 n)))

S (S (Sm)) <=m

subgoal 2 is:
2 <=8 (S n)
subgoal 3 is:
exists ab : nat, S (S (S (Sn))) =2%*a+3x*b

two_and_three_strong < exact HO.
2 subgoals
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m : nat
IHm : forall n : nat,
n<=m->2+<=n ->exists ab :nat, n=2 *xa+ 3 *xb
n : nat
HO : S (S (8 (Smn))) <=8Sm
Hi : 2 <=8 (8 (8 (8§ n)))

2 <=8 (Sn

subgoal 2 is:
exists ab : nat, S (S (S (Sn))) =2%*a+3x*b

The next inequality is a consequence of the fact that all natural numbers are
non-negative

two_and_three_strong < repeat apply le_n_S. apply Nat.le_O_1.
2 subgoals

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 x a+ 3 *xb
n : nat
HO : S (S (S (Sn))) <=Sm
H1 : 2 <=5 (S (s (8§ m)))

0 <=n

subgoal 2 is:
exists a b : nat, S (S (S (Sn))) =2%*a+3x*xb

1 subgoal

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 x a+ 3 *xb
n : nat
HO : S (S (S (Smn))) <=Sm
H1 : 2 <=8 (S (s (8§ m)))
X : nat
H2 : exists b : nat, S (Sn) =2 *x x + 3 *xDb

exists a b : nat, S (S (8 (Sn))) =2*a+3x*b

Finally we can get both witnesses from our induction hypothesis, and construct
the new decomposition

two_and_three_strong < destruct H2.
1 subgoal

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab : nat, n=2*a+ 3 *xb
n : nat
HO : S (S (8 (Smn))) <=8Sm
H1 : 2 <=8 (8 (8 (8§ n)))
x, x0O : nat
H2 : S (Sn) =2 % x + 3 * x0

exists ab : nat, S (S (S (Smn))) =2*a+3x*b

two_and_three_strong < exists (S x). exists x0.
1 subgoal

m : nat
IHm : forall n : nat,
n<=m->2+<=n ->exists ab :nat, n=2 *xa+ 3 *xb
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n : nat

HO : S (8 (S8 (Smn))) <=Sm
H1 : 2 <=5 (8 (8 (8 n)))

x, x0 : nat

H2 : S (8n) =2 * x + 3 *x x0

exists b : nat, S (S (8 (Sn))) =2* S x+3 %D

[

subgoal

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 % a+ 3 *xb
n : nat
HO : S (S (S (Smn))) <=Sm
H1 : 2 <=5 (8 (8 (8 n)))
x, x0 : nat
H2 : S (8n) =2 % x + 3 * x0

S (S (8 (8Smn))) =2%8x+3*x0

two_and_three_strong < rewrite H2.
1 subgoal

m : nat
IHm : forall n : nat,
n<=m->2<=n ->exists ab :nat, n=2 % a+ 3 *xb
n : nat
HO : S (S (S (Smn))) <=Sm
H1 : 2 <=5 (8 (8 (8 n)))
x, x0 : nat
H2 : S (Sn) =2 % x + 3 % x0

S (S (2*x+3%*x0)) =2%8x+3*x0

two_and_three_strong < ring.
No more subgoals.

two_and_three_strong < Qed.
(induction m; intros *x*).
(inversion HO).
(rewrite H2 in H1).
(inversion H1).

(destruct n).
(inversion H1).

(destruct n).
(inversion H1).
(inversion H3).

(destruct n).
exists 1.
exists 0.
reflexivity.

(destruct n).
exists 0.
exists 1.
reflexivity.

(pose (IHn := IHm (S (S n)))).

(destruct IHn).

(apply le_S_n in HO).

(apply (le_trans (S (S mn)) (S (S (S m))) m).
(repeat constructor).

exact HO.
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(repeat apply le_n_S).
(apply Nat.le_0_1).

(destruct H2).
exists (S x).
exists x0.
(rewrite H2).
ring.

Qed.
two_and_three_strong is defined
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Now we can prove our original result by just applying are lemma with m = n,

Coq < Theorem two_and_three : forall n : nat, 2 <= n -> exists (a b :

1 subgoal

forall n : nat, 2 <= n -> exists a b : nat, n =2 x a+ 3 *x b

two_and_three < intros n H.

1 subgoal
n : nat
H:2<=n

exists a b : nat, n =2 *x a + 3 x b

two_and_three < apply (two_and_three_strong n).
2 subgoals

subgoal 2 is:
2<=n

two_and_three < apply le_n.
1 subgoal

two_and_three < exact H.
No more subgoals.

two_and_three < Qed.

(intros n H).

(apply (two_and_three_strong n)).
(apply le_n).

exact H.

Qed.
two_and_three is defined

nat), n =2 * a + 3 * b.

We can assemble this kind of argument into a new induction principle called
strong induction, but first we need a few definitions. A natural number £ is said
to be accessible with respect to the < relation if every natural number less than

k is accessible.

Inductive acc : nat -> Prop := acc_k : forall k, (forall y, y < k -> acc y) -> acc k.



174 CHAPTER 4. MATHEMATICAL INDUCTION

In fact, every natural number is accessible with respect to the < relation, mean-
ing that < is a well founded relation. We can prove this by induction. The base
case can be proved by inversion.

Coq < Theorem 1t_wf : forall n, acc n.
1 subgoal

forall n : nat, acc n

1t_wf < induction n.
2 subgoals

acc 0

subgoal 2 is:
acc (S n)

1t_wf < apply acc_k.
2 subgoals

forall y : nat, y < 0 -> acc y

subgoal 2 is:
acc (S n)

1t_wf < intros y H.
2 subgoals

y : nat
H:y<o0

acc y

subgoal 2 is:
acc (S n)

1t_wf < inversion H.
1 subgoal

n : nat
IHn : accn

acc (S n)

In order to address the remaining goal, we need to induct on the acc relation
itself, which we can do with the induction tactic. We get rid of the second
hypothesis, which will not help us.

1t_wf < induction IHn.

1 subgoal

k : nat
H : forall y : nat, y < k -> acc y
HO : forall y : nat, y < k -> acc (S y)

acc (S k)

1t_wf < clear HO.
1 subgoal

k : nat
H : forall y : nat, y < k -> acc y

acc (S k)
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Now we repeatedly apply the acc_x constructor, to generate a tower of relations
that we can prove.

1t_wf < apply acc_k.
1 subgoal

k : nat
H : forall y : nat, y < k -> acc y

forall y : nat, y < Sk -> acc y

1t_wf < intros y1 H1.
1 subgoal

k : nat

H : forall y : nat, y < k -> acc y
y1l : nat

Hl : y1 < Sk

acc yi1

1t_wf < apply acc_k.
1 subgoal

k : nat

H : forall y : nat, y < k -> acc y
y1l : nat

Hl : y1 < Sk

forall y : nat, y < y1 -> acc y

1t_wf < intros y2 H2.
1 subgoal

k : nat

H : forall y : nat, y < k -> acc y
y1l : nat

Hl : y1 < Sk

y2 : nat

H2 : y2 < y1

acc y2

1t_wf < apply H.

1 subgoal
k : nat
H : forall y : nat, y <k -> acc y
y1l : nat
H1 : y1 < Sk
y2 : nat
H2 : y2 <yl
y2 < k

Now we apply the transitivity of the < relation, which allows us to eventually
prove the theorem.

1t_wf < apply le_trans with (m:=y1).
2 subgoals

k : nat

H : forall y : nat, y <k -> acc y
yl : nat

Hl : y1 < Sk

y2 : nat

H2 : y2 <yl
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S y2 <=yl

subgoal 2 is:
yl <=k

1t_wf < exact H2.
1 subgoal

k : nat

H : forall y : nat, y < k -> acc y
y1l : nat

H1 : y1 < Sk

y2 : nat

H2 : y2 < y1

yl <=k
Now we need to transform this expression into the form of H1, so we look up
the theorem,

1t_wf < Search (_ < S _ -> _ <= _)

1lt_n_Sm_le: forall nm : nat, n < Sm ->n <=n

and we can finish the proof.

1t_wf < apply 1lt_n_Sm_le.

1 subgoal
k : nat
H : forall y : nat, y <k -> acc y
y1l : nat
Hl : y1 < Sk
y2 : nat
H2 : y2 < y1
y1 < Sk

1t_wf < exact H1.
No more subgoals.

1t_wf < Qed.
(induction n).
(apply acc_k).
(intros y H).
(inversion H).

(induction IHn).

clear HO.

(apply acc_k).

(intros y1 H1).

(apply acc_k).

(intros y2 H2).

(apply H).

(apply le_trans with (m := y1)).
exact H2.

(simpl).
(apply lt_n_Sm_le).
exact H1.

Qed.
1t_wf is defined

We can use the accessibility relation to define the strong induction prin-
ciple for the natural numbers. The accessibility relation tells us which prior
hypotheses we are allowed to use for the current step.
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Definition acc_then_Px :
forall {P : nat -> Prop} (n : nat),
(forall x, (forally, y <x -> P y) -> P x)
-> acc n
-> P n.
Proof.
refine (fun P n f acc => acc_ind _ _ _ ).
- intros k _ fp.
apply f.
exact fp.
- exact acc.
Defined.

Definition strong_nat_ind :
forall P : nat -> Prop,
(forall x, (forall y, y <x ->Py) -> P x)
-> forall x, P x.
Proof.
refine (fun P f x => _).
refine (acc_then Px _ f _).
apply lt_wf.
Defined.

Now we can prove our theorem using the strong induction tactic. We will change
the statement to make this slightly easier by adding two instead of conditioning
with the inequality.

Coq < Theorem two_and_three : forall n : nat, exists (a b : nat), n + 2 =2 % a + 3 * b.
1 subgoal

forall n : nat, exists a b : nat, n + 2 =2 xa + 3 *xb

two_and_three < induction n using strong_nat_ind.
1 subgoal

n : nat
H : forall y : nat, y < n -> exists a b : nat, y+2=2*a+ 3 *xb

exists a b : nat, n + 2 =2 *xa+ 3 xDb

Now we will use destruct twice to pull out the base cases, just as we did before.

two_and_three < destruct n.
2 subgoals

H : forall y : nat, y < 0 -> exists ab : nat, y + 2 =2 % a + 3 *x b

exists a b : nat, 0 + 2 =2 x a + 3 x b

subgoal 2 is:
exists ab : nat, Sn+2=2%a+3*xb

two_and_three < exists 1.
2 subgoals

H : forall y : nat, y < 0 -> exists a b : nat, y + 2 =2 % a + 3 *x b

exists b : nat, 0 + 2 =2 % 1 + 3 x b

subgoal 2 is:
exists a b : nat, Sn+2=2%a+ 3 x*xb

two_and_three < exists 0.
2 subgoals

H : forall y : nat, y < 0 -> exists a b : nat, y + 2 =2 % a + 3 *x b
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0+2=2%1+3%0

subgoal 2 is:
exists ab : nat, Sn+2=2%a+ 3 *xb

two_and_three < simpl.
2 subgoals

H : forall y : nat, y < 0 -> exists ab : nat, y+2 =2 *a + 3 *xb

2 =2

subgoal 2 is:
exists a b : nat, Sn+2=2%a+ 3 x%xb

two_and_three < reflexivity.
1 subgoal

n : nat
H : forall y : nat, y < Sn -> exists ab : nat, y+2=2%a+ 3 *xb

exists a b : nat, Sn+2=2%a+3x*xb

two_and_three < destruct n.
2 subgoals

H : forall y : nat, y <1 -> exists ab : nat, y+2 =2 % a+ 3 *xb

exists ab : nat, 1 + 2 =2 *%xa+ 3 xDb

subgoal 2 is:
exists ab : nat, S (Sn) +2=2%a+3 xb

two_and_three < exists O.
2 subgoals

H : forall y : nat, y <1 -> exists ab : nat, y+2 =2 *a+ 3 *b

exists b : nat, 1 + 2 =2 % 0+ 3 *x Db

subgoal 2 is:
exists ab : nat, S (Sn) +2=2%a+3 xb

two_and_three < exists 1.
2 subgoals

H : forall y : nat, y <1 -> exists ab : nat, y+2=2*a+ 3 *xb

1+2=2%x0+3=x*1

subgoal 2 is:
exists ab : nat, S (Sn) +2=2%a+3*b

two_and_three < simpl.
2 subgoals

H : forall y : nat, y <1 -> exists ab : nat, y+2=2*a+ 3 *xb

3=3

subgoal 2 is:
exists ab : nat, S (Sn) +2=2%a+3%*b

two_and_three < reflexivity.
1 subgoal

n : nat
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H : forally : nat, y < S (Sn) -> exists ab : nat, y+2=2%*a+3 *xb

exists a b : nat, S (Sn) +2=2%a+3 *xb

Now we use our induction hypothesis, evaluated at n, where the bound is obvi-
ously true.

two_and_three < pose (h := H n).
1 subgoal

n : nat
H : forall y : nat, y < S (Sn) -> exists ab : nat, y+2 =2 xa + 3 *Db
h:=Hn :n<$S (Sn) >existsab :nat, n+2=2%a+3 *b

exists ab : nat, S (Sn) +2=2%a+3%*b

two_and_three < assert (H1t : n < S (S n)).

2 subgoals
n : nat
H : forall y : nat, y < S (Sn) -> exists ab : nat, y+ 2 =2 xa + 3 *Db
h:=Hn :n<$S (Sn) >existsab :nat, n+2=2%a+3 *b
n<S (Sn)

subgoal 2 is:
exists a b : nat, S (Sn) +2=2%a+ 3 *xb

two_and_three < apply le_S.
2 subgoals

n : nat
H : forall y : nat, y < S (Sn) -> exists ab : nat, y+2 =2 xa + 3 *Db
h:=Hn :n<S (Sn) ->existsab :nat, n+2=2%a+ 3 %*b

Sn<=Sn

subgoal 2 is:
exists ab : nat, S (Sn) +2=2%a+3%*b

two_and_three < apply le_n.
1 subgoal

n : nat

H : forall y : nat, y < S (Sn) -> exists ab : nat, y+2 =2 xa + 3 *Db
h:=Hn:n<$S (Sn) ->existsab :nat, n+2=2%a+3 *b

Hlt : n < S (S n)

exists ab : nat, S (Sn) +2=2%a+3%*b

two_and_three < apply h in Hlt.
1 subgoal

n : nat

H : forall y : nat, y < S (Sn) -> exists ab : nat, y+2 =2 xa + 3 *Db
h:=Hn :n<$S (Sn) >existsab :nat, n+2=2%a+3 *b

Hlt : exists a b : nat, n + 2 =2 % a + 3 * b

exists ab : nat, S (Sn) +2=2%a+ 3 *xb
Now we can extract the witnesses, and rewrite our goal with the resulting equal-
ity.

two_and_three < destruct Hlt as [a [b Heql].
1 subgoal

n : nat
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H : forall y : nat, y < S (S n) -> exists ab : nat, y+2 =2 % a + 3 * b
h:=Hn:n<S (Sn) >existsab:nat, n+2=2%a+3x*xb
a, b : nat

Heq : n+2=2%a+3*b

exists a0 b0 : nat, S (Sn) + 2 =2 % a0 + 3 * b0

two_and_three < exists (a + 1).

1 subgoal

n : nat

H : forally : nat, y < S (Sn) -> exists ab : nat, y+2=2%a+ 3 xb
h:=Hn : n<8S (Sn) >existsab:nat, n+2=2%a+3x*xb

a, b : nat

Heq : n+2=2%a+3*b

exists bO : nat, S (Sn) + 2 =2 % (a+ 1) + 3 * b0

two_and_three < exists b.

1 subgoal

n : nat

H : forall y : nat, y < S (Sn) -> exists a b : nat, y+2 =2 % a + 3 * b
h:=Hn:n<S8(Sn) ->existsab:nat, n+2=2%a+ 3 x%xb

a, b : nat

Heq : n+2=2%a+3x*xb

S(n)+2=2x(a+1) +3%*b

two_and_three < simpl.

1 subgoal
n : nat
H : forally : nat, y < S (Sn) -> exists ab : nat, y+2=2%*a+ 3 xb
h:=Hn:n<S (Sn) >existsab:nat, n+2=2%a+3x*xb
a, b : nat

Heq : n+2=2%a+3*b

S(Sm+2)=a+1+(@+1+0)+ MmO+ M+ (d+0))

two_and_three < rewrite Heq.

1 subgoal
n : nat
H : forall y : nat, y < S (S n) -> exists ab : nat, y+2 =2 *xa + 3 * b
h:=Hn:n<S8 (Sn) >existsab:nat, n+2=2x%a+3x*xb
a, b : nat

Heq : n+2=2%a+ 3 *b

S ((2*xa+3x*xb)=a+1+(@+1+0)+ M+ b+ (+0)))

two_and_three < ring.
No more subgoals.

two_and_three < Qed.

(induction n using strong_nat_ind).
(destruct n).

exists 1.

exists O.

(simpl).

reflexivity.

(destruct n).
exists 0.
exists 1.
(simpl).
reflexivity.
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(pose (h := H n)).

(assert (H1t : n < S (S n))).
(apply le_S).

(apply le_n).

(apply h in H1t).

(destruct Hlt as [a [b Heqll).
exists (a + 1).

exists b.

(simpl) .

(rewrite Heq).

ring.

Qed.
two_and_three is defined

4.4 Sequences and Series

A series is a sum of several terms. For example, the sum of the first n natural
numbers

n

di=1+24-+n. (4.29)

=1

We are often looking for a close-form expression for the sum S(n), in terms
of its upper limit. There are many strategies for guessing forms for answer,
see (Graham, Knuth, and Patashnik 1989), which we can then justify using
induction.

In order to work with inductive types, Coq provides a structure for comput-
ing recursive functions. For example, we can write

zn: 1 (4.30)

as sum_1

Fixpoint sum_1 (n : nat) := match n with

0=>1
| Sp=>8 (sum_1 p)
end.
using the Fizpoint operator. Coq makes sure the recursive definitions are sensi-
ble by analyzing the structure of the result. In our example above, we can have
p on the right hand side, but not Sp, so that we are guaranteed to reach the
fixed point. There is no limitation to a single argument, as long as we indicate
which argument is structural. For example, we can define addition recursively,

Fixpoint plus (n m:nat){struct n} : nat := match n with 0 =>m | S p => S (plus p m) end.

where we indicate that n is the induction variable using the struct keyword.

As a simple example, lets prove that if we sum one n+ 1 times, we get n+ 1.
We start by using the definition of the sum from above, sun_1. We can state the
theorem, and then initiate induction on n, sum_1_analytic
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Coq < Theorem sum_1_analytic : forall n : nat, sum_1 n = S n.
1 subgoal

A : Set

forall n : nat, sum_1 n =S n

sum_1_analytic < induction n.
2 subgoals

A : Set

sum_1 0 = 1

subgoal 2 is:
sum_1 (S n) =8 (S n)

The first goal, our base case, can be solved simply by replacing the function
sun_t by its value using the simp1 tactic,

sum_1_analytic < simpl.

2 subgoals
A : Set
1=1

subgoal 2 is:
sum_1 (S n) =S (S n)

sum_1_analytic < reflexivity.

1 subgoal
A : Set
n : nat

IHn : sum_1 n =S n

sum_1 (S n) = S (S n)

Now we need to prove the induction step. Notice that the proof assistant has
already introduced the induction hypothesis 1in for us. We again use simpl to
evaluate the inductive function,

sum_1_analytic < simpl.

1 subgoal
A : Set
n : nat

IHn : sum_1 n =S n

S (sum_1 n) = S (S n)

and then use the induction hypothesis to rewrite the goal and we are finished.

sum_1_analytic < rewrite IHn.

1 subgoal
A : Set
n : nat

IHn : sum_1 n =S n

S (Sn) =8 (8Sn)

sum_1_analytic < reflexivity.
No more subgoals.

sum_1_analytic < Qed.
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(induction n).
(simpl).
reflexivity.

(simpl).
(rewrite IHn).

reflexivity.

Qed.
sum_1_analytic is defined

We can also write this proof in the by-hand style used in homework,

n mat
IHn sumg(n) = S(n)
Step  Tactic

GO :¥n : nat, sum; (n) = S(n) 1 apply nat_ind

2 split

G1 :sum;(0) = S(0)A 3a simpl
(Vn : nat,sum; (n) = S(n) = sum;(S(n)) = S(S(n))) 4a reflexivity

G2a :sum; (0) = S(0)

G3a:1=1 4b simpl

3b intros n IHn

5b rewrite IHn

G2b :Vn : nat,sumy (n) = S(n) = sumi(S(n)) = S(S(n)) 4
G3b :sumy (S(n)) = S(S5(n))

G4b :S(sumj(n)) = S(S(n))
G5b:5(S(n)) = S(S(n))

reflexivity
n

n

4.4.1 Arithmetic Series

The canonical arithmetic series, the sum of the first n natural numbers, was
solved by Gauss as a young child. We will guess a closed form solution

n—1

i= w (4.31)

@
I
o

which gives us our induction hypothesis P(n). The base case P(0)
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is true. For the induction step, we assume P(n), and prove the implication
P(n) = P(n+1),

Pn+1):= zn:z = w (4.35)
=0
n(n —1) ~n(n+1)
5 +n= 5 (4.37)
(n—1)+2n _ n(n+1)
; - = (4.38)
(n+1) n(n+1)
=T (4.39)
T. (4.40)

Thus the implication is true, and the induction is proved. We can write this
proof in our informal style

n :nat

IHn :2xsum,(n)+n=nx*n

GO0 :Vn :nat,2 xsum,(n) +n=nx*xn .
(n) Step Tactic

G1 :2 % sumy(0) +0 =0 0A

1 apply nat_ind

(Vn : nat,2 * sum,(n) + n=n*xn — 2 split

2 x sum, (S(n)) + S(n) = S(n) * S(n)) 3a simpl
G2a :2*sum,, (0) +0=0x0 da .reﬂexnnty

_ 3b intros n ITHn
G3a:0 =0 4b algebra
G2b :¥n : nat, 2 * sum,(n) +n = = 5b rewrite — IHn

2 x sum,,(S(n)) + S(n) = S( ) S(n) 6b unfold sum_n
G3b :2 xsum, (S(n)) + S(n) = S(n) * S(n) b reflexivity
G4b :2 xsum, (S(n)) +S(n) =n*sn+2xn+1

(S(n
(5(n
G5b :2 * sum,, (S(
(n)

n)) ()_2*sumn( )—|—n+2*n+1
G6b 2 sump (n) +2xn+n+1=2%sumy(n) +n+2+n+1

We can verify our proof of a closed form for the sum of the n first natural
numbers using Coq. First we define a helper function which gives us the sum,

sum-_n

Fixpoint sum_n n :=
match n with
0=>0
| Sp=>p+ sumnp
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end.

Notice that a natural number n can be either 0 or the successor of another
number p, and we treat those two cases. If there are more constructors for an
inductive type, we would have more cases in our Fixpoint statement. We can
test this definition using the Compute operation in the proof assistant

Coq < Compute (sum_n 1).
=0
: nat

Coq < Compute (sum_n 2).
=1
: nat

Coq < Compute (sum_n 5).

= 10

: nat
Remember that the rixpoint operator allows us to define recurisve expressions
as long as they are well-founded, meaning that they do not infinitely recurse.
This is enforced by making sure that it is structural recursion, meaning that
the right hand side of the match only uses part of the left hand side. Here we
again match s p, but only use p.

Next, we remove the division and subtraction from the lemma we want to
prove. We do this so that we can employ the ring tactic to solve the algebraic
equations. The ring operations for the natural numbers are addition and multi-
plication, so the tactic cannot handle subtraciton and division. If we are careful
in the definition, we can get ring to do most of the work for us.

First we use the induction tactic, sum_n_p

Coq < Lemma sum_n_p : forall n, 2 * sum_nn +n =n * n.
1 subgoal

forall n : nat, 2 * sumn.nn +n =n * n

sum_n_p < induction n.
2 subgoals

2% sum_n 0+ 0 =0 %0

subgoal 2 is:

2% sunn (Sn) + Sn=Sn*Sn

that generates two goals. The first goal is our base case that has n replaced
by 0. The second one has n replaced by Sn, our induction step, with a hidden
hypothesis corresponding the statement being already true for n, the induction
hypothesis. To handle the first goal, we can use the simp1 tactic to eliminate the
use of sum_n 0 and then refiexivity since the expressions are equal

sum_n_p < simpl.
2 subgoals

0=0

subgoal 2 is:
2% sumn (Sn) + Sn=Sn%*Sn
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sum_n_p < reflexivity.
1 subgoal

n : nat
IHn : 2 * sum_nn +n=mn *n

2% sumn (Sn) +Sn=Sn%*Sn

although we could have just used the reflexivity tactic. We can now see the
induction hypothesis.

The main idea in an induction proof to verify the closed form for a series
is to use the induction hypothesis either to eliminate the defintion of our sum,
or to replace part of the closed form with our sum definition. Either strategy
will allow the ring tactic to verify the resulting equality. In this proof, we will
replace part of the closed form solution by our sum definition. Thus we need to
pull out a term that looks like the closed form for our induction step. In this
proof that means we need to pull out the n? term from our expression (n +1)2.
We can do this by hand and them have the proof assistant check our work.

Note that we do not need to use assert when proving these identities. We can
use low level theorems about the associativity, commutativity, and distributivity
of addition and multiplication. You can find these by searching in Coq. Below
I show some output edited for length.

I find them by searching For instance, an edited list

Coq < Search (_ * _ = _ % _).

Nat.mul_comm: forall nm : nat, n * m =m * n

Nat.mul_assoc: forall nm p : nat, n * (m * p) =n *m *x p
Nat.mul_cancel_1l: forall nmp : nat, p<>0 ->p*n=p*m<->n=m
Nat.mul_cancel_r: forall nmp : nat, p<>0 ->n *xp=mx*p<->n=m

Coq < Search (_ + _ = _ + _).

Nat.add_comm: forall nm : nat, n +m =m + n

Nat.add_assoc: forall nmp : nat, n+ (m+p) =n+m+p
Nat.add_cancel_1l: forall nmp : nat, p+n=p+m<->n=m
Nat.add_cancel_r: forall nmp : nat, n+p=m+ p<->n=m

Coq < Search (_ * (L + _) = _ * _+ _ * _).
Nat.mul_add_distr_l: forall nm p : nat, n * (m+ p) =n *m + n * p

We will assume the identity we derived by hand, which just treats it like a
separate subproof, using the assert tactic. Then we can use the ring tactic to
prove it.

sum_n_p < assert (SnSn : Sn * Sn=nx*n+2*n+ 1).
2 subgoals

n : nat
IJHn : 2 * sum_nn +n =n *n

Sn*Sn=nx*xn+2x*xn+1

subgoal 2 is:
2% sumn (Sn) +Sn=Sn%*Sn

sum_n_p < ring.
1 subgoal

n : nat
IHn : 2 * sum_nn +n =n *n
SnSn : Sn*Sn=n%xn+2%*n+1
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2% sumn (Sn) +Sn=Snx*Sn

Now we can use the rewrite tactic to replace s n * s n with our identity that
exposes the n * n term. This then allows us to use our induction hypothesis,

sum_n_p < rewrite SnSn.
1 subgoal

n : nat
IHn : 2 * sum_nn +n =mn *xn
SnSn : Sn*Sn=n*n+2%*xn+1

2% sumn (Sn) +Sn=nx*n+2*n+1

sum_n_p < rewrite <- IHn.
1 subgoal

n : nat
IHn : 2 * sum_nn +n=mn *n
SnSn : Sn*Sn=n*n+2*xn+1

2% sunn (Sn) +Sn=2%sunnn+n+2*n+1

The next step is to make sum_n (s n) unwind the recursive definition one step,
so that its value is expressed using sum_n n according to the definition, which
also forces the symbolic computation of multiplications. Finally, we use the
ring tactic to recognize that this equation is a consequence of associativity and
commutativity of addition.

sum_n_p < simpl.
1 subgoal

n : nat
IHn : 2 * sum_nn +n=mn *n
SnSn : Sn*Sn=n*n+2*xn+1

n+sumnn+ (n+sumnn+0)+Sn-=
sumnn + (sumnn+0) +n+ @+ (n+0)) +1

sum_n_p < ring.
No more subgoals.

sum_n_p < Qed.
(induction n).
(simpl).
reflexivity.

(assert (SnSn : Sn *Sn=nx*n+2%*n+ 1)).
ring.

(rewrite SnSn).
(rewrite <- IHn).
(simpl).

ring.

Qed.
sum_n_p is defined

We can also prove something more interesting about the sum of the first n
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natural numbers. If we look at the sums,

—1
(n=0) 0=) i=0

=0

0

(n=1) 0=>Yi=0
=0
1

(n=2) 1=)» i=0+1
=0
2

(n=3) 3= i=0+1+2
=0
3

(n=4) 6= i=0+1+2+3
=0

we see that the sum is always greater than or equal to n—1. Thus our predicate
for induction will be

n—1
P(n) = ZZ >n—1.
i=0

The base case can be easily verified

-1
P0):=Yi>0-1
=0

0>-1
T

For the induction step, we assume P(n) and prove P(n + 1),
Pln+1):= Zz >n
=0

n—1
Zi—FnZn
i=0

=n>1

where we used P(n) to subtract from both sides. The problem is now clear. We
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need another base case in order to patch up our argument,

-

S
Il
=

Py = i>1-1

I

H o
v
o

and our implication is true for any n > 1. We can put this into our informal
proof tableau, shown below. We are allowed to conclude some things, like 1 > 0
and n > 0 without proof.

n :nat
IHn sum,(n)+1>n

IHnb :sum,(Sn)+ 1> Sn Step  Tactic
1 induction n
GO :¥n : nat,sum,(n) +1>n 2a simpl

3a N property

Gla sumy(0) +1 >0 2b intros n IHn

G2a:1>0 3b destruct n

G1b :sump(n) +1 >n = sum,(S(n))+ 1> S(n) 4ba  simpl

G2b :sum,, (S(n)) +1 > S(n) dba <= property
G3ba - Dal>1 4bb  cancel 1

a sumn(1) +1 2 5bb  simpl

Gdba :0+121 6bb  use IHnb
G3bb :sum,, (S(S(n > S(S(n)) 7bb N property

(5(5(n)
G4bb :sum,, (S(S(n)
G5bb :sum,, (S(n)) + S(n) > S(n)
G6bb :n >0

We can also prove this by induction using the proof assistant. bigger

Coq < Theorem bigger : forall n : nat, n <= sum_n n + 1.
1 subgoal

forall n : nat, n <= sum_nn + 1

bigger < induction n.
2 subgoals

0 <= sum_n 0 + 1
For the base case, n = 0, we can simplify the result and use our standard
theorems about the < operator,

bigger < simpl.
2 subgoals

0<=1
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subgoal 2 is:
Sn<=sumn (Sn) +1

bigger < apply le_S.
2 subgoals

0<=0

subgoal 2 is:
Sn<=sumn (Sn) +1

bigger < apply le_n.
1 subgoal

n : nat
IHn : n <= sum_nn + 1

Sn <= sumn (Sn) +1

At this point, we can get into trouble. If we use our induction hypothesis 1in
directly, it will not be strong enough to prove our goal. We have

nF1<y it (4.41)
i=0
n—1
ntl<n+d i+l (4.42)
=0
1<n (4.43)

where we used our induction hypothesis in the last step. Clearly, we cannot
prove this because n could be zero. However, we can avoid this by proving
another base case. We decompose n into the two possible cases for a natural
number, namely zero or the successor of some number,

bigger < destruct n.

2 subgoals

IHn : 0 <= sum_n O + 1

1 <=sum_n 1 + 1

subgoal 2 is:
S (Sn) <= sum_n (S (Sn)) +1

and then use simp1 to replace an inductive expression with its definition,

bigger < simpl.
2 subgoals

IHn : 0 <= sum_n O + 1

1 <=1

subgoal 2 is:
S (Sn) <= sum_n (S (Sn)) +1

bigger < apply le_n.
1 subgoal

n : nat



4.4. SEQUENCES AND SERIES 191

IHn : Sn <= sumn (Sn) + 1

S (Sn) <= sum_n (S (Sn)) +1
Now we can apply a commonsense theorem about adding to each side of the
inequality,

Nat.le_le_add_le : forallnmpq : nat, n<=m ->p+m<=q+n->p<=gq
where the first goal is just one of our assumptions.

bigger < rewrite <- Nat.add_1_r.
1 subgoal

n : nat
IHn : S n <= sum_n (S n) + 1

Sn+1<=sumn (Sn+1) +1

bigger < apply Nat.le_le_add_le with (n := S n) (m := sum_n (S n) + 1).
2 subgoals

n : nat
IHn : Sn <= sum_n (S n) + 1

Sn<=sumn (Sn) +1

subgoal 2 is:
Sn+1+ (sunn (Sn) +1) <=sumn (Sn+1) +1+Sn

bigger < assumption.
1 subgoal

n : nat
IHn : S n <= sum_n (S n) + 1

Sn+ 1+ (sumn (Sn) +1) <=sumn (Sn+1) +1+Sn
Now we want to simplify the sums, so that we can cancel them out on each
side.

bigger < rewrite Nat.add_1_r at 2.
1 subgoal

n : nat
IHn : Sn <= sum_n (Sn) + 1

Sn+ 1+ (sumn (Sn) +1) <= sum_n (S (Sn)) +1+Sn

bigger < simpl.
1 subgoal

n : nat
IHn : Sn <= sum_n (S n) + 1

Sn+1+(n+sumnn+1)) <=S (n+ (n+sum_nn) +1+Sn)
Now we get rid of all the uses of successor, and cancel the first term, which is a
one,

bigger < rewrite <- Nat.add_1_r.
1 subgoal

n : nat
IHn : Sn <= sum_n (S n) + 1

n+1+@+sumnn+1) +1<=S (n+ (n+sumnn)+1+Sn)
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bigger < rewrite <- Nat.add_1_r with (n:=n).
1 subgoal

n : nat
IHn : S n <= sum_n (S n) + 1

n+1+(@+sumnn+1) +1<=S @+ (@+sunnn) +1+ (n+1))

bigger < rewrite <- Nat.add_1_r with (n:=n + (n + sum_n n) + 1 + (n + 1)).
1 subgoal

n : nat
IHn : S n <= sum_n (S n) + 1

n+1+(@m+sumnn+1) +1<=n+ (m+sumnn)+1+ (@+1)+1

bigger < apply plus_le_compat_r.
1 subgoal

n : nat
IHn : S n <= sum_n (S n) + 1

n+l1+ @+sumnn+1)<=n+(n+sumnn) +1+(n+1)
We use the same strategy, and some algebraic manipulation, to cancel everything
from the left side, leaving only n on the right,

bigger < rewrite <- plus_assoc with (n:=n) (m:=n + sum_n n) (p:=1).
1 subgoal

n : nat
IHn : S n <= sum_n (S n) + 1

n+l1+ (@+sumnn+1) <=n+ (n+sumnn+1) + (+1)

bigger < rewrite <- plus_assoc with (n:=n) (m:=n + sum_n n + 1) (p:=n+1).
1 subgoal

n : nat
IHn : S n <= sum_n (S n) + 1

n+l1+(@+sumnn+1)<=n+ (@+sumnn+1+ (n+1))

bigger < rewrite plus_comm with (n:=n + sum_n n + 1) (m:=n+1).
1 subgoal

n : nat
IHn : Sn <= sum_n (S n) + 1

n+1+ @+sumnn+1) <=n+ @+1+ (+sumnn+ 1))

bigger < rewrite plus_assoc with (n:=n) (m:=n+1).
1 subgoal

n : nat
IHn : S n <= sum_n (S n) + 1

n+1+m+sumnn+1)<=n+ (n+1) + (n + sum_nn + 1)

bigger < apply plus_le_compat_r.
1 subgoal

n : nat
IHn : S n <= sum_n (S n) + 1

n+1<=n+(n+1)
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bigger < rewrite <- plus_O_n at 1.
1 subgoal

n : nat
IHn : Sn <= sum.n (S n) + 1

O+ (m+1)<=n+ (n+1)

bigger < apply plus_le_compat_r.
1 subgoal

n : nat
IHn : Sn <= sum_n (S n) + 1

0 <=n

Finally, we use the fundamental fact from Peano arithmetic that all numbers
are greater than or equal to zero.

bigger < apply Peano.le_O_n.
No more subgoals.

bigger < Qed.

(induction n).
(simpl).
(apply le_S).
(apply le_n).

(destruct n).
(simpl).
(apply le_n).

(rewrite <- Nat.add_1_r).
(apply Nat.le_le_add_le with (n := S n) (m := sum_n (S n) + 1)).
assumption.

(rewrite Nat.add_1_r at 2).

(simpl).

(rewrite <- Nat.add_1_r).

(rewrite <- Nat.add_1_r with (n := n)).

(rewrite <- Nat.add_1_r with (n := (n + (n + sum_n n) + 1 + (n + 1)))).
(apply plus_le_compat_r).
(rewrite <- plus_assoc with (n :=n) (m := (n + sum_n n)) (p := 1)).

(rewrite <- plus_assoc with
(n:=1n) (m:= (@+sumnn+ 1)) (p:=(a+ ).
(rewrite plus_comm with (n := (n + sum_n n + 1)) (m := (n + 1))).
(rewrite plus_assoc with (n :=n) (m := (n + 1))).
(apply plus_le_compat_r).
(rewrite <- plus_O_n at 1).
(apply plus_le_compat_r).
(apply Peano.le_O_n).

Qed.
bigger is defined

4.4.2 Geometric Series

Another common example of induction is the geometric series,

n n+1

;T -1

e — —— 4.44
>oat= (1.49)
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for € R. The induction hypothesis P(n) is given by

N L |
P(n) := ;x = (4.45)
and thus the base case P(0),
0 z—1
P(0) := L= 4.4
(0) ;x — (4.46)
2% =1 (4.47)
T (4.48)

is true. Assuming P(n) is true, the induction step is

n+1 ) xn+2 -1
P 1) .= = 4.49
= 3w =T (4.49)
n n+2 _ 1
i nt1 _ 7T
;m = (4.50)
n+1 _ 1 n+2 _ ,.n+l1 n+2 _ 1
x x x =z (451)
r—1 z—1 z—1
xn+2 -1 xn+2 -1
= 4-52
z—1 z—1 ( )
T. (4.53)

Thus the induction step is true and the theorem is proved. We can put this in
our informal tableau,
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z R
n:N

ITHn :sumy(n,z) xz + 1 = 2"

+ sumy(n, z)
Step Tactic

GO Vx : R,Vn : Nysumgy(n,z) * z + 1 = 2" + sumy(n, z) ; ;Efirlfc‘)c(ion 0
G1:¥n:N;sumy(n,z) xx + 1= 2" 4 sum,y(n, z) 3a simpl
G2a :sumy(0,z) xz + 1 = 20 + sumy (0, z) 4a algebl'ra.
G3a:1xz+1=20+ 1)+1 2533 Zfie;lmty
Glaz+1=a+1 4b algebra,
G2b :sumy(S(n), z) * x + 1 = 25+ 4 sum,(S(n), z) 5b cancel z"1?2

6b apply IHn
G3b (x5 + sumy(n,z)) * x + 1 = 25 4 (5™ 4 sum, (n, 2)) PPy

G4b 5™ L sumy(n, x) x 2 + 1 = 5@ 4 50 L sum (n, z)

G5b :sumy(n, x) * x + 1 = 25 4 sumy (n, z)

We can also use Coq to prove the closed form for the geometric sum. First
we need some definitions to handle real numbers, and a recursive definition for
our sum, sum_geom
Require Import Reals.

Require Import Rfunctions.
Open Scope R_scope.

Fixpoint sum_geom (n:nat) (x:R) : R :=
match n with

0=>1
| Sp=>x"n+ sum_geom p x
end.

sum_geom is defined
sum_geom is recursively defined (decreasing on 1st argument)

We can check that this Now we state the lemma and prove the base case,
sum-_geom_p

Coq < Lemma sum_geom_p : forall n:nat, forall x:R, sum_geom n x * x + 1 = x"(n + 1) + sum_geom n x.
1 subgoal

forall (n : nat) (x : R), sum_geomn x * x + 1 = x ~ (n + 1) + sum_geom n x

sum_geom_p < induction n.
2 subgoals

forall x : R, sum_geom O x * x + 1 = x - (0 + 1) + sum_geom O x

subgoal 2 is:
forall x : R, sum_geom (Sn) x * x + 1 =x " (Sn + 1) + sum_geom (S n) x

sum_geom_p < intros x.
2 subgoals
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x : R

sum_geom O x * x + 1 =x ~ (0 + 1) + sum_geom O x

subgoal 2 is:
forall x : R, sum_geom (Sn) x * x +1 =x " (Sn + 1) + sum_geom (S n) x

sum_geom_p < simpl.
2 subgoals

x : R

1*xx+1=x%x1+1

subgoal 2 is:
forall x : R, sum_geom (Sn) x * x + 1 =x "~ (Sn + 1) + sum_geom (S n) x

sum_geom_p < rewrite Rmult_1_1.
2 subgoals

x : R

x+1=xx%x1+1

subgoal 2 is:
forall x : R, sum_geom (S n) x * x + 1 =x ~ (Sn + 1) + sum_geom (S n) x

sum_geom_p < rewrite Rmult_1_r.
2 subgoals

x : R

x+1=x+1

subgoal 2 is:
forall x : R, sum_geom (Sn) x * x + 1 =x ~ (Sn + 1) + sum_geom (S n) x

sum_geom_p < reflexivity.
1 subgoal

n : nat
IHn : forall x : R, sum_geomn x * x + 1 = x ~ (n + 1) + sum_geom n x

forall x : R, sum_geom (Sn) x * x +1 =x " (Sn + 1) + sum_geom (S n) x

We used induction and then the introduction tactic for universal quantification,
combined with some simplification of the real arithmetic. We could also have
used the ring tactic instead of explicit simplification. Note that we avoid using
subtraction because that makes the arithmetic simplification harder. Now we
handle the induction step.

sum_geom_p < intros x.
1 subgoal

n : nat
IHn : forall x : R, sum_geomn x * x + 1 = x ~ (n + 1) + sum_geom n x
x : R

sum_geom (S n) x * x +1 =x " (Sn+ 1) + sum_geom (S n) x

sum_geom_p < simpl.
1 subgoal

n : nat
IHn : forall x : R, sum_geom n x * x + 1 = x ~ (n+1) + sum_geom n X
x : R
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(x *x " n + sum_geom n x) * x + 1 =
x*x " (m+1) + (x *xx " n+ sun_geom n x)

Then we simplify the powers

sum_geom_p < rewrite Rmult_plus_distr_r.
1 subgoal

n : nat
IHn : forall x : R, sum_geom n x * x + 1 = x ~ (n+ 1) + sum_geom n X
x : R

X *X " n*Xx+ sun_geomnzx *xx + 1=
x*x " (n+1) + (x *x " n+ sun_geom n x)

sum_geom_p < rewrite tech_pow_Rmult.
1 subgoal

n : nat
IHn : forall x : R, sum_geom n x * x + 1 = x - (n + 1) + sum_geom n x
x : R

X" Sn*x+ sum_geomn x * x + 1 =
x*x " (mn+1) + (x~ Sn + sum_geom n x)

sum_geom_p < rewrite tech_pow_Rmult.

1 subgoal
n : nat
IHn : forall x : R, sum_geom n x * x + 1 = x ~ (n+ 1) + sum_geom n X
x : R
X " 8Sn*x+ sumgeomnx *x + 1=
x "8 (n+1)+ (x"Sn + sum_geom n x)

sum_geom_p < rewrite Rmult_comm with (rl:=x ~ S n) (r2:=x).
1 subgoal

n : nat
IHn : forall x : R, sum_geom n x * x + 1 = x ~ (n+ 1) + sum_geom n X
x : R

X* X~ Sn+ sumgeomnx *x + 1=
x " S (m+ 1)+ (x~ Sn + sun_geom n x)

sum_geom_p < rewrite tech_pow_Rmult.
1 subgoal

n : nat
IHn : forall x : R, sum_geomn x * x + 1 = x ~ (n + 1) + sum_geom n x
x : R

x ~ S (Sn) + sun_geomn x * x + 1 =
x " S(m+ 1)+ (x " Sn + sun_geom n x)

Then we apply the induction hypothesis

sum_geom_p < rewrite Rplus_assoc.
1 subgoal

n : nat
IHn : forall x : R, sum_geom n x * x + 1 = x ~ (n+1) + sum_geom n X
x : R

xS (Sn) + (sum_geomn x * x + 1) =
x "8 (n+ 1)+ (x" Sn + sum_geom n x)
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sum_geom_p < rewrite IHn.
1 subgoal

n : nat
IHn : forall x : R, sum_geomn x * x + 1 = x ~ (n + 1) + sum_geom n x
x : R

x ~ 8 (Sn) + (x " (n+ 1) + sum_geom n x)
xS (m+ 1)+ (x " Sn + sun_geom n x)

sum_geom_p < rewrite Nat.add_1_r.
1 subgoal

n : nat
IHn : forall x : R, sum_geom n x * x + 1 = x ~ (n + 1) + sum_geom n X
x : R

x " S (Sn) + (x~ Sn + sum_geom n x) =
xS (Sn) + (x "~ Sn + sum_geom n x)

sum_geom_p < reflexivity.
No more subgoals.

sum_geom_p < Qed.
(induction n).
(intros x).
(simpl).
(rewrite Rmult_1_1).
(rewrite Rmult_1_r).
reflexivity.

(intros x).

(simpl).

(rewrite Rmult_plus_distr_r).
(rewrite tech_pow_Rmult).
(rewrite tech_pow_Rmult).
(rewrite Rmult_comm with (r1 := (x = S n)) (r2 := x)).
(rewrite tech_pow_Rmult).
(destruct (IHn x) as [H _1).
(rewrite Rplus_assoc).
(rewrite IHn).

(rewrite Nat.add_1_r).
reflexivity.

Qed.
sum_geom_p is defined

4.4.3 Fibonacci Numbers

We can use the rixpoint operator to define more general sequences, such as the
Fibonacci numbers. We will use the integers here in order to be able to use this
later on in the book. Thus we will start with fibonacci

Require Import ZArith.
Require Import Znumtheory.
Open Scope Z_scope.

Fixpoint fibonacci (n:nat) : Z :=
match n with
| 0=>1
| s0=>1
| S (8 n as p) => fibonacci p + fibonacci n
end.

We can check our code by computing some examples
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Coq < Eval compute in (fibonacci 2).
=2
HvA

Coq < Eval compute in (fibonacci 5).
=38
HvA

As a first example, let’s try to prove that Fibonacci numbers are all positive.
fibonacci_pos

Coq < Lemma fibonacci_pos : forall n, 0 <= fibonacci n.
1 subgoal

forall n : nat, O <= fibonacci n

We could try induction on n, but since the Fibonacci recurrence depends on the
last two numbers, it is likely that we will need strong induction. But how do
we do strong induction in Coq? We want to explicitly add all the hypotheses
from strong induction. We will do this using the cut tactic. This tactic is
the inverse of modus ponens, since instead of proving some goal G, we prove
H — G and H for some hypothesis H. These are equivalent using the modus
ponens inference rule. Our new hypothesis will be that the Fibonacci numbers
are positive for every smaller number.

fibonacci_pos < cut (forall N n, (n<N)%nat -> O<=fibonacci n).
2 subgoals

(forall N n : nat, (n < N)%nat -> 0 <= fibonacci n) ->
forall n : nat, O <= fibonacci n

subgoal 2 is:
forall N n : nat, (n < N)%nat -> O <= fibonacci n

This first goal can be solved using eauto, but lets see if we can do it by hand.
First we introduce hypotheses. We see that we can use H to get a specific
hypothesis which makes the goal true, namely when N = n + 1. We can apply
that hypothesis, and then we have only to prove that n < n + 1.

fibonacci_pos < intros H n.
2 subgoals

H : forall N n : nat, (n < N)%nat -> 0 <= fibonacci n
n : nat

0 <= fibonacci n

fibonacci_pos < pose (Hn :=H (S n) n).
2 subgoals

H : forall N n : nat, (n < N)%nat -> 0 <= fibonacci n
n : nat
Hn :=H (Sn) n : (n < S n)¥nat -> 0 <= fibonacci n

0 <= fibonacci n

subgoal 2 is:
forall N n : nat, (n < N)%nat -> O <= fibonacci n

fibonacci_pos < apply Hn.
2 subgoals
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H : forall N n : nat, (n < N)%nat -> 0 <= fibonacci n
n : nat
Hn :=H (8 n) n: (n< S n)jnat -> 0 <= fibonacci n

(n < S n)%nat

subgoal 2 is:
forall N n : nat, (n < N)%nat -> 0 <= fibonacci n

fibonacci_pos < apply le_lt_n_Sm.
2 subgoals

H : forall N n : nat, (n < N)%nat -> 0 <= fibonacci n
n : nat
Hn :=H (Sn) n: (n< S n)inat -> 0 <= fibonacci n

(n <= n)%nat

subgoal 2 is:
forall N n : nat, (n < N)%nat -> 0 <= fibonacci n

fibonacci_pos < apply le_n.
1 subgoal

forall N n : nat, (n < N)%nat -> O <= fibonacci n

Now we have only our strong induction to prove. We start with induction on
N. The base case is true because the false hypothesis n < 0 implies anything.
We can prove it is false using the inversion tactic, telling it to look at the first
expression.

fibonacci_pos < induction N.
2 subgoals

forall n : nat, (n < O)%nat -> O <= fibonacci n

subgoal 2 is:
forall n : nat, (n < S N)%nat -> 0 <= fibonacci n

fibonacci_pos < inversion 1.
1 subgoal

N : nat
IHN : forall n : nat, (n < N)%nat -> 0 <= fibonacci n

forall n : nat, (n < S N)%nat -> O <= fibonacci n

After introducing hypotheses, we want to get rid of the base cases for the Fi-
bonacci recurrence. Therefore, we separate n into the two cases for natural
numbers, and prove the zero case. To prove 0 < 1, we could apply theorems by
hand, as before, but we will just use the auto tactic since we now know how it
goes.

fibonacci_pos < intros n H.
1 subgoal

N : nat

IHN : forall n : nat, (n < N)%nat -> 0 <= fibonacci n
n : nat

H: (n < S N%nat

0 <= fibonacci n
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fibonacci_pos < destruct n.
2 subgoals

N : nat
IHN : forall n : nat, (n < N)%nat -> O <= fibonacci n
H : (0 < S N)%nat

0 <= fibonacci 0O

subgoal 2 is:
0 <= fibonacci (S n)

fibonacci_pos < simpl.
2 subgoals

N : nat
IHN : forall n : nat, (n < N)%nat -> O <= fibonacci n
H: (0 < S N)%nat

0<=1

subgoal 2 is:
0 <= fibonacci (S n)

fibonacci_pos < auto with zarith.
1 subgoal

N : nat

IHN : forall n : nat, (n < N)%nat -> O <= fibonacci n
n : nat

H: (S n < S N)inat

0 <= fibonacci (S n)

We do this a second time to get rid of the second base case in the recurrence.

fibonacci_pos < destruct n.
2 subgoals

N : nat
IHN : forall n : nat, (n < N)%nat -> O <= fibonacci n
H: (1 <8 N)Ynat

0 <= fibonacci 1

subgoal 2 is:
0 <= fibonacci (S (S n))

fibonacci_pos < simpl.
2 subgoals

N : nat
IHN : forall n : nat, (n < N)%nat -> O <= fibonacci n
H: (1 < S N)%nat

0<=1

subgoal 2 is:
0 <= fibonacci (S (S n))

fibonacci_pos < auto with zarith.
1 subgoal

N : nat

IHN : forall n : nat, (n < N)%nat -> O <= fibonacci n
n : nat

H: (8 (Sn) <S N)inat

0 <= fibonacci (S (S n))
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Now we can use the Fibonacci recurrence. Unfortunately the simp1 tactic will
not give us what we want here, so we are forced to do the unfolding by hand
using the change tactic. Remember that change allows us to replace one term with
another that has the same definition.

fibonacci_pos < change (0 <= fibonacci (S n) + fibonacci n).
1 subgoal

N : nat

IHN : forall n : nat, (n < N)%nat -> 0 <= fibonacci n
n : nat

H: (8 (8§ n) < 8 N)/nat

0 <= fibonacci (S n) + fibonacci n

Now we can use our induction hypothesis to generate the two specific hypotheses
we need.

fibonacci_pos < pose (Hn := IHN n).

1 subgoal
N : nat
IHN : forall n : nat, (n < N)%nat -> 0 <= fibonacci n
n : nat

H: (8 (S n) < S N)inat
Hn := IHN n : (n < N)%nat -> 0 <= fibonacci n

0 <= fibonacci (S n) + fibonacci n

fibonacci_pos < pose (HSn := IHN (S n)).
1 subgoal

N : nat

IHN : forall n : nat, (n < N)%nat -> 0 <= fibonacci n

n : nat

H: (S (Sn) <S N)%nat

Hn := IHN n : (n < N)%nat -> 0 <= fibonacci n

HSn := IHN (S n) : (S n < N)%nat -> O <= fibonacci (S n)

0 <= fibonacci (S n) + fibonacci n

From hypothesis H, it is clear both that n < N and n +1 < N. We could
generate those inequalities, and use them with Hn and HSn to prove that Fj,
and F, 11 are non-negative. Finally, we would use the fact that the sum of two
non-negative numbers is non-negative. However, all this can be done by the
omega tactic, which can handle inequalities and arithmetic.

fibonacci_pos < omega.
No more subgoals.

fibonacci_pos < Qed.
(cut (forall N n, (n < N)Ynat -> O <= fibonacci n)).
(intros H n).
(pose (Hn := H (S n) n)).
(apply Hn).
(apply le_lt_n_Sm).
(apply le_n).

(induction N).
(inversion 1).

(intros n H).
(destruct n).
(simpl).

auto with zarith.
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(destruct n).
(simpl).
auto with zarith.

(change (0 <= fibonacci (S n) + fibonacci n)).
(pose (Hn := IHN n)).

(pose (HSn := IHN (S n))).

omega.

Qed.
fibonacci_pos is defined

Next, we will prove that the Fibonacci recurrence is monotone, meaning that
each successive number is larger than the last. fibonacci_monotone

Coq < Lemma fibonacci_monotone : forall n m, (n<=m)¥%nat -> fibonacci n <= fibonacci m.
1 subgoal

forall n m : nat, (n <= m)%nat -> fibonacci n <= fibonacci m

We will prove this by induction. However, we will not induct on n or m by using
nat_ind, but rather we will induct on n < m using 1e_inda. We cannot use 1e_n for
the base case, since that only applies to natural numbers. Instead we can use
the integer version, or just let the automatic tactic handle it.

fibonacci_monotone < induction 1.
2 subgoals

n : nat

fibonacci n <= fibonacci n

subgoal 2 is:
fibonacci n <= fibonacci (S m)

fibonacci_monotone < apply Zle_refl.
1 subgoal

n, m : nat
H : (n <= m)%nat
IHle : fibonacci n <= fibonacci m

fibonacci n <= fibonacci (S m)

Now we can use the transitive property of the less-then-or-equal-to relation. The
first precondition is obvious, since it is one of our hypotheses, but the second
will require more work.

fibonacci_monotone < apply Zle_trans with (m := (fibonacci m)).
2 subgoals

n, m : nat
H : (n <= m)%nat
IHle : fibonacci n <= fibonacci m

fibonacci n <= fibonacci m

subgoal 2 is:
fibonacci m <= fibonacci (S m)

fibonacci_monotone < exact IHle.
1 subgoal
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n, m : nat
H : (n <= m)%nat
IHle : fibonacci n <= fibonacci m

fibonacci m <= fibonacci (S m)

None of the prior hypotheses will help us here, so we can remove them using
clear. We ultimately want to use the recurrence to prove this inequality, but we
must take care of the base cases first. Thus we split m into the two constructor
for natural numbers, and prove the base case by reflexivity.

fibonacci_monotone < clear.
1 subgoal

m : nat

fibonacci m <= fibonacci (S m)

fibonacci_monotone < destruct m.
2 subgoals

fibonacci O <= fibonacci 1

subgoal 2 is:
fibonacci (S m) <= fibonacci (S (S m))

fibonacci_monotone < simpl.
2 subgoals

1<=1

subgoal 2 is:
fibonacci (S m) <= fibonacci (S (S m))

fibonacci_monotone < apply Zle_refl.
1 subgoal

m : nat

fibonacci (S m) <= fibonacci (S (S m))

Now we can use the recurrence, just as we did in the previous proof. We could
then prove this by canceling Fj,y; from both sides and using our previous
lemma. However, we can do this in a slightly simpler way using the automatic
techniques. We first assume our previous lemma applied to m using generalize.
We could have made it a new hypothesis using pose in the same way. Finally,
we can use the automated solver omega which will find the solution from these
inequalities.

fibonacci_monotone < change (fibonacci (S m) <= fibonacci (S m)+fibonacci m).

1 subgoal

m : nat

fibonacci (8 m) <= fibonacci (S m) + fibonacci m

fibonacci_monotone < generalize (fibonacci_pos m) .
1 subgoal

m : nat

0 <= fibonacci m -> fibonacci (S m) <= fibonacci (S m) + fibonacci m
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fibonacci_monotone < omega.
No more subgoals.

fibonacci_monotone < Qed.
(induction 1).
(apply Zle_refl).

(apply Zle_trans with (m := fibonacci m)).
exact IHle.

clear.
(destruct m).
(simpl).
(apply Zle_refl).
(change (fibonacci (8 m) <= fibonacci (S m) + fibonacci m)).
(generalize (fibonacci_pos m)).

omega.

Qed.
fibonacci_monotone is defined

4.4.4 FEven and Odd Numbers

We will call the domain of natural numbers N, and introduce numerical predi-
cates which will be used in many examples and problems,

e O(x): True if the input x is an odd natural number,
e E(x): True if the input x is an even natural number.

We also have that -O(z) = E(z) and —E(z) = O(x). Consider the following
statement,

For every natural number z, if 2 + 2z + 7 is even, then z is odd.

This can be translated into a statement of predicate logic
Vo :N,E(z? 422+ 7) = O(x) (4.54)

For any given integer z, we could determine 2% 4 2x + 7 by arithmetic, and then
check the predicates using division and remainder. However, we cannot exhaust
all integers, so this proof strategy will not work. However, we can characterize
even numbers as those expressible as 2k for some integer k, and likewise odd
numbers as 2k + 1. This will allow us to carry out the proof for arbitrary k.

A direct proof would proceed by modus ponens, namely assuming E(z? —
2z + 7), and then demonstrating O(z). We would have that 22 — 2z + 7 = 2k
for some integer k, and x = 2] 4+ 1 for some [. We have that

(2L +1)2+ 220+ 1) +7=2k (4.55)
AP+ A+ 144 +247=2k (4.56)
20 +4l+5=k (4.57)
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but this does not show us that [ is an integer. Let us try to prove this by
contraposition. In this case we would assume the negation of the consequent,
namely that -O(x) = E(z), and demonstrate the negation of the antecedent.
So we assume x = 2,

2?20+ 7= (2 +220) +7
=AP +4l+7
=4+ 4 +6+1
=22 +20+3) +1
=2m+1 (4.58)

where we used the fact that [ € Z implies that 2{%> + 2l + 3 = m € Z. Thus we
have

E@*+2c+7) =E2m+1)=F (4.59)
or
-O(z) = —E(2*+2x+7) (4.60)
so that by the implication (-@Q = -P) = (P = Q),
BE(z?+224+7) = O(x). (4.61)
Suppose that we would like to prove that

If x is even, then x + 10 is even.

which is the logical statement
Vo :Z,E(x) = E(x+ 10). (4.62)

We could prove this directly, since for even x

x+10=2k+10 (4.63)
=2(k+5) (4.64)
=2m (4.65)

so that E(z + 10).

On the other hand, a proof by contradiction assumes the negation of the
statement to be proved and tried to derive the false statement from it. Thus we
would assume

- (Vz:Z,E(zx) = E(z+10))=32:Z,~(E(zx) = E(z+10)) (4.66)
= 32:Z,~(-E(@)V E(x +10))  (4.67)
— 32 : Z, B(x) A—E(z + 10) (4.68)
=3z :Z,E(z) A O(x + 10) (4.69)
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We can use our proof from above to show the E(z) implies E(z + 10). Thus we
have

E(z 4 10) A O(x + 10) = F. (4.70)

We have derived a contradiction, and thus our original assumption must be
false, making the statement we want to prove true.

This is more work in Coq since we have assumed a lot of intermediate results.
This makes a good point about automation, namely that it is easy to assume
a lot of complicated things when you fail to explain it to a computer. We
begin by loading the library for arithmetic with natural numbers and defining
an inductive predicate even

Require Import Arith.

Inductive even : nat -> Prop :=
evenO : even O
| evenS : forall x:nat, even x -> even (S (S x)).

which produces a proposition for every even number. The eveno and evens compo-
nents are theorems which prove the propositions on the right. This is somewhat
counterintuitive, since we would normally also define the odd cases. We will
not need them as we can make use of the inversion tactic. This tactic analyzes
all the constructors of the inductive predicate, discards the ones that could not
have been applied, and when some constructors could have been applied, it cre-
ates a new goal where the premises of this constructor are added in the context.
Lets look at a simple proof not_even_1,

Coq < Lemma not_even_1 : “even 1.
1 subgoal

even 1

not_even_1 < intros evenl.
1 subgoal

evenl : even 1

False

not_even_1 < inversion evenl.
No more subgoals.

not_even_1 < Qed.
(intros evenl).
(inversion evenl).

Qed.
not_even_1 is defined

Since no constructor can conclude to the proposition even 1 (using evens would
require that 1 = s (s », and using eveno would require that 1 = o), the premise in
never true and we are finished.

Now we can try something a little harder, which illustrates how to use the
theorems which build our inductive predicate. We will prove that 2n is always
even, or more formally even_double_p
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Coq < Lemma even_double_p : forall n, even(2*n) .
1 subgoal

forall n : nat, even (2 * n)

We begin by invoking induction, and solving the base case.

even_double_p < induction n.
2 subgoals

even (2 * 0)

subgoal 2 is:
even (2 * S n)

even_double_p < simpl.
2 subgoals

even 0

subgoal 2 is:
even (2 * S n)

even_double_p < apply evenO.
1 subgoal

n : nat
IHn : even (2 * n)

even (2 * S n)
Notice how we used the theorem eveno to prove even 0. Next we will attack the
inductive step by rewriting it so that we can use our evens theorem,

even_double_p < simpl.
1 subgoal

n : nat
IHn : even (2 * n)

even (S (n + S (n + 0)))

even_double_p < rewrite Nat.add_succ_r.
1 subgoal

n : nat
IHn : even (2 * n)

even (S (S (m + (n + 0))))

even_double_p < apply evenS.
1 subgoal

n : nat
IHn : even (2 * n)

even (n + (n + 0))

even_double_p < assumption.
No more subgoals.

even_double_p < Qed.
(induction n).
(simpl).
(apply evenO).
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(simpl).

(rewrite Nat.add_succ_r).
(apply evenS).
assumption.

Qed.
even_double_p is defined

and the proof is complete.
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We can state the problem above in terms of our inductive predicate, and

handle the base case with repeated application of evens, even_plus10_p

Coq < Lemma even_pluslO_p : forall n, even n -> even (n + 10).

1 subgoal

forall n : nat, even n -> even (n + 10)

even_plus10_p < induction n.
2 subgoals

even 0 -> even (0 + 10)

subgoal 2 is:
even (8 n) -> even (S8 n + 10)

even_plusl0_p < intro HO.
2 subgoals

HO : even O

even (0 + 10)

subgoal 2 is:
even (S8 n) -> even (S n + 10)

even_plusl0_p < apply evenS.
2 subgoals

HO : even O

even 8

subgoal 2 is:
even (S n) -> even (S n + 10)

even_plusl0_p < apply evenS; apply evenS; apply evenS; apply evenS.

2 subgoals

HO : even O

even 0

subgoal 2 is:
even (S n) -> even (S n + 10)

even_plusl0_p < assumption.
1 subgoal

n : nat
IHn : even n -> even (n + 10)

even (S n) -> even (S n + 10)

We use the introduction tactic for the implication, but it looks like we are stuck,
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because we do not have a case for the single successor (which would be an odd
number). However, the inversion tactic comes to our rescue,

even_pluslO_p < intro H1.
1 subgoal

n : nat
IHn : even n -> even (n + 10)
H1 : even (S n)

even (S n + 10)

even_plusl0_p < inversion H1.
1 subgoal

n : nat
IHn : even n -> even (n + 10)
H1 : even (S n)

X : nat
HO : even x
H:Sx=n

even (S (S x) + 10)

Now all that remains is to eliminate the 10. We start by moving the addition
to successor using the repeat tactic, which applies it argument until it cannot
be applied anymore. Then we eliminate the 0.

even_pluslO_p < repeat rewrite Nat.add_succ_r.
1 subgoal

A : Set

P, Q : A -> Prop

n : nat

IHn : even n -> even (n + 10)
H1 : even (S n)

X : nat
HO : even x
H:Sx=n

even (S (S (S (S (S (S (8 (S (5 (5 (S (5x)+ 01N

even_pluslO_p < rewrite Nat.add_O_r.
1 subgoal

A : Set

P, Q : A -> Prop

n : nat

IHn : even n -> even (n + 10)
H1 : even (S n)

X : nat
HO : even x
H:Sx=n

even (S (S (S (8 (S (5 (8 (S (5 (5 (s (5x)))))))NNN

Finally we remove the successor with evens,

even_pluslO_p < repeat apply evenS.
1 subgoal

A : Set

P, Q : A -> Prop

n : nat

IHn : even n -> even (n + 10)
H1 : even (S n)
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X : nat
HO : even x
H:Sx=n
even x

even_plusl0_p < exact HO.
No more subgoals.

even_plus10_p < Qed.
(induction n).

intro H1.

(repeat apply evenS).
exact H1.

intro H1.

(inversion H1).

(repeat rewrite Nat.add_succ_r).
(rewrite Nat.add_O_r).

(repeat apply evenS).

exact HO.

Qed.
even_plusl0_p is defined

211

It is more convenient, however, to use the induction theorem for even num-
bers directly. Restarting the proof, we can introduce hypotheses, and then
eliminate our new hypothesis even n. This applies the induction theorem for the

even type, generating the base case and inductive step for us.

even_plusl0O_p < Restart.
1 subgoal

forall n : nat, even n -> even (n + 10)

even_pluslO_p < intros n Heven.
1 subgoal

n : nat
Heven : even n

even (n + 10)

even_plusl0_p < elim Heven.
2 subgoals

n : nat
Heven : even n

even (0 + 10)

subgoal 2 is:

forall x : nat, even x -> even (x + 10) -> even (S (S x) + 10)

We can easily prove the base case as before

even_plusl0_p < rewrite Nat.add_O0_1.
2 subgoals

n : nat
Heven : even n

even 10

subgoal 2 is:

forall x : nat, even x -> even (x + 10) -> even (S (S x) + 10)
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even_pluslO_p < repeat apply evenS.
2 subgoals

n : nat
Heven : even n

even 0

subgoal 2 is:
forall x : nat, even x -> even (x + 10) -> even (S (8 x) + 10)

even_plus10_p < apply evenO.
1 subgoal

n : nat
Heven : even n

forall x : nat, even x -> even (x + 10) -> even (S (S x) + 10)

To prove the inductive step, we just need to introduce hypotheses, apply the
inductive theorem from our even type, and use the inductive hypothesis.

even_plusl0_p < intros x Hxeven Hx1Oeven.
1 subgoal

n : nat

Heven : even n

X : nat

Hxeven : even x
Hx1lOeven : even (x + 10)

even (S (S x) + 10)

even_plusl0_p < repeat rewrite Nat.add_succ_l.
1 subgoal

n : nat

Heven : even n

X : nat

Hxeven : even x
Hx10even : even (x + 10)

even (8 (8 (x + 10)))

even_plusl0_p < apply evenS.
1 subgoal

n : nat

Heven : even n

X : nat

Hxeven : even x
Hx10even : even (x + 10)

even (x + 10)

even_plusl0_p < exact HxlOeven.
No more subgoals.

even_plusl0_p < Qed.
(intros n Heven).

(elim Heven).
(rewrite Nat.add_0_1).
(repeat apply evenS).
(apply evenO0).

(intros x Hxeven Hx10Oeven).
(repeat apply Nat.add_succ_l).
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(repeat rewrite Nat.add_succ_l).
(apply evenS).
exact Hx1Oeven.

Qed.
even_pluslO_p is defined

This is simpler than navigating the natural number induction using inversion,
and also more clearly shows how induction over even numbers is structured.
This will prepare us for induction over more complicated types.

As a final warmup, let’s prove that any number of the form 2n + 1 is
not even. We first state the lemma and prove the base case using inversion
odd_notdouble_p

tester < Lemma odd_notdouble_p : forall n, ~“even(2*n+1).
1 subgoal

forall n : nat, ~ even (2 * n + 1)

odd_notdouble_p < induction n.
2 subgoals

“ even (2 ¥ 0 + 1)

subgoal 2 is:
~even (2 * Sn + 1)

odd_notdouble_p < simpl.
2 subgoals

~ even 1

subgoal 2 is:
“even (2 * Sn + 1)

odd_notdouble_p < intros Hleven.
2 subgoals

Hleven : even 1

False

subgoal 2 is:
“ even (2 * Sn + 1)

odd_notdouble_p < inversion Hleven.
1 subgoal

n : nat
IHn : ~ even (2 * n + 1)

“ even (2 * Sn + 1)
Next we simplify the induction step so that it has the form of our recursion and
then use inversion

odd_notdouble_p < simpl.
1 subgoal

n : nat
IHn : ~ even (2 * n + 1)
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“even (S (n+ S (n+ 0) + 1))

odd_notdouble_p < rewrite Nat.add_succ_r.
1 subgoal

n : nat
IHn : ~ even (2 * n + 1)

“even (S (S (m+ S (n+ 0) +0)))

odd_notdouble_p < rewrite plus_O_r.
1 subgoal

n : nat
IHn : ~ even (2 * n + 1)

“even (S (S8 (n+ 8 (mn+ 0)))

odd_notdouble_p < rewrite plus_O_r.
1 subgoal

n : nat
IHn : ~ even (2 * n + 1)

~ even (S (S (n + S 1n)))

odd_notdouble_p < intro HSneven.

1 subgoal
n : nat
IHn : ~ even (2 * n + 1)
HSneven : even (S (S (n + S n)))
False

odd_notdouble_p < inversion HSneven.

1 subgoal
n : nat
IHn : ~ even (2 * n + 1)
HSneven : even (8 (8 (n + S n)))
X : nat

HO : even (n + S n)
H:x=n+3Sn

False

CHAPTER 4.
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Now we destruct the induction hypothesis 1, do a small rewrite of our goal, and
use the Ho hypothesis generated from the induction,

odd_notdouble_p < destruct IHn.
1 subgoal

n : nat
HSneven :
X : nat
HO : even (n + S n)
H:x=n+Sn

even (8 (S (n + S n)))

even (2 * n + 1)

odd_notdouble_p < simpl.
1 subgoal

n : nat
HSneven :
X : nat
HO : even (n + S n)

even (8 (8 (m + S n)))
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H:x=n+3Sn

even (n + (n + 0) + 1)

odd_notdouble_p < rewrite plus_O_r.
1 subgoal

n : nat

HSneven : even (S (8 (n + S n)))
X : nat

HO : even (n + S n)
H:x=n+3Sn

even (n + n + 1)

odd_notdouble_p < rewrite Nat.add_1_r.
1 subgoal

n : nat

HSneven : even (S (8 (n + S n)))
X : nat

HO : even (n + S n)
H:x=n+Sn

even (S (n + n))

odd_notdouble_p < rewrite <- Nat.add_succ_r.
1 subgoal

n : nat

HSneven : even (8 (8 (n + S n)))
X : nat

HO : even (n + S n)
H:x=n+8n

even (n + S n)

odd_notdouble_p < assumption.
No more subgoals.

odd_notdouble_p < Qed.
(induction n).

intro Hleven.
(inversion Hleven).

(simpl).

(rewrite Nat.add_succ_r).
(rewrite plus_0_r).
(rewrite plus_0_r).

intro HSneven.

(inversion HSneven).
(destruct IHn).

(simpl).

(rewrite plus_0_r).
(rewrite Nat.add_1_r).
(rewrite <- Nat.add_succ_r).
assumption.

Qed.
odd_notdouble_p is defined

so that our theorem is proved.

We will need a subsidiary result in order to prove our main theorem, namely
that evenness of n implies that half of it exists, 2m = n. First we state the
lemma, and e1im to reason by cases, even_mult

Coq < Lemma even_mult : forall x, even x -> exists y, x = 2xy.
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1 subgoal

forall x : nat, even x -> exists y : nat, x = 2 * y

even_mult < intros x H.
1 subgoal

X : nat
H : even x

exists y : nat, x = 2 x y

even_mult < elim H.
2 subgoals

X : nat
H : even x

exists y : nat, 0 = 2 x y
subgoal 2 is:

forall x0 : nat,
even x0 -> (exists y : nat, x0 = 2 * y) -> exists y : nat, S (S x0) =2 * y

The 0 case is easy, since the answer is 0 as well.

even_mult < exists O.
2 subgoals

X : nat
H : even x

0=2x%0

subgoal 2 is:
forall x0 : nat,
even x0 -> (exists y : nat, x0 = 2 * y) -> exists y : nat, S (S x0) = 2 xy

even_mult < ring.
1 subgoal

X : nat
H : even x

forall x0 : nat,
even x0 -> (exists y : nat, x0 = 2 * y) -> exists y : nat, S (8 x0) =2 *xy

Now we use introduction to remove the universal quantifier, even assumption,
and induction hypothesis. We destruct the existential quantifier in the induction
hypothesis, and use the resulting theorem in our goal to locate a witness.

even_mult < intros x0 HxOeven IHxO.
1 subgoal

X : nat

H : even x

x0 : nat

HxOeven : even x0

IHx0 : exists y : nat, x0 = 2 x y

exists y : nat, S (S x0) = 2 * y

even_mult < destruct IHxO as [y Heql.
1 subgoal

X : nat
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H : even x

x0 : nat
HxOeven : even x0
y : nat

Heq : x0 = 2 x y

exists yO : nat, S (8 x0) = 2 * yO

even_mult < rewrite Heq.
1 subgoal

X : nat

H : even x

x0 : nat

HxOeven : even x0
y : nat

Heq : x0 = 2 x y

exists yO : nat, S (8 (2 x y)) = 2 * yO

even_mult < exists (S y).

1 subgoal
X : nat
H : even x
x0 : nat
HxOeven : even x0
y : nat

Heq : x0 = 2 *x y

S @x*xy)=2%x8y

even_mult < ring.
No more subgoals.

even_mult < Qed.
(intros x H).
(elim H).

exists O.

ring.

(intros x0 HxOeven IHxO).
(destruct IHxO as [y Heql).
(rewrite Heq).

exists (S y).

ring.

Qed.
even_mult is defined
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We are finally ready to attack the problem at the top of this section. First,
we define the lemma, start the induction, and simplify the base case even_cp_p

Coq < Lemma even_cp_p :
1 subgoal

forall n : nat, even n -> ~ even (n * n + 2 *x n + 7)

even_cp_p < induction n.
2 subgoals

even 0 -> ~ even (0 * 0 + 2 * 0 + 7)

subgoal 2 is:
even (S n) ->

forall n, even n -> “even(n*n + 2%n + 7).

even (Sn*Sn+2%*Sn+7)
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even_cp_p < intro HOeven.
2 subgoals

HOeven : even 0

“even (0 0+ 2 %0+ 7)

subgoal 2 is:
even (Sn) -> “even (Sn *Sn+ 2% Sn+7)

even_cp_p < simpl.
2 subgoals

HOeven : even 0

~ even 7

subgoal 2 is:
even (S n) ->

even (Sn*Sn+2%*Sn+7)

even_cp_p < intro H7even.
2 subgoals

HOeven : even 0O
H7even : even 7

False

subgoal 2 is:
even (S8 n) ->

even (Sn*xSn+2%*Sn+7)
Now we just need to repeatedly use inversion to whittle this down to the im-
possible even 1,

even_cp_p < inversion H7even.
2 subgoals

HOeven : even 0O
H7even : even 7

X : nat

HO : even 5
H:x=5
False

subgoal 2 is:
even (8 n) ->

even (Sn*xSn+2%*Sn+7)

even_cp_p < inversion HO.
2 subgoals

HOeven : even 0O
H7even : even 7

X : nat
HO : even 5
H:x=5
x0 : nat

H2 : even 3
H1 : x0 =3
False

subgoal 2 is:
even (S n) ->

even (Sn*Sn+2%*Sn+7)

even_cp_p < inversion H2.
2 subgoals
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HOeven : even O
H7even : even 7

X : nat

HO : even 5
H:x=25
x0 : nat

H2 : even 3
H1 : x0 =3
x1 : nat
H4 : even 1
H3 : x1 =1
False

subgoal 2 is:
even (S n) ->

even (Sn* Sn+2%*Sn+7)

even_cp_p < inversion H4.
1 subgoal

n : nat
IHn : even n -> ~even (n * n + 2 * n + 7)

even (Sn) -> “even (Sn * Sn+ 2 *Sn+7)

Now we can attack the inductive step. First, we introduce the antecedent, apply
our previous theorem, destruct the existential quantifier and use it to simplify
our goal. Note here that we can apply a theorem to any hypothesis using the
apply Th in H Syntax.

even_cp_p < intro HSneven.
1 subgoal

n : nat
IHn : even n -> ~“ even (n * n + 2 * n + 7)
HSneven : even (S n)

“even (Sn*Sn+2x*Sn+7)

even_cp_p < apply even_mult in HSneven.

1 subgoal
n : nat
IHn : even n -> ~“ even (n * n + 2 * n + 7)
HSneven : exists y : mat, Sn =2 *xy
“even (Sn*Sn+2x*Sn+7)

even_cp_p < destruct HSneven.

1 subgoal
n : nat
IHn : even n -> “even (n *n + 2 *n + 7)
X : nat
H:Sn=2%*x
“even (Sn*Sn+2%Sn+7)

even_cp_p < rewrite H.

1 subgoal
n : nat
IHn : even n -> “even (n * n + 2 * n + 7)
X : nat

H:Sn=2%*x

“even (2 % x * (2 % x) +2 * (2 % x) +7)
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We now introduce an assertion, which mirrors our result from the proof by hand
above in Eq. 4.58. It is easily proved by using the witness we found above and
the ring tactic for simplification.

even_cp_p < assert (HOdd : exists m, 2 * x * (2 * x) + 2 * (2 * x) +7 = 2xm + 1).
2 subgoals

n : nat
IHn : even n -> ~ even (n *n + 2 *x n + 7)
X : nat

H:Sn=2=%*x

exists m : nat, 2 * x * (2 * x) + 2 % (2 *xx) +7 =2 m+ 1

subgoal 2 is:
“even (2 % x x (2 % x) +2 % (2 % x)+7)

even_cp_p < exists (2*x*x + 2*x + 3).
2 subgoals

n : nat

IHn : even n -> “even (n *n + 2 *n + 7)
X : nat

H:Sn=2=%*x

2% x % (2%%x) +2% (2*%x)+7=2%(2*x*x+2x*xx+3)+1

subgoal 2 is:
“even (2 x x x (2 xx) + 2% (2xx)+7)

even_cp_p < ring.
1 subgoal

n : nat

IHn : even n -> ~ even (n * n + 2 * n + 7)

X : nat

H:S8Sn=2=%x

HOdd : exists m : nat, 2 * x * (2 * x) + 2 *x (2 * x) +7 =2 *m+ 1

“even (2 x x * (2 % x) + 2 % (2 *x x) +7)

All that is left is to destruct our assertion, use it to rewrite the goal, and then
apply our theorem about odd numbers,

even_cp_p < destruct HOdd.
1 subgoal

n : nat
IHn : even n ->
X : nat
H:Sn=2=%*x
x0 : nat
HO : 2 x x x (2 % x) +2 % (2*x) +7=2%x0+1

even (n *n + 2 *xn + 7)

“even (2 x x * (2 % x) +2 % (2 % x) +7)

even_cp_p < rewrite HO.
1 subgoal

n : nat
IHn : even n ->
X : nat
H:Sn=2=%*x
x0 : nat
HO : 2 % x % (2 % x) +2 % (2 *xx) +7=2x%x0+1

even (n * n + 2 *n + 7)

~ even (2 * x0 + 1)
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even_cp_p < apply odd_notdouble_p.
No more subgoals.

even_cp_p < Qed.
(induction n).
intro HOeven.
(simpl).
intro H7even.
(inversion H7even).
(inversion HO).
(inversion H2).
(inversion H4).

intro HSneven.

(apply even_mult in HSneven).

(destruct HSneven).

(rewrite H).

(assert (HOAd : exists m, 2 * x * (2 * x) + 2 *x (2 *x x) +7 =2 %xm+ 1)).
exists (2 * x * x + 2 * x + 3).

ring.

(destruct HOdd) .
(rewrite HO).
(apply odd_notdouble_p) .

Qed.
even_cp_p is defined

so that the result is proved.

4.5 Lists

We can define lists of natural numbers inductively, as things to which we can
add a number n at the beginning,

Inductive list : Type :=
| nil : list
| H (n : nat) (tail : list) : list.

We denote the empty list by ni1, and use the function u to push a natural
number, which we will call the head, onto the front of a list passed as the
second argument, which we will call the tail of the list. We can use this pattern
to build some sample lists,

Coq < Compute let 1 := nil in 1.
= nil
: list

Coq < Compute let 1 := H 5 nil in 1.
= H 5 nil
¢ list

Coq < Compute let 1 := H 4 (H 5 nil) in 1.
=H 4 (H 5 nil)
¢ list

Coq < Compute let 1 := H 3 (H 4 (H 5 nil)) in 1.
=H3 (H4 (H5 nil))
: list

Coq < Compute let 1 := H3 (H 3 (H 4 (H 5 nil))) in 1.
=H3 (H3 (H4 (H5 nil)))
: list
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This type also comes with an induction theorem,

Coq < Print list_ind.
list_ind =
fun P : list -> Prop => list_rect P
: forall P : list -> Prop,
P nil ->
(forall (n : nat) (tail : list), P tail -> P (H n tail)) ->
forall 1 : list, P 1

In order to prove that a predicate is true for every list, we must prove that it is
true for the empty list, and then we must prove that if the predicate is true for
a list, it is also true for that list with any natural number added to the front.

4.5.1 Operations
Now let’s define some operations on our list data structure. For instance, the
length of a list can be calculated recursively,

Fixpoint length (1 : list) : nat :=
match 1 with

| nil => 0
| H _ 1t => S (length 1t)
end.

The length of the empty list is zero, and the length is one more than the length
of its tail. We can verify our implementation with a few examples.

Coq < Compute let 1 := nil in length 1.
=0
: nat

Coq < Compute let 1 := H 5 nil in length 1.

: nat

Coq < Compute let 1 := H 4 (H 5 nil) in length 1.
=2
: nat

Coq < Compute let 1
=3
: nat

H3 (H4 (H5 nil)) in length 1.

Coq < Compute let 1 := H 3 (H 3 (H 4 (H 5 nil))) in length 1.
=4
: nat

Another operation would be the concatenation of lists, which works by append-
ing the head of list1 to the concatenation of the the tail with list2.

Fixpoint concat (11 : list) (12 : list) : list :=
match 11 with
| nil => 12
| Hn 11t => H n (concat 11t 12)
end.

and we can confirm this with some examples.

Coq < Compute

let 11 := H 5 nil in

let 12 := H 4 (H 5 nil) in
concat 11 12.

Coq < =H5 (H4 (H 5 nil))
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: list

Coq < Compute

let 11 := H 3 (H

let 12 := H 3 (H

concat 11 12.

Cog<=H3 (H4 (H5 (H3 (H3 (H4 (H5 nil))))))
: list

4 (H 5 nil)) in
3 (H 4 (H 5 nil))) in

And finally we can implement list reversal by concatenating the reverse of the
tail with the head.

Fixpoint reverse (1 : list) : list :=
match 1 with
| nil => nil
| Hn 1t => concat (reverse 1t) (H n nil)
end.

Coq < Compute let 1 := nil in reverse 1.
= nil
¢ list

Coq < Compute let 1 := H 5 nil in reverse 1.
= H 5 nil
¢ list

Coq < Compute let 1 := H 4 (H 5 nil) in reverse 1.

=H5 (H 4 nil)
: list

Coq < Compute let 1 := H 3 (H 4 (H 5 nil)) in reverse 1.
=H5 (H4 (H 3 nil))
: list

Coq < Compute let 1 := H 3 (H 3 (H 4 (H 5 nil))) in reverse 1.
=H5 (H4 (H3 (H 3 nil)))
: list

We can prove some elementary theorems about the length function, namely
that it is a function,

Coq < Theorem length_equal : forall 11 12 : list, 11 = 12 -> length 11 = length 12.
1 subgoal

forall 11 12 : 1list, 11 = 12 -> length 11 = length 12

length_equal < intros 11 12 H.
1 subgoal

11, 12 : list
H: 1.1 =12

length 11 = length 12

length_equal < rewrite H.
1 subgoal

11, 12 : list
H: 11 =12

length 12 = length 12

length_equal < reflexivity.
No more subgoals.

length_equal < Qed.
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(intros 11 12 H).
(rewrite H).
reflexivity.

Qed.
length_equal is defined

and the converse,

Coq < Theorem length_not_equal : forall 11 12 : list, length 11 <> length 12 -> 11 <> 12.

1 subgoal

forall 11 12 : 1list, length 11 <> length 12 -> 11 <> 12

length_not_equal < intros 11 12 HO H1.
1 subgoal

11, 12 : list
HO : length 11 <> length 12
H1 : 11 = 12

False

length_not_equal < apply length_equal in H1.
1 subgoal

11, 12 : list
HO : length 11 <> length 12
H1 : length 11 = length 12

False

length_not_equal < apply HO.
1 subgoal

11, 12 : list
HO : length 11 <> length 12
H1 : length 11 = length 12

length 11 = length 12

length_not_equal < exact H1.
No more subgoals.

length_not_equal < Qed.
(intros 11 12 HO H1).
(apply length_equal in H1).

(apply HO).
exact H1.
Qed.

length_not_equal is defined

and that something of length zero has to be the empty list.

Coq < Theorem length_zero : forall 1 : list, length 1 = 0 -> 1 = nil.
1 subgoal

forall 1 : list, length 1 = 0 -> 1 = nil

length_zero < intros 1 H.
1 subgoal

1 : list
H : length 1 = 0
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1 = nil

length_zero < destruct 1.
2 subgoals

H : length nil = 0

nil = nil

subgoal 2 is:
Top.Hn 1 = nil

length_zero < reflexivity.

1 subgoal
n : nat
1 : list

H : length (Top.Hn 1) =0

Top.Hn 1 = nil

length_zero < inversion H.
No more subgoals.

length_zero < Qed.
(intros 1 H).
(destruct 1).
reflexivity.

(inversion H).

Qed.
length_zero is defined

We can prove similar, straightforward theorems about concatenation, namely
that concatenating the empty list does not change anything

Coq < Theorem concat_nil : forall 1 : list, 1 = concat 1 nil.
1 subgoal

forall 1 : list, 1 = concat 1 nil

concat_nil < induction 1.
2 subgoals

nil = concat nil nil

subgoal 2 is:
Hn 1l = concat (Hn 1) nil

concat_nil < simpl.
2 subgoals

nil = nil

subgoal 2 is:
Hn 1l = concat (Hn 1) nil

concat_nil < reflexivity.

1 subgoal
n : nat
1 : list

IH1 : 1 = concat 1 nil
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Hn 1l = concat (Hn 1) nil

concat_nil < simpl.

1 subgoal
n : nat
1 : list

IH1 : 1 = concat 1 nil

Hn 1l =Hn (concat 1 nil)

concat_nil < rewrite <- IHI1.

1 subgoal
n : nat
1 : 1list

IH1 : 1 = concat 1 nil

Hnl=Hnl

concat_nil < reflexivity.
No more subgoals.

concat_nil < Qed.
(induction 1).
(simpl).
reflexivity.

(simpl).
(rewrite <- IHL).

reflexivity.

Qed.
concat_nil is defined

and the symmetric counterpart,

Coq < Theorem concat_nil_t : forall 1 : list, 1 = concat nil 1.
1 subgoal

forall 1 : list, 1 = concat nil 1

concat_nil_t < intro 1.
1 subgoal

1 : 1list

1l = concat nil 1

concat_nil_t < simpl.

1 subgoal
1 : list
1=1

concat_nil_t < reflexivity.
No more subgoals.

concat_nil_t < Qed.
intro 1.

(simpl).
reflexivity.

Qed.
concat_nil_t is defined
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and that the length of the concatenated string is the sum of the original lengths

Coq < Theorem concat_length : forall 11 12 : list, length (concat 11 12) = length 11 + length 12.
1 subgoal

forall 11 12 : list, length (concat 11 12) = length 11 + length 12

concat_length < induction 11.
2 subgoals

forall 12 : list, length (concat nil 12) = length nil + length 12

subgoal 2 is:
forall 12 : list, length (concat (H n 11) 12) = length (H n 11) + length 12

concat_length < intro 12.
2 subgoals

12 : list

length (concat nil 12) = length nil + length 12

subgoal 2 is:
forall 12 : list, length (concat (H n 11) 12) = length (H n 11) + length 12

concat_length < simpl.
2 subgoals

12 : list

length 12 = length 12

subgoal 2 is:
forall 12 : list, length (concat (H n 11) 12) = length (H n 11) + length 12

concat_length < reflexivity.
1 subgoal

n : nat
11 : list
IH11 : forall 12 : list, length (concat 11 12) = length 11 + length 12

forall 12 : list, length (concat (H n 11) 12) = length (H n 11) + length 12

concat_length < intro 12.
1 subgoal

n : nat

11 : list

IH11 : forall 12 : list, length (concat 11 12) = length 11 + length 12
12 : list

length (concat (H n 11) 12) = length (H n 11) + length 12

concat_length < simpl.
1 subgoal

n : nat

11 : list

IH11 : forall 12 : list, length (concat 11 12) = length 11 + length 12
12 : list

S (length (concat 11 12)) = S (length 11 + length 12)

concat_length < rewrite IH11.
1 subgoal
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n : nat

11 : list

IH11 : forall 12 : list, length (concat 11 12) = length 11 + length 12
12 : list

S (length 11 + length 12) = S (length 11 + length 12)

concat_length < reflexivity.
No more subgoals.

concat_length < Qed.
(induction 11).
intro 12.

(simpl).
reflexivity.

intro 12.
(simpl).
(rewrite IH11).
reflexivity.

Qed.
concat_length is defined

and finally that concatenation is associative.

Coq < Theorem concat_assoc : forall 11 12 13 : list, concat (concat 11 12) 13 = concat 11 (concat 12 13).
1 subgoal

forall 11 12 13 : list, concat (concat 11 12) 13 = concat 11 (concat 12 13)

concat_assoc < induction 11.
2 subgoals

forall 12 13 : list, concat (concat nil 12) 13 = concat nil (concat 12 13)
subgoal 2 is:

forall 12 13 : list,

concat (concat (H n 11) 12) 13 = concat (H n 11) (concat 12 13)

concat_assoc < intros 12 13.
2 subgoals

12, 13 : list

concat (concat nil 12) 13 = concat nil (concat 12 13)
subgoal 2 is:
forall 12 13 : list,
concat (concat (H n 11) 12) 13 = concat (H n 11) (concat 12 13)

concat_assoc < simpl.
2 subgoals

12, 13 : list

concat 12 13 = concat 12 13
subgoal 2 is:
forall 12 13 : 1list,
concat (concat (H n 11) 12) 13 = concat (H n 11) (concat 12 13)

concat_assoc < reflexivity.
1 subgoal

n : nat
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11 : list
IH11 : forall 12 13 : 1list,
concat (concat 11 12) 13 = concat 11 (concat 12 13)

forall 12 13 : 1list,
concat (concat (H n 11) 12) 13 = concat (H n 11) (concat 12 13)

concat_assoc < intros 12 13.

1 subgoal
n : nat
11 : list

IH11 : forall 12 13 : 1list,
concat (concat 11 12) 13 = concat 11 (concat 12 13)
12, 13 : list

concat (concat (H n 11) 12) 13 = concat (H n 11) (concat 12 13)

concat_assoc < simpl.

1 subgoal
n : nat
11 : list

IH11 : forall 12 13 : 1list,
concat (concat 11 12) 13 = concat 11 (concat 12 13)
12, 13 : list

H n (concat (concat 11 12) 13) = H n (concat 11 (concat 12 13))

concat_assoc < rewrite IHI1.

1 subgoal
n : nat
11 : list

IH11 : forall 12 13 : 1list,
concat (concat 11 12) 13 = concat 11 (concat 12 13)
12, 13 : list

H n (concat 11 (concat 12 13)) = H n (concat 11 (concat 12 13))

concat_assoc < reflexivity.
No more subgoals.

concat_assoc < Qed.
(induction 11).
(intros 12 13).
(simpl).
reflexivity.

(intros 12 13).
(simpl).
(rewrite IH11).
reflexivity.

Qed.
concat_assoc is defined

We can also show some simple theorems about list reversal. The empty list

is the same reversed,

Coq < Theorem reverse_nil : nil = reverse nil.
1 subgoal

nil = reverse nil

reverse_nil < reflexivity.
No more subgoals.
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reverse_nil < Qed.
reflexivity.

Qed.
reverse_nil is defined

as is a single element list

Coq < Theorem reverse_single : forall n : nat, H n nil = reverse (H n nil).
1 subgoal

forall n : nat, H n nil = reverse (H n nil)

reverse_single < intro n.
1 subgoal

n : nat

H n nil = reverse (H n nil)

reverse_single < reflexivity.
No more subgoals.

reverse_single < Qed.
intro n.

reflexivity.

Qed.
reverse_single is defined

The length of a list and its reversal are the same.

Coq < Theorem reverse_length : forall 1 : list, length 1 = length (reverse 1).
1 subgoal

forall 1 : list, length 1 = length (reverse 1)

reverse_length < induction 1.
2 subgoals

length nil = length (reverse nil)

subgoal 2 is:
length (H n 1) = length (reverse (H n 1))

reverse_length < reflexivity.

1 subgoal
n : nat
1 : list

IH1 : length 1 = length (reverse 1)

length (H n 1) = length (reverse (H n 1))

reverse_length < simpl.

1 subgoal
n : nat
1 : list

IH1 : length 1 = length (reverse 1)

S (length 1) = length (concat (reverse 1) (H n nil))

reverse_length < rewrite concat_length.
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1 subgoal
n : nat
1 : list

IH1 : length

1

= length (reverse 1)

S (length 1)

reverse_length
1 subgoal

n : nat
1 : list
IH1 : length

<

1

length (reverse 1) + length (H n nil)

rewrite <- IHI.

= length (reverse 1)

S (length 1)

reverse_length
1 subgoal

n : nat
1 : 1list
IH1 : length

<

1

length 1 + length (H n nil)

simpl.

= length (reverse 1)

S (length 1)

reverse_length

No more subgoals.

reverse_length
(induction 1).
reflexivity.

(simpl).

<

<

length 1 + 1

ring.

Qed.

(rewrite concat_length).
(rewrite <- IH1).

(simpl).
ring.

Qed.

reverse_length is defined

The reverse operation is a function

Coq < Theorem reverse_equal :

1 subgoal

forall 11 12 :

list, 11 = 12 -> reverse 11

reverse_equal < intros 11 12 H.

1 subgoal

11, 12 : list
H: 11 =12

reverse 11 =

reverse_equal < apply (f_equal reverse).

1 subgoal

11, 12 : list
H: 1.1 =12

reverse 12

11 = 12

reverse_equal < exact H.

No more subgoals.

forall 11 12 : list, 11 = 12 -> reverse 11

231
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reverse_equal < Qed.
(intros 11 12 H).

(apply (f_equal reverse)).
exact H.

Qed.
reverse_equal is defined

and it commutes with concatenation,

Coq < Theorem reverse_concat : forall 11 12 : list, reverse (concat 11 12) = concat (reverse 12) (reverse 11).
1 subgoal

forall 11 12 : 1list,
reverse (concat 11 12) = concat (reverse 12) (reverse 11)

reverse_concat < induction 11.
2 subgoals

forall 12 : list,
reverse (concat nil 12) = concat (reverse 12) (reverse nil)

subgoal 2 is:
forall 12 : list,

reverse (concat (H n 11) 12) = concat (reverse 12) (reverse (H n 11))

reverse_concat < intro 12.
2 subgoals

12 : list

reverse (concat nil 12) = concat (reverse 12) (reverse nil)
subgoal 2 is:
forall 12 : list,

reverse (concat (H n 11) 12) = concat (reverse 12) (reverse (H n 11))

reverse_concat < simpl.
2 subgoals

12 : list

reverse 12 = concat (reverse 12) nil
subgoal 2 is:
forall 12 : list,

reverse (concat (H n 11) 12) = concat (reverse 12) (reverse (H n 11))

reverse_concat < rewrite <- concat_nil.
2 subgoals

12 : list

reverse 12 = reverse 12
subgoal 2 is:
forall 12 : list,

reverse (concat (H n 11) 12) = concat (reverse 12) (reverse (H n 11))

reverse_concat < reflexivity.

1 subgoal
n : nat
11 : list

IH11 : forall 12 : 1list,
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reverse (concat 11 12) = concat (reverse 12) (reverse 11)

forall 12 : list,
reverse (concat (H n 11) 12) = concat (reverse 12) (reverse (H n 11))

reverse_concat < intro 12.

1 subgoal
n : nat
11 : list

IH11 : forall 12 : 1list,
reverse (concat 11 12) = concat (reverse 12) (reverse 11)
12 : list

reverse (concat (H n 11) 12) = concat (reverse 12) (reverse (H n 11))

reverse_concat < simpl.

1 subgoal
n : nat
11 : list

IH11 : forall 12 : 1list,
reverse (concat 11 12) = concat (reverse 12) (reverse 11)
12 : list

concat (reverse (concat 11 12)) (H n nil) =
concat (reverse 12) (concat (reverse 11) (H n nil))

reverse_concat < rewrite <- (concat_assoc (reverse 12) (reverse 11) (H n nil)).
1 subgoal

n : nat
11 : list
IH11 : forall 12 : list,
reverse (concat 11 12) = concat (reverse 12) (reverse 11)
12 : list

concat (reverse (concat 11 12)) (H n nil) =
concat (concat (reverse 12) (reverse 11)) (H n nil)

reverse_concat < rewrite <- IH1l1.

1 subgoal
n : nat
11 : list

IH11 : forall 12 : list,
reverse (concat 11 12) = concat (reverse 12) (reverse 11)
12 : list

concat (reverse (concat 11 12)) (H n nil) =
concat (reverse (concat 11 12)) (H n nil)

reverse_concat < reflexivity.
No more subgoals.

reverse_concat < Qed.
(induction 11).

intro 12.

(simpl).

(rewrite <- concat_nil).
reflexivity.

intro 12.

(simpl).

(rewrite <- (concat_assoc (reverse 12) (reverse 11) (H n nil))).
(rewrite <- IH11).

reflexivity.
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Qed.
reverse_concat is defined

List reversal is an involution, which means that if applied twice it return the
original input. We will use this later on. To prove this, we will use a fact we
proved earlier, that the reversal of a concatenation is the concatenation of the
reversals.

Coq < Theorem reverse_involution : forall 1 : list, 1 = reverse (reverse 1).
1 subgoal

forall 1 : list, 1 = reverse (reverse 1)

reverse_involution < induction 1.
2 subgoals

nil = reverse (reverse nil)

subgoal 2 is:
Hn 1 = reverse (reverse (Hn 1))

reverse_involution < reflexivity.

1 subgoal
n : nat
1 : list

IH1 : 1 = reverse (reverse 1)

Hn 1 = reverse (reverse (Hn 1))

reverse_involution < simpl.

1 subgoal
n : nat
1 : list

IH1 : 1 = reverse (reverse 1)

Hn 1 = reverse (concat (reverse 1) (H n nil))

reverse_involution < rewrite reverse_concat.

1 subgoal
n : nat
1 : list

IH1 : 1 = reverse (reverse 1)

Hn 1 = concat (reverse (H n nil)) (reverse (reverse 1))

reverse_involution < rewrite <- IH1.

1 subgoal
n : nat
1 : 1list

IH1 : 1 = reverse (reverse 1)

Hn 1l = concat (reverse (H n nil)) 1

reverse_involution < simpl.

1 subgoal
n : nat
1 : list

IH1 : 1 = reverse (reverse 1)

Hnl=Hnl
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reverse_involution < reflexivity.
No more subgoals.

reverse_involution < Qed.
(induction 1).
reflexivity.

(simpl).

(rewrite reverse_concat).
(rewrite <- IHL).
(simpl).

reflexivity.

Qed.

reverse_involution is defined

The reversal function is also injective, which we can prove using our involution
theorem.

Coq < Theorem reverse_injective : forall 11 12 : list, reverse 11 = reverse 12 -> 11 = 12.
1 subgoal

forall 11 12 : list, reverse 11 = reverse 12 -> 11 = 12

reverse_injective < intros 11 12 H.
1 subgoal

11, 12 : list
H : reverse 11 = reverse 12

11 = 12

reverse_injective < rewrite (reverse_involution 11).
1 subgoal

11, 12 : list
H : reverse 11 = reverse 12

reverse (reverse 11) = 12

reverse_injective < rewrite H.
1 subgoal

11, 12 : list
H : reverse 11 = reverse 12

reverse (reverse 12) = 12

reverse_injective < rewrite <- (reverse_involution 12).
1 subgoal

11, 12 : list
H : reverse 11 = reverse 12

12 = 12

reverse_injective < reflexivity.
No more subgoals.

reverse_injective < Qed.

(intros 11 12 H).

(rewrite (reverse_involution 11)).
(rewrite H).

(rewrite <- (reverse_involution 12)).
reflexivity.
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Qed.
reverse_injective is defined

We can also use involution to prove that reversals can be flipped from one list
to another in equalities.

Coq < Theorem reverse_left_right : forall 11 12 : list, 11 = reverse 12 -> reverse 11 = 12.
1 subgoal

forall 11 12 : list, 11 = reverse 12 -> reverse 11 = 12

reverse_left_right < intros 11 12 H.
1 subgoal

11, 12 : list
H : 11 = reverse 12

reverse 11 = 12

reverse_left_right < rewrite (reverse_involution 12).
1 subgoal

11, 12 : list
H : 11 = reverse 12

reverse 11 = reverse (reverse 12)

reverse_left_right < rewrite <- H.
1 subgoal

11, 12 : list
H : 11 = reverse 12

reverse 11 = reverse 11

reverse_left_right < reflexivity.
No more subgoals.

reverse_left_right < Qed.

(intros 11 12 H).

(rewrite (reverse_involution 12)).
(rewrite <- H).

reflexivity.

Qed.
reverse_left_right is defined

Finally we can prove that concatenation is injective for both arguments. The
proof for the first argument is easier. The key step is to use the fact that the u
function that builds lists is injective, with the injection tactic.

Coq < Theorem concat_injective_right : forall 11 12 13 : list, concat 11 12 = concat 11 13 -> 12 = 13.
1 subgoal

forall 11 12 13 : list, concat 11 12 = concat 11 13 -> 12 = 13

concat_injective_right < induction 11 ; intros ; simpl in HO.
2 subgoals

12, 13 : list
HO : 12 =13

12 = 13

subgoal 2 is:
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12 = 13

concat_injective_right < exact HO.
1 subgoal

n : nat

11 : list

IH11 : forall 12 13 : list, concat 11 12 = concat 11 13 -> 12 = 13
12, 13 : list

HO : H n (concat 11 12) = H n (concat 11 13)

12 = 13

concat_injective_right < apply IHI1.
1 subgoal

n : nat

11 : list

IH11 : forall 12 13 : list, concat 11 12 = concat 11 13 -> 12 = 13
12, 13 : list

HO : H n (concat 11 12) = H n (concat 11 13)

concat 11 12 = concat 11 13

concat_injective_right < injection HO.
1 subgoal

n : nat

11 : list

IH11 : forall 12 13 : 1list, concat 11 12 = concat 11 13 -> 12 = 13
12, 13 : list

HO : Hn (concat 11 12) = H n (concat 11 13)

concat 11 12 = concat 11 13 -> concat 11 12 = concat 11 13

concat_injective_right < intro H1.
1 subgoal

n : nat

11 : list

IH11 : forall 12 13 : list, concat 11 12 = concat 11 13 -> 12 = 13
12, 13 : 1list

HO : H n (concat 11 12) = H n (concat 11 13)

H1 : concat 11 12 = concat 11 13

concat 11 12 = concat 11 13

concat_injective_right < exact H1.
No more subgoals.

concat_injective_right < Qed.
(induction 11; intros **; simpl in HO).
exact HO.

(apply IH11).
injection HO.
intro H1.
exact H1.

Qed.
concat_injective_right is defined

In order to prove injectivity for the second argument, we will use reversal to
swap it with the first. At the start, we use the reversal involution to rewrite our
hypothesis,

Coq < Theorem concat_injective_left : forall 11 12 13 : list, concat 11 13 = concat 12 13 -> 11 = 12.



238 CHAPTER 4. MATHEMATICAL INDUCTION

1 subgoal

forall 11 12 13 : 1list, concat 11 13 = concat 12 13 -> 11 = 12

concat_injective_left < intros 11 12 13 H.
1 subgoal

11, 12, 13 : list
H : concat 11 13 = concat 12 13

11 =12

concat_injective_left < rewrite (reverse_involution (concat 11 13)) in H.
1 subgoal

11, 12, 13 : list
H : reverse (reverse (concat 11 13)) = concat 12 13

11 = 12

concat_injective_left < rewrite (reverse_involution (concat 12 13)) in H.
1 subgoal

11, 12, 13 : list
H : reverse (reverse (concat 11 13)) = reverse (reverse (concat 12 13))

11 =12

Now we can pull concatenation through one reversal.

concat_injective_left < rewrite (reverse_concat 11 13) in H.
1 subgoal

11, 12, 13 : list
H : reverse (concat (reverse 13) (reverse 11)) =
reverse (reverse (concat 12 13))

11 =12

concat_injective_left < rewrite (reverse_concat 12 13) in H.
1 subgoal

11, 12, 13 : list
H : reverse (concat (reverse 13) (reverse 11)) =
reverse (concat (reverse 13) (reverse 12))

11 =12
Finally, we use the fact that reversal is injective, and that concatenation is
injective in the first argument.

concat_injective_left < apply reverse_injective in H.
1 subgoal

11, 12, 13 : list
H : concat (reverse 13) (reverse 11) = concat (reverse 13) (reverse 12)

11 = 12

concat_injective_left < apply concat_injective_right in H.
1 subgoal

11, 12, 13 : 1list
H : reverse 11 = reverse 12

11 =12
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concat_injective_left < apply reverse_injective.
1 subgoal

11, 12, 13 : 1list
H : reverse 11 = reverse 12

reverse 11 = reverse 12

concat_injective_left < exact H.
No more subgoals.

concat_injective_left < Qed.

(intros 11 12 13 H).

(rewrite (reverse_involution (concat 11 13)) in H).
(rewrite (reverse_involution (concat 12 13)) in H).
(rewrite (reverse_concat 11 13) in H).

(rewrite (reverse_concat 12 13) in H).

(apply reverse_injective in H).

(apply concat_injective_right in H).

(apply reverse_injective).

exact H.

Qed.
concat_injective_left is defined

4.5.2 Palindromes

Suppose that we would like to know whether a list is palindromic, meaning it is
equal to its reverse. We can simply define this as a predicate

Definition palindrome (1 : list) : Prop := 1 = reverse 1.

However, I could also give an explicit, inductive algorithm for constructing lists
that are palindromes,

Inductive palindrome_i : list -> Prop :=
| palindrome_i_nil : palindrome_i nil
| palindrome_i_single (n : nat) : palindrome_i (H n nil)
| palindrome_i_more (n : nat) (1 : list) (P : palindrome_i 1) : palindrome_i (H n (concat 1 (H n nil))).

Let’s take a look at the induction theorem for this palindrome type

Coq < Check palindrome_i_ind.
palindrome_i_ind
: forall P : list -> Prop,
P nil ->
(forall n : nat, P (H n nil)) ->
(forall (n : nat) (1 : list),
palindrome_i 1 -=> P 1 -> P (H n (concat 1 (H n nil)))) ->
forall 1 : list, palindrome_i 1 -> P 1

It says that for some predicate to be true on all palindromes, it must be true for
the empty list, true for all one element lists, and finally if it is true for a given
palindrome list, it must be true when we append any number to the front and
back.

If our algorithm is correct, then any list it constructs ought to be judged a
palindrome by our predicate, which we can easily formalize.

Coq < Theorem palindrome_equiv_def_1 : forall 1 : list, palindrome_i 1 -> palindrome 1.
1 subgoal

forall 1 : list, palindrome_i 1 -> palindrome 1
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palindrome_equiv_def_1 < unfold palindrome.
1 subgoal

forall 1 : list, palindrome_i 1 -> 1 = reverse 1

palindrome_equiv_def_1 < intros 1 H.
1 subgoal

1 : 1list
H : palindrome_i 1

1 = reverse 1

Now we want to do induction on the list, but we would like to use the induc-
tion theorem for our palindrome construction, meaning we will have to prove
equivalence for the empty list, single element lists, and finally list with the same
number stuck in front and back.

palindrome_equiv_def_1 < induction H.
3 subgoals

nil = reverse nil
subgoal 2 is:
H n nil = reverse (H n nil)

subgoal 3 is:
Hn (concat 1 (H n nil)) = reverse (H n (concat 1 (H n nil)))

The base cases are straightforward.

palindrome_equiv_def_1 < reflexivity.
2 subgoals

n : nat

H n nil = reverse (H n nil)

subgoal 2 is:
Hn (concat 1 (H n nil)) = reverse (H n (concat 1 (H n nil)))

palindrome_equiv_def_1 < reflexivity.

1 subgoal
n : nat
1 : list

HO : palindrome_i 1
IHpalindrome_i : 1 = reverse 1

Hn (concat 1 (H n nil)) = reverse (H n (concat 1 (H n nil)))

Once we simplify, it is clear we need to interchange concatenation and reversal,
and then use our induction hypothesis.

palindrome_equiv_def_1 < simpl.

1 subgoal
n : nat
1 : list

HO : palindrome_i 1
IHpalindrome_i : 1 = reverse 1

Hn (concat 1 (H n nil)) = concat (reverse (concat 1 (H n nil))) (H n nil)
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palindrome_equiv_def_1 < rewrite reverse_concat.

1 subgoal
n : nat
1 : list

HO : palindrome_i 1
IHpalindrome_i : 1 = reverse 1

Hn (concat 1 (H n nil)) =
concat (concat (reverse (H n nil)) (reverse 1)) (H n nil)

palindrome_equiv_def_1 < rewrite <- IHpalindrome_i.

1 subgoal
n : nat
1 : 1list

HO : palindrome_i 1
IHpalindrome_i : 1 = reverse 1

Hn (concat 1 (H n nil)) = concat (concat (reverse (H n nil)) 1) (H n nil)

palindrome_equiv_def_1 < simpl.

1 subgoal
n : nat
1 : list

HO : palindrome_i 1
IHpalindrome_i : 1 = reverse 1

Hn (concat 1 (H n nil)) = Hn (concat 1 (H n nil))

palindrome_equiv_def_1 < reflexivity.
No more subgoals.

palindrome_equiv_def_1 < Qed.
(unfold palindrome).

(intros 1 H).

(induction H).

reflexivity.

reflexivity.

(simpl) .

(rewrite reverse_concat).
(rewrite <- IHpalindrome_i).
(simpl).

reflexivity.

Qed.
palindrome_equiv_def_1 is defined

This is a good start, but we would also like our algorithm to be complete. This
means that it can generate any palindrome, or equivalently if our predicate says
a list is a palindrome, so does our inductive predicate.

Theorem palindrome_equiv_def_2 : forall 1 : list, palindrome 1 -> palindrome_i 1.
However, here we will need strong induction because we want to look at lists

with both the first and last element removed. Therefore we will induct in the
length of the list first.

Coq < Lemma palindrome_equiv_def_2_strong : forall (m : nat) (1 : list), length 1 <= m -> palindrome 1 -> palindrome_i 1.
1 subgoal

forall (m : nat) (1 : list),
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length 1 <= m -> palindrome 1 -> palindrome_i 1

palindrome_equiv_def_2_strong < induction m.
2 subgoals

forall 1 : list, length 1 <= 0 -> palindrome 1 -> palindrome_i 1

subgoal 2 is:
forall 1 : list, length 1 <= S m -> palindrome 1 -> palindrome_i 1

palindrome_equiv_def_2_strong < intros 1 Hlen Hp.
2 subgoals

1 : list
Hlen : length 1 <= 0
Hp : palindrome 1

palindrome_i 1

subgoal 2 is:
forall 1 : list, length 1 <= S m -> palindrome 1 -> palindrome_i 1

Notice now that only the empty list satisfies the length requriement. We destruct
[, and use the constructor tactic to pick the right theorem from our inductive type,
and then use inversion to handle all other lists.

palindrome_equiv_def_2_strong < destruct 1.
3 subgoals

Hlen : length nil <= 0
Hp : palindrome nil

palindrome_i nil

subgoal 2 is:

palindrome_i (H n 1)

subgoal 3 is:

forall 1 : list, length 1 <= S m -> palindrome 1 -> palindrome_i 1

palindrome_equiv_def_2_strong < constructor.

2 subgoals
n : nat
1 : list

Hlen : length (Hn 1) <=0
Hp : palindrome (H n 1)

palindrome_i (H n 1)

subgoal 2 is:
forall 1 : list, length 1 <= S m -> palindrome 1 -> palindrome_i 1

palindrome_equiv_def_2_strong < inversion Hlen.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1

forall 1 : list, length 1 <= S m -> palindrome 1 -> palindrome_i 1

Now we destruct our list twice in order to prove our two base cases.

palindrome_equiv_def_2_strong < intros 1 Hlen Hp.
1 subgoal

m : nat
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IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
1 : list

Hlen : length 1 <= S m

Hp : palindrome 1

palindrome_i 1

palindrome_equiv_def_2_strong < destruct 1.
2 subgoals

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
Hlen : length nil <= S m

Hp : palindrome nil

palindrome_i nil

subgoal 2 is:
palindrome_i (H n 1)

palindrome_equiv_def_2_strong < constructor.
1 subgoal

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n : nat

1 : list

Hlen : length (Hn 1) <= S m

Hp : palindrome (H n 1)

palindrome_i (H n 1)

palindrome_equiv_def_2_strong < destruct 1.
2 subgoals

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n : nat

Hlen : length (H n nil) <= S m

Hp : palindrome (H n nil)

palindrome_i (H n nil)

subgoal 2 is:
palindrome_i (H n (H n0 1))

palindrome_equiv_def_2_strong < constructor.
1 subgoal

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm

Hp : palindrome (H n (H nO 1))

palindrome_i (H n (H n0 1))

Now we use a series of rewrites to change our palindrome hypothesis into a form
that individually reverses the parts.

palindrome_equiv_def_2_strong < unfold palindrome in Hp.
1 subgoal

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list
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Hlen : length (Hn (HnO 1)) <= Sm
Hp : Hn (H nO 1) = reverse (Hn (H n0 1))

palindrome_i (H n (H n0 1))

palindrome_equiv_def_2_strong < simpl in Hp.
1 subgoal

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm

Hp : Hn (H n0 1) = concat (concat (reverse 1) (H nO nil)) (H n nil)

palindrome_i (H n (H n0 1))

palindrome_equiv_def_2_strong < rewrite (reverse_single n0) in Hp.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat
1 : list
Hlen : length (Hn (HnO 1)) <= Sm
Hp : Hn (Hn0 1) =
concat (concat (reverse 1) (reverse (H n0O nil))) (H n nil)

palindrome_i (H n (H n0 1))

palindrome_equiv_def_2_strong < rewrite <- reverse_concat in Hp.
1 subgoal

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : 1list

Hlen : length (Hn (HnO 1)) <= S m

Hp : Hn (H n0 1) = concat (reverse (concat (H n0O nil) 1)) (H n nil)

palindrome_i (H n (H n0 1))

palindrome_equiv_def_2_strong < simpl (concat (H nO nil) 1) in Hp.
1 subgoal

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : 1list

Hlen : length (Hn (HnO 1)) <= Sm

Hp : Hn (H n0 1) = concat (reverse (H n0 1)) (H n nil)

palindrome_i (H n (H n0 1))

Now we want to pull an element from the back end. We do this by destructing
the reversed list from our hypothesis.

palindrome_equiv_def_2_strong < remember (reverse (H nO 1)).
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list
Hlen : length (Hn (HnO 1)) <= Sm
10 : list

HeqlO : 10 = reverse (H n0 1)
Hp : Hn (H n0 1) = concat 10 (H n nil)
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palindrome_i (H n (H n0 1))

palindrome_equiv_def_2_strong < destruct 10.
2 subgoals

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1

n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
HeqlO : nil = reverse (H n0 1)

Hp : Hn (H n0 1) = concat nil (H n nil)

palindrome_i (H n (H n0 1))

subgoal 2 is:
palindrome_i (H n (H n0 1))

palindrome_equiv_def_2_strong < simpl in Hp.
2 subgoals

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1

n, n0 : nat

1 : 1list

Hlen : length (Hn (HnO 1)) <= Sm
HeqlO : nil = reverse (H n0 1)

Hp : Hn (H n0 1) = H n nil

palindrome_i (H n (H n0 1))

subgoal 2 is:
palindrome_i (H n (H n0 1))

palindrome_equiv_def_2_strong < discriminate.
1 subgoal

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1

n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm

nl : nat

10 : list

HeqlO : H nl 10 = reverse (H n0 1)

Hp : Hn (H n0 1) = concat (H n1 10) (H n nil)

palindrome_i (H n (H n0 1))
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Now we use the fact that u is injective to show that n and ng have to be the

same, which then shows that we have a palindrome if [j is a palindrome.

palindrome_equiv_def_2_strong < injection Hp.
1 subgoal

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1

n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm

nl : nat

10 : list

HeqlO : H nl 10 = reverse (H n0 1)

Hp : Hn (H n0 1) = concat (H n1 10) (H n nil)

HnO 1 = concat 10 (H n nil) -> n = n1 -> palindrome_i (H n (H n0 1))
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palindrome_equiv_def_2_strong < intros.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : 1list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : H nl 10 = reverse (H nO 1)

Hp : Hn (H n0 1) = concat (H nl 10) (H n nil)
HO : HnO 1 = concat 10 (H n nil)

Hi : n =nl

palindrome_i (H n (H n0 1))

palindrome_equiv_def_2_strong < rewrite <- H1 in Hp.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : H nl1 10 = reverse (H nO 1)

Hp : Hn (H n0 1) = concat (H n 10) (H n nil)
HO : HnO 1 = concat 10 (H n nil)

Hi : n=nl

palindrome_i (H n (H n0 1))

palindrome_equiv_def_2_strong < rewrite Hp.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : 1list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : H nl 10 = reverse (H nO 1)

Hp : Hn (H n0 1) = concat (H n 10) (H n nil)
HO : HnO0 1 = concat 10 (H n nil)

Hl : n =nl

palindrome_i (concat (H n 10) (H n nil))

palindrome_equiv_def_2_strong < constructor.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : H nl1 10 = reverse (H nO 1)

Hp : Hn (H n0 1) = concat (H n 10) (H n nil)
HO : HnO 1 = concat 10 (H n nil)

Hi : n=nl

palindrome_i 10
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Finally we can use our induction hypothesis

The first thing we have to prove is the the length of our new list is less than
m. We do this by first using the fact that equal strings have equal lengths in
the definition of our new list. Then we use transitivity along with our induction
hypothesis about the length of our list.

palindrome_equiv_def_2_strong < apply length_equal in HeqlO.
2 subgoals

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (H nO 1)) <= Sm
nl : nat

10 : list

HeqlO : length (H nl 10) = length (reverse (H n0 1))
Hp : Hn (H n0 1) = concat (H n 10) (H n nil)

HO : HnO 1 = concat 10 (H n nil)

Hi : n =nl

length 10 <=m

subgoal 2 is:
palindrome 10

palindrome_equiv_def_2_strong < rewrite <- reverse_length in HeqlO.
2 subgoals

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : length (H n1 10) = length (H nO 1)

Hp : Hn (H n0 1) = concat (H n 10) (H n nil)
HO : HnO 1 = concat 10 (H n nil)

Hi : n=nl

length 10 <=m

subgoal 2 is:
palindrome 10

palindrome_equiv_def_2_strong < simpl in HeqlO.
2 subgoals

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : S (length 10) = S (length 1)

Hp : Hn (HnO 1) = concat (H n 10) (H n nil)
HO : HnO 1 = concat 10 (H n nil)

Hi : n =nl

length 10 <= m

subgoal 2 is:
palindrome 10
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palindrome_equiv_def_2_strong < simpl in Hlen.
2 subgoals

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : S (S (length 1)) <= S m
nl : nat

10 : list

HeqlO : S (length 10) = S (length 1)

Hp : Hn (H n0 1) = concat (H n 10) (H n nil)
HO : HnO0 1 = concat 10 (H n nil)
Hl : n =nl

length 10 <=m

subgoal 2 is:
palindrome 10

palindrome_equiv_def_2_strong < rewrite <- HeqlO in Hlen.
2 subgoals

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1, 10 : 1list

Hlen : S (S (length 10)) <= S m

nl : nat

HeqlO : S (length 10) = S (length 1)

Hp : Hn (H nO 1) = concat (H n 10) (H n nil)

HO : HnO0 1 = concat 10 (H n nil)

Hl : n =nl

length 10 <=m

subgoal 2 is:
palindrome 10

palindrome_equiv_def_2_strong < apply le_S_n in Hlen.
2 subgoals

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1, 10 : 1list

Hlen : S (length 10) <=m

nl : nat

HeqlO : S (length 10) = S (length 1)

Hp : Hn (H n0 1) = concat (H n 10) (H n nil)

HO : HnO0 1 = concat 10 (H n nil)

Hl : n =nl

length 10 <=m

subgoal 2 is:
palindrome 10

palindrome_equiv_def_2_strong < apply (Nat.le_trans (length 10) (S (length 10)) m).
3 subgoals

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1, 10 : list

Hlen : S (length 10) <=m

nl : nat
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HeqlO : S (length 10) = S (length 1)

Hp : Hn (H nO0 1) = concat (H n 10) (H n nil)
HO : HnO 1 = concat 10 (H n nil)

Hi : n =nl

length 10 <= S (length 10)

subgoal 2 is:

S (length 10) <= m
subgoal 3 is:
palindrome 10

palindrome_equiv_def_2_strong < constructor.
3 subgoals

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1, 10 : list

Hlen : S (length 10) <=m

nl : nat

HeqlO : S (length 10) = S (length 1)

Hp : Hn (H n0 1) = concat (H n 10) (H n nil)

HO : HnO 1 = concat 10 (H n nil)

Hl : n =nl

length 10 <= length 10

subgoal 2 is:

S (length 10) <=m
subgoal 3 is:
palindrome 10

palindrome_equiv_def_2_strong < constructor.
2 subgoals

m : nat

IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1, 10 : list

Hlen : S (length 10) <= m

nl : nat

HeqlO : S (length 10) = S (length 1)

Hp : Hn (H n0 1) = concat (H n 10) (H n nil)

HO : HnO 1 = concat 10 (H n nil)

H1 : n =nl

S (length 10) <=m

subgoal 2 is:
palindrome 10

palindrome_equiv_def_2_strong < exact Hlen.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : H nl 10 = reverse (H n0 1)

Hp : Hn (HnO 1) = concat (H n 10) (H n nil)
HO : HnO 1 = concat 10 (H n nil)

Hi : n =nl

palindrome 10
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Now we have to prove that our new list is a palindrome. We start by flip-
ping the reversal to the other side of our definition. This allows us to rewrite
the injectivity requirement for our new list, and finally use the injectivity of
concatenation.

palindrome_equiv_def_2_strong < apply reverse_left_right in HeqlO.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : reverse (H n1 10) = HnO 1

Hp : Hn (H nO 1) = concat (H n 10) (H n nil)
HO : HnO 1 = concat 10 (H n nil)

Hi : n=nl

palindrome 10

palindrome_equiv_def_2_strong < rewrite <- HeqlO in HO.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : 1list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : 1list

HeqlO : reverse (H ni1 10) = HnO 1

Hp : Hn (H nO 1) = concat (H n 10) (H n nil)
HO : reverse (H nl 10) = concat 10 (H n nil)
Hi : n=nl

palindrome 10

palindrome_equiv_def_2_strong < simpl in HO.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : reverse (H ni1 10) = HnO 1

Hp : Hn (H nO 1) = concat (H n 10) (H n nil)

HO : concat (reverse 10) (H nl nil) = concat 10 (H n nil)
Hi : n=nl

palindrome 10

palindrome_equiv_def_2_strong < rewrite H1 in HO.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : reverse (H n1 10) = HnO 1
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Hp : Hn (H n0 1) = concat (H n 10) (H n nil)
HO : concat (reverse 10) (H nl nil) = concat 10 (H nl nil)
Hi : n =nl

palindrome 10

palindrome_equiv_def_2_strong < apply concat_injective_left in HO.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : 1list

HeqlO : reverse (H n1 10) = HnO 1

Hp : Hn (H n0 1) = concat (H n 10) (H n nil)
HO : reverse 10 = 10

Hl : n =nl

palindrome 10

palindrome_equiv_def_2_strong < symmetry in HO.
1 subgoal

m : nat
IHm : forall 1 : list, length 1 <= m -> palindrome 1 -> palindrome_i 1
n, n0 : nat

1 : list

Hlen : length (Hn (HnO 1)) <= Sm
nl : nat

10 : list

HeqlO : reverse (H n1 10) = HnO 1

Hp : Hn (HnO 1) = concat (H n 10) (H n nil)
HO : 10 = reverse 10

Hi : n =nl

palindrome 10

palindrome_equiv_def_2_strong < exact HO.
No more subgoals.

palindrome_equiv_def_2_strong < Qed.
(induction m).

(intros 1 Hlen Hp).

(destruct 1).

constructor.

(inversion Hlen).

(intros 1 Hlen Hp).
(destruct 1).
constructor.

(destruct 1).
constructor.

(unfold palindrome in Hp).

(simpl in Hp).

(rewrite (reverse_single n0O) in Hp).
(rewrite <- reverse_concat in Hp).
(simpl (concat (H n0 nil) 1) in Hp).
(remember (reverse (H n0 1))).
(destruct 10).

(simpl in Hp).

discriminate.
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injection Hp.

(intros **).

(rewrite <- H1 in Hp).

(rewrite Hp).

constructor.

(apply IHm).
(apply length_equal in HeqlO).
(rewrite <- reverse_length in HeqlO).
(simpl in HeqlO).
(simpl in Hlen).
(rewrite <- HeqlO in Hlen).
(apply le_S_n in Hlen).
(apply (Nat.le_trans (length 10) (S (length 10)) m)).
constructor.
constructor.

exact Hlen.

(apply reverse_left_right in HeqlO).
(rewrite <- HeqlO in HO).

(simpl in HO).

(rewrite H1 in HO).

(apply concat_injective_left in HO).
symmetry in HO.

exact HO.

Qed.
palindrome_equiv_def_2_strong is defined

Now we can prove our original statement,

Coq < Theorem palindrome_equiv_def_2 : forall 1 : list, palindrome 1 -> palindrome_i 1.
1 subgoal

forall 1 : list, palindrome 1 -> palindrome_i 1

palindrome_equiv_def_2 < intros 1 H.
1 subgoal

1 : list
H : palindrome 1

palindrome_i 1

palindrome_equiv_def_2 < apply (palindrome_equiv_def_2_strong (length 1)).
2 subgoals

1 : list
H : palindrome 1

length 1 <= length 1

subgoal 2 is:
palindrome 1

palindrome_equiv_def_2 < apply le_n.
1 subgoal

1 : list
H : palindrome 1

palindrome 1

palindrome_equiv_def_2 < exact H.
No more subgoals.

palindrome_equiv_def_2 < Qed.
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(intros 1 H).
(apply (palindrome_equiv_def_2_strong (length 1))).
(apply le_n).

exact H.

Qed.
palindrome_equiv_def_2 is defined

and complete equivalance

Coq < Theorem palindrome_equiv_def : forall 1 : list, palindrome_i 1 <-> palindrome 1.
1 subgoal

forall 1 : list, palindrome_i 1 <-> palindrome 1

palindrome_equiv_def < split.
2 subgoals

1 : 1list

palindrome_i 1 -> palindrome 1

subgoal 2 is:
palindrome 1 -> palindrome_i 1

palindrome_equiv_def < apply palindrome_equiv_def_1.
1 subgoal

1 : 1list

palindrome 1 -> palindrome_i 1

palindrome_equiv_def < apply palindrome_equiv_def_2.
No more subgoals.

palindrome_equiv_def < Qed.
split.
(apply palindrome_equiv_def_1).

(apply palindrome_equiv_def_2).

Qed.
palindrome_equiv_def is defined

This is a good discussion of the Pigeonhole Principle using lists.

4.6 Problems

Problem IV.1 Prove by contradiction that there are an infinite number of
primes. A prime number is one that is only divisible by itself and one. A
composite number, one that is not prime, must be divisible by a prime number.
You might also use the fact that the number ab + 1, for natural numbers a and
b, is not divisible by a or b since the remainder is one in both cases.

Problem IV.2 Use the Well Ordering Principle to prove that any fraction
m/n can be written in lowest terms. A fraction is in lowest terms if there is no
natural number k£ which divides both m and n. It is a good idea to define the
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set of counterexamples based upon the numerator, namely
m
C:={m € N|3In € N", —cannot be written in lowest terms}. (4.71)
n

This proof follows the format of Well Ordering proofs in the notes and is not
constructive.

Problem IV.3 The Fibonacci numbers F'(k) are defined as follows,

F0)=0 (4.72)
F1)=1 (4.73)
Fn)=F(n—1)4+ F(n-2) for n>2 (4.74)
Thus, the Fibonacci numbers are 0,1,1,2,3,5,8,13,21,.... Prove by strong

induction that for all n > 1,

F(n+1)F(n—1)— F(n)*= (-1 (4.75)

Problem IV.4 Using strong induction, prove that every positive integer can
be written as the sum of one or more Fibonacci numbers.

Problem IV.5 Use induction to prove that

", n(n+1)(2n+1)
;F = 5 . (4.76)

by generating Proof: sum_square_p

Lemma sum_square_p : forall n, 6 * sum_n2 n =n * (n + 1) * (2 * n + 1).

where you define sun_n2 using the rixpoint operator in Coq as

Fixpoint sum_n2 n :=
match n with

0=>0
| Sp =>n*n + sum_n2 p
end.

Problem IV.6 Use induction to prove that
n n 2
> it = (Z z> . (4.77)
i=0 i=0

by generating Proof: sum_cube_p

Lemma sum_cube_p : forall n, sum_n3 n = (sum_n n)*(sum_n n).

where you define sun_n3 using the rixpoint operator in Coq as
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Fixpoint sum_n3 n :=
match n with

0=>0
| S p => p*xp*p + sum_n3 p
end.

Note that I used the sun_n_p proof for the sum of the first n numbers from the
text, and the definition

Fixpoint sum_n n :=
match n with
0=>0
| Sp=>p+ sum_n p
end.

Problem IV.7 Prove that the sum of the first n odd natural numbers is n?

by generating Proof: odd_sum

Lemma odd_sum : forall n:nat, sum_odd_n n = n*n.

where you define sun_odd_n using the rixpoint operator in Coq as

Fixpoint sum_odd_n (n:nat) : nat :=
match n with

0=>0
| Sp=>1+2x*p+ sum_odd_n p
end.

Problem IV.8 We would like to prove the following statement by contrapo-
sition,

For all natural numbers x and y, if x 4+ y is odd, then x is odd or y is odd.
1. Translate the statement into a statement of predicate logic.

2. Provide the antecedent required for a proof by contraposition for the given
statement.

3. Provide the consequent for a proof by contraposition for the given state-
ment.

4. Prove the contrapositive statement is true, from which you can conclude
that the original statement is true. You may use either Coq or the informal
proof shown in the text.

Problem IV.9 We would like to prove the following statement by contradic-
tion,
For all natural numbers n, if a™ is even, then a is even.

1. Translate the statement into a statement of predicate logic.

2. Provide the assumption required for a proof by contradiction for the given
statement.

3. Prove the statement is true by contradiction.
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Problem IV.10 Prove that any number greater than seven can be written as
a sum of multiples of three and five. The Coq statement is

Theorem three_and_five : forall n : nat, exists (a b : nat), n + 8 =3 *x a + 5 * b.

You should use the strong induction tactic, strong_nat_ind, as shown in the text.
Prove reversal is bijective
Use inversion instead of injection on p.237
Introduction to Functional Programming
Technical details in Coq Boxes
Move truth tables to Classical Logic Appendix
Move all by-hand proofs to one chapter and appendix
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Chapter 5

Modular Arithmetic

5.1 Integers

We would like to define integers inductively, just as we defined the natural
numbers. Suppose that we introduce a P operation, indicating predecessor,
which subtracts one from the input number. We could try to define integers as

Inductive integer : Set :=
0 : integer
| S : integer -> integer
| P : integer -> integer
However, this is problematic because we would not have a unique definition of
each number. For example, the number 3 could be represented as

(S(5(50))) = (S(5(S5(5(PO)))))

and an infinite number of other ways. It seems that we should have separate
ways to handle positive and negative integers, and this is, in fact, how Coq
manages things.

Coq < Print Z.
Inductive Z : Set :=

20 : Z
| Zpos : positive -> Z
| Zneg : positive -> Z
Coq uses Z to refer to integers, often written Z, standing for the German word
Zahlen, meaning “numbers”. We can construct an integer either as zero, from
a positive natural number n giving the integer n, and from a positive natural
number n giving the integer —n. Thus we have only one way of constructing
every integer if we have only one way of making every positive natural number.
We could define the positive numbers in the same way as natural numbers

Inductive positive : Set :=
I : positive
| S : positive -> positive

However, Coq does not do this, in order to simplify some proofs later. Instead
it uses the following definition

257
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Inductive positive : Set :=

xI : positive -> positive
| x0 : positive -> positive
| xH : positive
Here xH corresponds to the number one, or I in our simple definition, the base
case for the inductive definition. The increment operation S has been replaced by
two operations xO and xI, which correspond to multiplication by two and adding
one after doubling. An example should make this scheme clearer. Suppose we
want to express the number 5,

5 = (xI (x0 xH))

which we can see as the reverse binary representation of the integer, with xI
and xH being one and xO being zero,

5 = 101.

We can see that this reverses the bits by looking at 11,

11 = (xI (xI (x0 xH))) = 1011.

We can briefly look at the induction theorems for these types. For the
positive numbers we have
Coq < Print positive_ind.
positive_ind =
fun P : positive -> Prop => positive_rect P
: forall P : positive -> Prop,
(forall p : positive, P p -> P (p~1)Ypositive) ->
(forall p : positive, P p -> P (p~0)%positive) ->
P 1positive -> forall p : positive, P p

Thus, in order to prove that some predicate P is true on all positive numbers, we
first prove it for the base case 1. Notice here that Coq gives the type explicitly
using 1%positive in order to distinguish it from 1 the natural number or 1 the
integer. After the base case, we have two induction steps, one for even numbers
and one for odd. The even numbers are those constructed using (xo p) so that
they have a 0 in the least-significant bit, and odd numbers are 1 p) with a
trailing 1. Instead of using xO and xI, this definition uses an infix notation that
is equivalent

(x0 p)
(xI p)

p 0
p-1

so that the tilde operator appends either a 0 or a 1 bit to the end of the number
p. The integer induction theorem is different, in that it has no induction step.

Coq < Print Z_ind.
Z_ind =
fun P : Z -> Prop => Z_rect P
: forall P : Z -> Prop,
P 0%z ->
(forall p : positive, P (Z.pos p)) ->
(forall p : positive, P (Z.neg p)) -> forall z : Z, P z

We first prove that P is true for integer 0, then prove that P holds for all
positive number mapped to positive integers, and finally that P holds for all
positive numbers mapped to negative integers. In order to prove the latter two
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statements, we would likely use the induction principle for positive numbers
above.

To illustrate induction on the integers, consider first a simple theorem stating
that if the product of two integers is zero, and one of them is not zero, then the
other one must be zero.

Coq < Check Zmult_integral_ 1.
Zmult_integral_1l

:forallnm:Z,n<>0->m*xn=0->m=0
We can use this to prove a slightly different theorem that immediately occurs to
most of us, namely that one or the other of these integers must be zero. Since
it is a universal statetment, we will try to prove this using induction on n.

Coq < Lemma mult_integral : forall nm : Z, n¥m = 0 ->n =0 \/ m = 0.
1 subgoal

forallnm: Z, n*xm=0->n=0\/m=0

mult_integral < intros n m.
1 subgoal

n, m: Z

n*xm=0->n=0\/m=0

mult_integral < induction n.

3 subgoals
m: Z
0*xm=0->0=0\/m=0
subgoal 2 is:
Z.pos p*m=0->Zposp=0\/m=0

subgoal 3 is:
Znegp*m=0->Znegp=0\/m=0

Notice that we have a single base case, but two separate induction steps. The
base case is easily handled by choosing the left branch of the disjunction.

mult_integral < intro H.
3 subgoals

H:0*m=0

]
o

0=0\/m

subgoal 2 is:

Z.posp*m=0->Z.posp=0\/m=0
subgoal 3 is:
Znegp*m=0->Znegp=0\/m=0

mult_integral < left.
3 subgoals

subgoal 2 is:
Z.posp*m=0->Zposp=0\/m=0



260 CHAPTER 5. MODULAR ARITHMETIC

subgoal 3 is:
Znegp*m=0->Znegp=0\/m=0

mult_integral < reflexivity.
2 subgoals

p : positive
m: Z

Z.posp*m=0->Z.posp=0\/m=0

subgoal 2 is:
Zmnegp*m=0->Zmnegp=0\/m=0

Now we must prove the statement for all positive numbers p. For this we again
use induction, but on the number p this time.

mult_integral < intro H.

2 subgoals
p : positive
m: Z
H: Z.posp*m=20

Z.pos p=0\/m=0

subgoal 2 is:
Znegp*m=0->Zmnegp=0\/m=0

mult_integral < induction p.

4 subgoals
p : positive
m: Z
H: Z.pos p™1 *m =0

IHp : Z.pos p*m =0 ->Z.pos p=0\/m=0

Z.pos p"1 =0 \/ m=0

subgoal 2 is:

Z.pos p°0 =0 \/ m=0

subgoal 3 is:

1=0\/m=0

subgoal 4 is:

Znegp*m=0->Znegp=0\/m=0

We again have three cases, this time odd numbers, even numbers, and the base
case, which is put last. Clearly the left branch of our goal is false since the
number p is positive. Thus, we must choose the right branch. In addition, we
can use the original theorem above, since we know that p is not zero, to prove

that m is indeed zero.

mult_integral < right.

4 subgoals
p : positive
m: Z
H: Z.pos p™1 *m =0
IHp : Z.pos p*m =0 -> Z.pos p=0\/m=0

m=20

subgoal 2 is:

Z.pos p°0 =0 \/ m
subgoal 3 is:
1=0\/m=0

]
o
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subgoal 4 is:
Znegp*m=0->Znegp=0\/m=0

mult_integral < rewrite Z.mul_comm in H.

4 subgoals
p : positive
m: Z
H:m=* Z.pos p"1 =0

IHp : Z.pos p *m=0 ->Z.posp=0\/m=0

m=0

subgoal 2 is:

Z.pos pP70=0\/m=0

subgoal 3 is:

1=0\/m=0

subgoal 4 is:
Znegp*m=0->Znegp=0\/m

n
o

mult_integral < apply Zmult_integral_l in H.

5 subgoals
p : positive
m: Z
H:m=20

IHp : Z.pos p *m=0 ->Z.posp=0\/m=0

m =0

subgoal 2 is:

Z.pos p"1 <> 0
subgoal 3 is:

Z.pos P70 =0 \/m
subgoal 4 is:
1=0\/m=0
subgoal 5 is:
Znegp*m=0->Znegp=0\/m=0

I
o

mult_integral < exact H.

4 subgoals
p : positive
m: Z
H:m* Z.pos p71 =0

IHp : Z.pos p *m=0 ->Z.posp=0\/m=0

Z.pos p"1 <> 0

subgoal 2 is:

Z.pos p0 =0 \/ m=0

subgoal 3 is:

1=0\/m=0

subgoal 4 is:
Znegp*m=0->Znegp=0\/m=0

mult_integral < intro Absurd.

4 subgoals
p : positive
m: Z
H:m=* Z.pos p’1 =0

IHp : Z.pos p*m =0 ->Z.pos p=0\/m=0
Absurd : Z.pos p"1 =0

False

subgoal 2 is:
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Z.pos p°0 =0 \/ m=0

subgoal 3 is:

1=0\/m=0

subgoal 4 is:
Znegp*m=0->Znegp=0\/m=0

mult_integral < discriminate.

3 subgoals
p : positive
m: Z
H: Z.pos p?0 * m = 0
IHp : Z.pos p*m =0 ->Z.pos p=0\/m=0

Z.pos pP70=0\/m=0
subgoal 2 is:
1=0\/m=0
subgoal 3 is:
Znegp*m=0->Znegp=0\/m=0

Now we use the same strategy to prove the result for all even numbers.

mult_integral < right.

3 subgoals
p : positive
m: Z
H: Z.pos p"0 * m = 0
IHp : Z.pos p*m =0 ->Z.pos p=0\/m=0

m=20

subgoal 2 is:

1=0\/m=0

subgoal 3 is:
Znegp*m=0->Znegp=0\/m=0

mult_integral < rewrite Z.mul_comm in H.

3 subgoals
p : positive
m: Z
H:m=* Z.pos p’0 = 0

IHp : Z.pos p*m =0 ->Z.pos p=0\/m=0

m=20

subgoal 2 is:

1=0\/m=0

subgoal 3 is:
Znegp*m=0->Znegp=0\/m=0

mult_integral < apply Zmult_integral_l in H.

4 subgoals
p : positive
m: Z
H:m=0

IHp : Z.pos p*m=0 ->Z.pos p=0\/m=0

m=0

subgoal 2 is:
Z.pos p70 <> 0
subgoal 3 is:
1=0\/m=0
subgoal 4 is:
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Znegp*m=0->Znegp=0\/m=0

mult_integral < exact H.

3 subgoals
p : positive
m: Z
H:m* Z.pos p"0 = 0

IHp : Z.pos p *m =0 ->Z.pos p=0\/m=0

Z.pos p70 <> 0

subgoal 2 is:

1=0\/m=0

subgoal 3 is:
Znegp*m=0->Znegp=0\/m=0

mult_integral < intro Absurd.
3 subgoals

p : positive
m: Z

H:m=* Z.pos p’0 = 0

IHp : Z.pos p*m=0 ->Z.posp=0\/m=0
Absurd : Z.pos p"0 = 0

False

subgoal 2 is:

1=0\/m=0

subgoal 3 is:
Znegp*m=0->Znegp=0\/m=0

mult_integral < discriminate.
2 subgoals

1=0\/m=0

subgoal 2 is:
Znegp*m=0->Znegp=0\/m=0

Now we prove the base case for positive integers, namely n = 1,

mult_integral < right.
2 subgoals

subgoal 2 is:
Znegp*m=0->Znegp=0\/m=0

mult_integral < rewrite <- H.
2 subgoals

subgoal 2 is:
Znegp*m=0->Znegp=0\/m=0

263
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mult_integral < ring.
1 subgoal

p : positive
m: Z

Znegp*m=0->Znegp=0\/m=0

Finally, the same procedure used above to prove the statement for all positive
integers can again be used to prove the result for all negative integers,

mult_integral < intro H.
1 subgoal

p : positive
m: Z
H: Z.negp*m=20

Znegp=0\/m=0

mult_integral < right.
1 subgoal

p : positive
m: Z
H: Znegp*m=0

m=20

mult_integral < rewrite Z.mul_comm in H.
1 subgoal

p : positive
m: Z
H:m*Znegp=20

m=20

mult_integral < apply Zmult_integral_l in H.
2 subgoals

p : positive

m Z
H:m=0
m=20

subgoal 2 is:
Z.neg p <> 0

mult_integral < exact H.
1 subgoal

p : positive
m: Z
H:m* Z.negp=20

Z.neg p <> 0

mult_integral < intro Absurd.
1 subgoal

p : positive

m: Z
H:m*Z.negp=20
Absurd : Z.neg p = 0

False
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mult_integral < discriminate.
No more subgoals.

mult_integral < Qed.
(intros n m).
(induction n).

intro H.

left.

reflexivity.

intro H.

(induction p).

right.

(rewrite Z.mul_comm in H).
(apply Zmult_integral_1 in H).
exact H.

intro Absurd.
discriminate.

right.

(rewrite Z.mul_comm in H).
(apply Zmult_integral 1l in H).
exact H.

intro Absurd.
discriminate.

right.
(rewrite <- H).
ring.

intro H.

right.

(rewrite Z.mul_comm in H).
(apply Zmult_integral_1 in H).
exact H.

intro Absurd.
discriminate.

Qed.
mult_integral is defined

5.2 Integer Division and Modulo

265

Let n € Z and let m € ZT. Then there are unique integers q and r, with

0 < r < m, such that

n=qm-+r.

n = (0)m + n.

(5.1)

We can prove this by starting with the true statement for ¢ = 0 and r = n,

(5.2)

If m > n, we are done since r = n < m — 1. Thus let m < n and add zero to

the equation

n

(0)m + (m —m) + n,
(Lym + (n —m).

(5.3)
(5.4)
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If r = n—m < m we are done, otherwise we subtract again. We are guaranteed
not to fall below zero, because initially » = n > m, and at each iteration we
check that r > m, and then we subtract m. We are guaranteed to subtract a
finite number of times because 3k € N, km > n. Thus ¢ and r exist. Suppose
(¢,7) and (¢’,7’) exist such that the equation is true,

gn+r=q¢m+1r’ (5.5)
(¢—q)m=("~r)

which implies that (' — ) is a multiple of m. However, |r’ — r| < m, and thus
we must have r = r/, which implies ¢ = ¢. We call ¢ the quotient, denoted
|n/m], and r the remainder, denoted n mod m. In programming languages like
C, quotient is represented by n/m and remainder, or modulo, by n % m. Our
proof is related to the Euclidean Algorithm for computing the greatest common
divisor of two integers.

Let m and n be integers. We say that m divides n, denoted m | n, if there is
an integer k such that n = km, or that division of n by m leaves no remainder,

m|n < Ik ez, km=n. (5.7)

We say that n is a multiple of m, and m is a factor or divisor of n. We see that
m | n is equivalent to saying that » = 0. A very useful identity is

Vn,m € N,d|z Adly = d|nz + my. (5.8)

which we will prove in the next section.

Having an idea of integer divisor, we can define prime and composite integers.
A prime number p is a natural number greater than one whose only divisors are
one and p. A composite number is a natural number greater than one which
is not prime. Therefore a composite number must have a divisor different from
itself and one. Two numbers a and b are said to be coprime, or relatively prime,
if their only common divisor is one. We denote coprimality by a L b.

Let us try to prove that every natural number greater than 1 is divisible by
a prime, where we can assume that all numbers are either prime or composite.
The Well-Ordering Principle can be used to help. Let us call our set of coun-
terexamples C, where C' contains all natural numbers greater than 1 which are
not divisible by a prime. Let us take the least number m in C. If m is prime,
it is divisible by itself, so m must be composite, meaning

m=abANa<mAb<m.

Since a is less than m, it cannot be a member of C, and thus is must be divisible
by some prime p, pla. Now we can use the theorem you will prove in Problem 1

Vp,a,b € Z,plaV plb = plabd.

This theorem shows that p must also divide m, which contradicts the definition.
Thus, every natural number greater than 1 is divisible by a prime.
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5.3 Modular Rings

A ring is an algebraic structure which is a generalization of arithmetic on the
integers. A ring consists of a set equipped with two binary operations that
generalize the arithmetic operations of addition and multiplication. This ab-
straction allows us to apply theorems from arithmetic to mathematical objects
which look quite different from integers, such as function, polynomials, series,
and matrices. The first binary operation, which we will always call addition in
the ring, is associative, commutative, and has an identity element. The second
binary operation, which we will always call multiplication in the ring, is asso-
ciative, distributive over the addition operation, and has an identity element.
These are the properties we associate with the normal arithmetic operations.
However, they are also satisfied by a whole host of different operations.

For example, if we choose the ring addition operation to be the maximum
function, and ring multiplication to be integer addition, we have another ring,
often called mazx-plus. We can verify the properties of the operators. First, ring
addition

Associativity Vabe : N, max(a, max(b, ¢)) = max(max(a,b),c)
Commutativity Vab:N,  max(a,b) = max(b,a)
Identity Va: N, max(a, —00) = a

and we see that the identity element for ring addition is negative infinity. For
ring multiplication,

Associativity Vabc:N, a+ (b+c)=(a+b)+c
Distributivity Vabe:N, a+ max(b,¢) = max(a+b,a+ c)
Identity Va : N, a+0=a

the identity element is 0. Notice that if we multiply in the ring by the additive
identity, —oo, we always get it back, a — oo = —oo. This is the analogue of
multiplying by 0 in normal arithmetic.

It turns out that we can redefine the algebraic operations on integers to
operate only on Z, = {0,...,n — 1}, but have the same algebraic properties.
To do this, we make use of the modulo operator

amodb=r where a=qgb+r, (5.9)
where g and r are defined using integer division from Section 5.2. Note that
amodb<b (5.10)

due to the definition of the remainder. Thus the modulo operation is idempotent,
meaning that applying it a second time does not change the answer,

(a mod b) mod b = a mod b. (5.11)
We have a notation for equations that hold modulo a number n,

(x mod n) = (y mod n) = x=y (mod n), (5.12)
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which we call a congruence, and the “x equals y modulo n”. We can also see
that the modulo operation can be pulled into or pushed out of addition,

((x mod n) + (y mod n)) mod n = (x + y) mod n
(rgy +ry) mod n = (gzn +ry + gyn+ry) modn

(ry +ry) mod n = (ry + ry) mod n.

We define addition in the ring to be integer addition modulo n, = + y
(mod n). For example, suppose n = 7,

446 (mod7)=10 (mod7)=3, (5.13)
344 (mod7)= 7 (mod?7)=0. (5.14)
Note that we still have the equivalent of negative numbers (additive inverses),

since 3+4 (mod 7) =0, so —3 (mod 7) =4 and —4 (mod 7) = 3. We can do
the same thing with multiplication,

4%6 (mod7)=24 (mod?7)=23, (5.15)
3%x4 (mod 7)=12 (mod 7) =75, (5.16)
2%¥4 (mod7)= 8 (mod7)=1. (5.17)

and we see that there are multiplicative inverses 1/2 (mod 7) = 4 and 1/4
(mod 7) = 2. We can remain in Z,, due to

z+y (modn)=(xrmodn)+ (ymodn) (modn), (5.18)

x *y (mod n)=(rmodn) *(ymodn) (mod n). (5.19)

so that the numbers we begin with can always be collapsed down to the size of
our remainder set before applying the operations. Thus, since modulo addition
and multiplication satisfy the properties above, Z, with these operations is a
ring. We choose a prime number, 7, as our modulus for the examples. This
has the desirable property that nothing but 0 can multiply another number and
give 0. For example, suppose n = 6, then we have

3x4 (mod6) =12 (mod 6) = 0. (5.20)

5.3.1 Divisibility in Coq

We must load the zarith package since we will be working with integers rather
than natural numbers. It is also important to operate in the z_scope since def-
initions for the divisibility operator | have been made, as well as some basic
theorems.

Require Import ZArith.
Open Scope Z_scope.

We would like to prove the divisibility is a partial order, and thus we start with
reflexivity.
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Coq < Lemma divide_refl : forall n, (n | n).
1 subgoal

A : Set

foralln : Z, (n | n)
divide_refl < intro n.
1 subgoal

A : Set
n:?Zz

(n | n)

When we unfold the definition of the divibility operator, we see that it contains
an existence statement, just as we defined it above.

divide_refl < unfold Z.divide.

1 subgoal
A : Set
n:?Zz

exists z : Z, n =z *n

We know that the other divisor is one, so we provide it and use the ring tactic
to prove the results.

divide_refl < exists 1.

1 subgoal
A : Set
n: 2z
n=1x*n

divide_refl < ring.
No more subgoals.

divide_refl < Qed.
intro n.

(unfold Z.divide).
exists 1.

ring.

Qed.
divide_refl is defined

Transitivity can be proved in the same manner. We first state the problem,
introduce hypotheses, and unfold the definition of divisibility.

Coq < Lemma divide_trans : forallnmp, (n |l m) -> (m | p) -> (0 | p).
1 subgoal

A : Set

forallnmp : Z, (@ Il m) > @ | p) >l p

divide_trans < intros n m p.
1 subgoal

A : Set
n,m, p:2

(m|m)->@m]lp) -> @I p

divide_trans < unfold Z.divide.
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1 subgoal

A : Set
n, m, p: 2

(exists z : Z, m = z * n) —>
(exists z : Z, p =z *m) -> exists z : Z, p=2z *n

Then we introduce the hypotheses about divisibility, and ask for witnesses for
the existence statements.

divide_trans < intros H1 H2.
1 subgoal

A : Set

n, m, p: 2
H1 : exists z : Z,
H2 : exists z : Z

m=2 *n
,p=z*m

exists z : Z, p=2z *n

divide_trans < destruct H1 as [zl H1].
1 subgoal

n, m, p, z1 : Z
Hl : m =2zl *n
H2 : exists z : Z, p=2z *m

exists z : Z, p=2z *n

divide_trans < destruct H2 as [z2 H2].
1 subgoal

n, m, p, z1 : Z
Hl : m=2z1 *n
z2 : Z

H2 : p=22 *m

exists z : Z, p =2z *n

We know now that the answer is z = 2722,

divide_trans < exists (zl1*z2).
1 subgoal

n, m, p, z1 : Z
Hl :m=2z1 *xn
z2 : Z

H2 : p =22 *m

p=2z1 %22 *xn

and we use the witnesses to rewrite the goal,

divide_trans < rewrite H2.
1 subgoal

n, m, p, z1 : Z
Hl : m=2z1 *n
z2 : Z

H2 : p=22 *m

z2 *m =2zl % z2 *n

divide_trans < rewrite H1.
1 subgoal

n, m, p, z1 : Z
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Hl : m=2z1 *n
z2 : Z
H2 : p =22 *m

z2 * (z1 *n) =zl * 22 xn

and then we can verify this using the ring tactic.

divide_trans < ring.
No more subgoals.

divide_trans < Qed.
(intros n m p).

(unfold Z.divide).
(intros H1 H2).

(destruct H1 as [z1 H1]).
(destruct H2 as [z2 H2]).
exists (z1 * z2).
(rewrite H2).

(rewrite H1).

ring.

Qed.
divide_trans is defined

Finally we prove that the divisibility relation is antisymmetric. However,
this is only strictly true if both m and n are non-negative. If we allow either
one to be negative, then we have a sign ambiguity. For example, consider m
and —m. They both divide each other, but are not equal. Thus, in our proof
we must require that m and n are non-negative. Here I require that they are
positive to avoid the special case for 0, which is left for Exercise 9. We begin
by introducing hypotheses and extracting witnesses.

Coq < Lemma divide_antisymmetric : forallmn : Z, (m > 0) -> @ > 0) -> (m | n) -> (n | m) -> (m = n).
1 subgoal

forallmn : Z, m>0->n>0->@ | n) ->@ I Im)->m=n

divide_antisymmetric < intros m n Pm Pn H1 H2.

1 subgoal
m, n: Z
Pm :m >0
Pn : n>0
Hi : (m | n)
H2 : (o | m)
m=n

divide_antisymmetric < destruct H1 as [k Hi].

1 subgoal
m, n Z
Pm : m >0
Pn : n>0
k:2Z
Hl : n=k *m
H2 : (n | m)
m=n

divide_antisymmetric < destruct H2 as [1 H2].
1 subgoal
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We now copy hypothesis H2 so that we can rewrite it into the identity k+{ = 1,

divide_antisymmetric < pose (H3 := H2).
1 subgoal

m, n: Z

Pm :m >0

Pn : n>0

k:Z

Hl : n=k *m

1:2

H2 :m=1%*n

H3 :=H2 : m=1%*n

divide_antisymmetric < rewrite H1 in H3.
1 subgoal

m, n: Z
Pm :m>0
Pn : n>0
k:Z
H1 :
1: 2
H2 : m=1*n

H3 : m =1 % (k * m)

B
[
=
*
8

divide_antisymmetric < rewrite Z.mul_assoc in H3.

1 subgoal
m, n: Z
Pm :m>0
Pn : n>0
k:Z
Hl : n=k *m
1:12

H2 :m=1*n
H3 :m=1x*k *xm

m=n

divide_antisymmetric < rewrite <- Z.mul_1_1 with (n:=m) in H3 at 1.

1 subgoal
m, n: Z
Pm : m >0
Pn : n>0
k:Z
Hl : n=k *m
1:12

H2 :m=1%*n
H3 : 1 *m=1x*k*m
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divide_antisymmetric < apply Z.mul_cancel_r in H3.

2 subgoals
m, n: Z
Pm : m >0
Pn : n>0
k:2Z
Hi : n=k *m
1:2

H2 : m=1%*n
H3 : 1 =1%*k

m=n

subgoal 2 is:
m <> 0

divide_antisymmetric < symmetry in H3.

2 subgoals
m, n: Z
Pm : m >0
Pn : n>0
k:2Z
Hl : n=k *m
1:12
H2 : m=1

* n
H3 : 1 *xk =1

m=n

subgoal 2 is:
m <> 0

Next we can use a theorem in the proof assistant saying that if the product of
two integers is one, and one of the integers is non-negative, both integers are
one themselves. This allows us to rewrite the goal and solve it easily.

divide_antisymmetric < apply Z.eq_mul_1_nonneg in H3 as H4.

3 subgoals
m, n: Z
Pm : m >0
Pn : n >0
k:2Z
Hl : n=k *m
1:12
H2 :m=1%*n
H3 : 1 xk=1
H4 : 1 =1/\k=1
m=n

subgoal 2 is:
0<=1
subgoal 3 is:
m <> 0

divide_antisymmetric < destruct H4 as [H4 H5].

3 subgoals
m, n: Z
Pm : m >0
Pn : n>0
k:2Z
Hl : n=k *m

1:12
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H2 :
H3 :
H4 :
H5 :

ol =
* 0

il i
]

m=n

subgoal 2 is:
0<=1
subgoal 3 is:
m <> 0

divide_antisymmetric < rewrite H1.

3 subgoals

m, n: Z
Pm :m>0
Pn : >0
k : Z
H1 :
1:12
H2 : m
H3 : 1
H4 : 1=
HE : k

B B
n
=~
*
8

*
]
1
—

m=k *m

subgoal 2 is:
0<=1
subgoal 3 is:
m <> 0

divide_antisymmetric < rewrite H5.

3 subgoals
m, n: Z
Pm : m >0
Pn : n>0
k:Z
Hl : n=k *m
1:2
H2 : m=1
H3 : 1 k=1
H4 : 1 =1
HE : k 1
m=13%m

subgoal 2 is:
0<=1
subgoal 3 is:
m <> 0

divide_antisymmetric < ring.
2 subgoals

m, n: Z
Pm :m >0
Pn : n>0

k:2Z
Hl : n=k *xm
1:12
H2 :m=1%*n

H3 : 1 k=1

CHAPTER 5. MODULAR ARITHMETIC
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subgoal 2 is:
m <> 0

Next we need to prove that [ is non-negative. We know this because m = In by
Hypothesis 2, and both m and n are positive. We can use a theorem that says
that if we multiply both sides of a less-than-or-equal-to statement by a positive
integer, the statement remains true.

: forallnmp : Z, 0<Kp->n*xp<=mx*xp->n<=mn
divide_antisymmetric < apply Zmult_lt_O_le_reg_r with (n:=0) (m:=1) (p:=n).
3 subgoals

m, n: Z

Pm : m >0

Pn : n>0
k:2Z

Hl : n=k *m
1:12

H2 : m =1 %

n
H3 : 1 xk=1

0<n

subgoal 2 is:
0O*n<=1s%n
subgoal 3 is:

m <> 0

divide_antisymmetric < apply Z.gt_lt.

3 subgoals
m, n: Z
Pm : m >0
Pn : n>0
k:2Z
Hl : n=k *m
1:12
H2 : m=1 n

*
H3 : 1 xk =1

n>0

subgoal 2 is:
0O*n<=1s%n
subgoal 3 is:

m <> 0

divide_antisymmetric < exact Pn.

2 subgoals
m, n: Z
Pm :m >0
Pn : n>0
k:2Z
Hl : n=k *m
1:12

H2 :m=1%*n
H3 : 1 xk=1

O *n<=1%*n

subgoal 2 is:
m <> 0

divide_antisymmetric < rewrite <- H2.
2 subgoals
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m, n: Z

Pm :m >0

Pn n>0

k: Z

Hl : n=k *m
1:2

0 *xn<=m

subgoal 2 is:
m <> 0

divide_antisymmetric < simpl.

2 subgoals
m, n: Z
Pm : m >0
Pn : n>0
k:Z
Hl : n=k *m
1:12
H2 :m=1

*n
H3 : 1*xk=1

0<=m

subgoal 2 is:
m <> 0

divide_antisymmetric < apply Z.gt_lt in Pm.

2 subgoals
m, n: Z
Pm: 0O <m
Pn : n>0
k: Z
Hl : n=k *m
1:12
H2 : m =1 %

n
H3 : 1 k=1

0<=m

subgoal 2 is:
m <> 0

divide_antisymmetric < Print Z.lt_le_incl.
Fetching opaque proofs from disk for Coq.Numbers.NatInt.NZOrder
Z.1t_le_incl =
fun (nm : Z) (H: n<m) =>
let HO :=
(fun n0 mO : Z => match Z.lt_eq_cases n0 m0 with
| conj _ x0 => x0
end)

forall nO mO : Z, n0 <m0 \/ n0 = m0 -> n0 <= m0 in
HO n m (or_introl H)
: forallnm : Z, n <m->n<=mn

Argument scopes are [Z_scope Z_scope _]

divide_antisymmetric < apply Z.lt_le_incl in Pm.
2 subgoals

m, n: Z
Pm : 0O <=m
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Pn : n>0
k:2Z

Hl : n=k *m
1:2

H2 : m=1*n

*
H3 : 1 k=1

0 <=m

subgoal 2 is:
m <> 0

divide_antisymmetric < exact Pm.
1 subgoal

m, n: Z

Pm :m >0
Pn:n>0

k: Z

Hl : n=k *m
1:12

H2 :m=1%n
H3 : 1 *m=1%*k *m

H: forallnmp :Z,p<>0->n*xp=m*p->n

m <> 0

divide_antisymmetric < intro H4.
1 subgoal

m, n: Z

Pm :m >0

Pn : n>0
k:2Z

Hl : n=k *m
1:12

H2 : m=1*n
H3 : 1 *m=1x*k *m

H: forallnmp :Z,p<>0->n*xp=m*p->n

H4 : m =0

False

divide_antisymmetric < rewrite H4 in Pm.
1 subgoal

m, n: Z

Pm : 0 >0

Pn : n>0
k:2Z

Hl : n=k *m
1:2

H2 : m=1%*n
H3 : 1 *m=1x*k*m

H: forallnmp :Z, p<>0->n*xp=m*p->n

H4 : m =0

False

divide_antisymmetric < discriminate.
No more subgoals.

divide_antisymmetric < Qed.
(intros m n Pm Pn H1 H2).
(destruct H1 as [k H1l).
(destruct H2 as [1 H2]).
(pose (H3 := H2)).
(rewrite H1 in H3).

m

m

m
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(rewrite Z.mul_assoc in H3).
(rewrite <- Z.mul_1_1 with (n := m) in H3 at 1).
(apply Z.mul_cancel_r in H3).
symmetry in H3.
(apply Z.eq_mul_1_nonneg in H3 as H4).
(destruct H4 as [H4 H5]).
(rewrite H1).
(rewrite H5).
ring.

(apply Zmult_lt_O_le_reg_r with (n := 0) (m := 1) (p := n)).
(apply Z.gt_1t).
exact Pn.

(rewrite <- H2).

(simpl).

(apply Z.gt_lt in Pm).
(apply Z.1lt_le_incl in Pm).
exact Pm.

intro H4.
(rewrite H4 in Pm).
discriminate.

Qed.
divide_antisymmetric is defined

Finally, we can also prove the lemma we stated above, starting by introducing
all hypotheses.

Not only is the divisibility relation a partial order, but the set of all integers
divisible by some d forms a ring.

Coq < Lemma div_ring : forallmndxy : Z, (d | x) /\ (@] y) -> (d | mxx + n*y).
1 subgoal

forallmndxy :Z, (d1x)/\@1|y)->@I|Im*zx+nx*y)

div_ring < intros mn d x y.
1 subgoal

m, n, d, x, y : 2

@Ii=x/N@ly ->dIlm*xx+nx*y)

div_ring < intro H.
1 subgoal

m, n, d, x, y : Z
H: @I =x)/\@Iy

(dlm*x+n*y)

We destruct the divisibility hypotheses to get the witnesses making the state-
ments true.

div_ring < destruct H as [Dx Dyl.
1 subgoal

m, n, d, x, y : Z
Dx : (d | x)
Dy : A | y)

(dlm*x+mn*y)
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div_ring < unfold Z.divide.

1 subgoal
m, n, d, x, y : Z
Dx : (d | x)
Dy : (d | y

exists z : Z, m* x +n*xy =2z %d

div_ring < destruct Dx as [k Dx].
1 subgoal

m, n, d, x, y, k : Z
Dx : x =k xd
Dy : (d | y)

exists z : Z, m* x +n*xy =2z *%d

div_ring < destruct Dy as [1 Dy].
1 subgoal

m, n, d, x, y, k : Z
Dx : x =k *xd
1:2

Dy : y=1x*xd

exists z : Z, m* x +n*xy =2z *%d

Now we can specify the witness for the goal, rewrite using our hypotheses, and
use the ring tactic to verify the equality.

div_ring < exists (m*k + nxl).
1 subgoal

m, n, d, X, y, k : Z
Dx : x =k *xd

1:12

Dy : y=1%*d

m*x+n*xy=(@m*k+mnx*x1) *d

div_ring < rewrite Dx.
1 subgoal

m, n, d, X, y, k : Z
Dx : x =k *xd
1:12

Dy : y=1%*d

m*x (k*xd +n*xy=(@m=*xk+mnx*1) *xd

div_ring < rewrite Dy.
1 subgoal

m, n, d, x, y, k : Z
Dx : x =k *xd
1:12

Dy : y =1 *d

m* (k*xd) +n* (1*xd = @+*5k+n=x*1) xd

div_ring < ring.
No more subgoals.

div_ring < Qed.

(intros mn d x y).
intro H.

(destruct H as [Dx Dyl).
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(unfold Z.divide).
(destruct Dx as [k Dx]).
(destruct Dy as [1 Dyl).
exists (m * k + n * 1).
(rewrite Dx).

(rewrite Dy).

ring.

Qed.
div_ring is defined

5.4 The GCD

The greatest common divisor (GCD) is a fundamental concept in number theory,
and as such is known by many different names, such as the greatest common
factor (GCF), the highest common factor (HCF), the highest common divisor
(HCD), and the greatest common measure (GCM). The greatest common divisor
g is the largest natural number that divides both a and b without leaving a
remainder, or

ged(a,b) = max{g € N | gla A g|b}. (5.21)

Notice that the set is finite because for any g greater than min(a, b) the predicate
is false. If d is any common divisor of positive integers m and n, then we can tile
a rectangle of dimension m x n with squares of side d, as shown in Figure 5.1.

If ged(a,b) = 1, then a and b are coprime, or relatively prime, since they
have no common factors. Remember that we denote this by a L b. This does
not imply that a or b are themselves prime numbers. For example, neither 14
nor 15 is a prime number, since they both have two prime factors: 14 = 2 -7
and 15 = 5-3, but 14 and 15 are coprime since they have no factors in common.
Note that ged(a,0) = |a| because any number divides zero.

Let g = ged(a, b). Since gla and g|b, they can be written a = mg and b = ng,
and there is no larger number g’ > ¢ for which this is true. The natural numbers
m and n must be coprime, since any common factor could be factored out of m
and n to make g greater. We can prove that any other number ¢ that divides
both a and b must also divide g, so

clancb = c|g. (5.22)

First we start by assuming that ¢ L g. Now ¢em = a and cn = b, but gla and
g L ¢, so glm and likewise g|n. This means that gc > ¢ must divide a and b,
which is impossible since g is the GCD, therefore ¢|g. Now suppose ¢ and g
have some common factor d. This must also be a common factor of a and b.
We divide ¢, g, and a by d, giving ¢/, ¢/, and a’. This is exactly the problem
we had before, since now ¢ L ¢’ and ¢’ = ged(a’,b). This implies ¢’|¢’ and thus
clg, so that the GCD of a and b is the unique, positive common divisor of a and
b that is divisible by any other common divisor. This is an alternate definition
of the GCD that is superior for many problems.
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d
12
9
n 6
3
0
0 3 6 9 12 15

m

Figure 5.1: Illustration of d|m and d|n.

This is easier to see with yet another definition of the GCD. The greatest
common divisor g of two nonzero numbers a and b is also their smallest positive
integral linear combination, that is, the smallest positive number of the form
ua + vb where v and v are integers. Suppose that ¢ is a common divisor, so that
we have a = ck and b = ¢l for some integers k and [. Thus

d = ua + vb, (5.23)
= u(ck) + v(cl), (5.24)
= c(uk + vl). (5.25)

Thus clearly ¢|d. We will revisit this proof in Section 5.4.1 on Bezout’s Theorem.
We can visualize this relation between d and ua + vb in three dimensions. We
will think of all the integers z = ua 4 vb as being points in a plane in (u,v, 2)
space. For example, we have drawn such as plane in Figure 5.2 for ¢ = 6 and
b = 3. This plane always goes through the origin when we choose u = v = 0,
since 0 is divisible by any number. If we increase u by one, we increase the
sum z by a, so we have slope a in the u-direction. Likewise, if we increase v by
one, we increase z by b, so we have slope b in the v-direction. This means that
the vectors (1,0,a) and (0,1,b) lie in this plane, and the normal to the plane
is given by (—a, —b, 1), the cross product of these two vectors. As the factors a
and b become large, the normal almost lies in the (u,v)-plane.
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z = ua + vb

Figure 5.2: Plane of numbers divisible by d for a = 6 and b = 3.
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We know that all points in our plane traced out by z are divisible by all
common divisors, by Equation 5.8. We also know that the smallest positive
point must be a common divisor, since its remainder is also in the plane, and
smaller, meaning that the remainder is 0. This is a graphical proof of Bezout’s
Theorem, which we will prove algebraically in Section 5.4.1. In Section 5.5,
we will see that the Euclidean Algorithm chooses lines of points in this plane
through which to descend to the GCD.

The GCD of three or more numbers equals the product of the prime factors
common to all the numbers, but it can also be calculated by repeatedly taking
the GCDs of pairs of numbers. For example,

ged(a, b, ¢) = ged(a, ged(b, ¢)) = ged(ged(a, b), ¢) = ged(ged(a, ¢),b).  (5.26)

Thus any algorithm which computes the GCD of two integers suffices to calculate
the GCD of arbitrarily many integers. Also useful is

VYm € Z,ged(a + mb, b) = ged(a, b). (5.27)

To prove this, we first observe that since for g = ged(a,b) we have g|a and g|b,
then gla + mb so that g is a common divisor of a + mb and b. Conversely, if
hlb and h|a + mb, then hla + mb + (—m)b = a so that h is a common divisor
of a and b. Thus the common divisors of a,b and a,a + mb are identical, and
therefore the GCD are also identical. This is an elementary use of Eq. (5.8).

5.4.1 Bézout’s Theorem

Bézout’s Theorem states that the GCD g of two integers a and b can be
represented as a linear sum of the original two numbers,

ds,t € Z,g = sa + tb. (5.28)

We can justify this statement using an argument based on the Well-Ordering
Principle for positive numbers. Given any nonzero integers a and b, let

S={ax+by|z,y €ZANax+by >0}

The set S is nonempty since it contains either a or —a (with x = £1 and
y = 0). Since S is a nonempty set of positive integers, it has a minimum
element d = as + bt, by the Well-Ordering Principle. To prove that d is the
greatest common divisor of a and b, we must prove that d is a common divisor
of a and b, and that for any other common divisor ¢, one has ¢ < d.

The Euclidean division of a by d may be written

a=dg+r with 0<r<d. (5.29)

The remainder r is in S U {0}, because
r=a—qd (5.30)
=a—q(as + bt) (5.31)

=a(l —¢s) — bqt. (5.32)
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As d is the smallest positive integer in S, the remainder r is necessarily 0, and
this implies that d is a divisor of a. Similarly d is also a divisor of b, so that d
is a common divisor of a and b.

Now, let ¢ be any common divisor of a and b; that is there exist u and v
such that @ = cu and b = cv. One has thus

d=uas+ bt (5.33)
= cus + cvt (5.34)
= c(us + vt). (5.35)

That is c is a divisor of d, and therefore ¢ < d.

5.4.2 Coq Proofs

We define ged(a,b) as an inductive predicate, rather than a function, since it
will be a proposition telling us that g is the gcd of a and b. Later, we will verify
that it is unique up to a sign. Notice that the definition uses the fact we proved
above, that all common divisors divide the gcd. This provides an alternate
starting point, so that we do not have to formalize the notion of “greatest”.
First we must import packages with the definition of the GCD.

Require Import ZArith.
Require Import Znumtheory.
Open Scope Z_scope.

Notice that we name the implication zis_gcd_intro below, which will allow us to
use that theorem in our proofs.

Cog> Print Zis_gcd.
Inductive Zis_gcd (a b g : Z) : Prop :=
Zis_gecd_intro : (g | a) ->
(g | ) >
(forall x : Z, (x | a) -> (x| b) > (x| g)) >
Zis_gcd a b g

As a first step, we will prove that ged is a symmetric predicate. We state the
lemma, introduce hypotheses, and remove the implication.

Coq < Lemma Zis_gcd_sym : forall a b d, Zis_gcd a b d -> Zis_gcd b a d.
1 subgoal

A : Set

forall abd : Z, Zis_gcd a b d -> Zis_gcd b a d

Zis_gcd_sym < intros a b d.
1 subgoal

A : Set
a, b,d: Z

Zis_gcd a b d -> Zis_gcd b a d

Zis_gcd_sym < intro H.
1 subgoal

A : Set
a, b, d: Z
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H : Zis_gcd a b d

Zis_gcd b a d

Now we would like to somehow unfold the inductive definition of the ged. We
do this by applying the theorem above from the definition of the ged. This
conforms with our intuition about the greatest common divisor, namely that
the ged d must divide both a and b and that any other divisor must divide d.

Zis_gcd_sym < apply Zis_gcd_intro.
3 subgoals

A : Set
a, b,d: Z
H : Zis_gcd a b d

@ | v

subgoal 2 is:

@l a
subgoal 3 is:

forall x : Z, (x | b) > (x | a) > (x| d

The analogue for our hypothesis H is to destruct it, replacing it with the left
side of the implication. This makes it a simple matter to prove the first goal,
since it is just an assumption.

Zis_gcd_sym < destruct H.

3 subgoals
A : Set
a, b,d: Z
H: (@] a)
HO : (d | b)

Hi : forall x : Z, (x | a) > (x| b) > (x| &

[

subgoal 2 is:

@l a
subgoal 3 is:

forall x : Z, (x | b) => (x | a) -> (x | d)

Zis_gcd_sym < assumption.
2 subgoals

A : Set
a, b,d: Z
H : Zis_gcd a b d

@il a

subgoal 2 is:
forall x : Z, (x | b) => (x | a) > (x | 4

We can use an identical procedure for the second goal.

Zis_gcd_sym < destruct H.

2 subgoals
A : Set
a, b,d: Z
H: d ]| a)
HO : (d | b)

H1 : forall x : Z, (x | a) > (x| b) > (x| &
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@1 a

subgoal 2 is:
forall x : Z, (x | ) > (x| a) > (x| d)

Zis_gcd_sym < assumption.

1 subgoal
A : Set
a, b,d: Z
H : Zis_gcd a b d

forall x : Z, (x | b) => (x | a) -> (x | d)

We now introduce hypotheses from the last goal, and apply the hypothesis H;
which will be instantiated for integer x.

Zis_gcd_sym < intros x divB divA.

1 subgoal
A : Set
a, b, d: Z
H: d | a)
HO : (d | b)
H1 : forall x : Z, (x | a) => (x | b) -> (x | d)
x:Z

divB : (x | b)
divA : (x | a)

x| d)

Zis_gcd_sym < apply H1.

2 subgoals
A : Set
a, b,d: Z
H: d | a)
HO : (d | b)
Hl : forall x : Z, (x| a) > (x| b) > (x| d)
x : Z

divB : (x | b)
divA : (x | a)

x| a)

subgoal 2 is:
(x | b

Now we just use assumptions to prove the theorem.

Zis_gcd_sym < assumption.

1 subgoal
A : Set
a, b, d A
H: d | a)
HO : (d | b)
Hl : forall x : Z, (x| a) > (x| b) > (x| d)
x : Z

divB : (x | b)
divA : (x | a)

x| b

Zis_gcd_sym < assumption.
No more subgoals.

Zis_gcd_sym < Qed.
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(intros a b d).
(simpl).

intro H.

(apply Zis_gcd_intro).
(destruct H).
assumption.

(destruct H).
assumption.

(destruct H).
(intros x).

(intros divB divA).
(apply H1).
assumption.

assumption.

Qed.
Zis_gcd_sym is defined

We can now also prove Eq. (5.27). We begin with introduction of hypotheses
and eliminating the implication.

Coq < Lemma Zis_gcd_for_euclid : forall a b d q:Z, Zis_gcd b (a - q * b) d > Zis_gcd a b d.
1 subgoal

A : Set

forall abdq : Z, Zis_gcd b (a - q * b) d > Zis_gcd a b d

Zis_gcd_for_euclid < intros a b d q.
1 subgoal

A : Set
a, b,d, q: 2

Zis_gcd b (a - q * b) d -> Zis_gcd a b d

Zis_gcd_for_euclid < intro H.
1 subgoal

A : Set
a, b,d, q: 2
H : Zis_gcd b (a - q * b) d

Zis_gcd a b d

Just as in our prior proof, we apply the ged theorem,

Zis_gcd_for_euclid < apply Zis_gcd_intro.
3 subgoals

A : Set
a, b,d, q: 2
H : Zis_gcd b (a - q * b) d

[CIRE-Y]

subgoal 2 is:

@1l v
subgoal 3 is:

forall x : Z, (x| a) > (x| b) > (x| d)

and destruct our hypothesis H.

Zis_gcd_for_euclid < destruct H.
3 subgoals
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A : Set
a, b,d, q: 2
H: (d | b)

HO : d | a-q* D)
H1 : forall x : Z, (x | b) > (x| a-qgx*xb) > (x| d)

[CREE-Y]

subgoal 2 is:

| b
subgoal 3 is:

forall x : Z, (x | a) > (x| b) > (x| d)

In this proof, however, we must pick apart the notion of divisibility. We can
unfold the definition in the goal, and produce witnesses for hypotheses H and
Iiba

Zis_gcd_for_euclid < unfold Z.divide.
3 subgoals

A : Set

a, b,d, q: 2

H: (]| b)

HO : (d | a-q* D)

H1 : forall x : Z, (x| b) > (x|l a-qg*Db) -> (x| d

exists z : Z, a=2z * d

subgoal 2 is:

(RN -)]

subgoal 3 is:

forall x : Z, (x | a) > (x| b) > (x| d)

Zis_gcd_for_euclid < destruct H.
3 subgoals

A : Set

a, b, d, q, x
H:b=xx*xd
HO : A | a-q*b)

H1 : forall x : Z, (x | b) > (x| a-qx*b) > (x| d)

HA

exists z : Z, a =2z *x d

subgoal 2 is:

@l v
subgoal 3 is:

forall x : Z, (x | @) => (x | b) => (x | d)

Zis_gcd_for_euclid < destruct HO.
3 subgoals

A : Set

a, b,d, q, x: 2

H:b=x=xd

x0 : Z

HO : a-q*b=x0xd

H1 : forall x : Z, (x | b) > (x| a-qx*b) > (x| d)

exists z : Z, a=2z * d

subgoal 2 is:

| b
subgoal 3 is:

forall x : Z, (x | a) > (x| b) > (x| d)
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Now we can use the equality in the new H to rewrite Hy

Zis_gcd_for_euclid < rewrite H in HO.
3 subgoals

A : Set

a, b,d, q, x: Z

H:b=xx*xd

x0 : Z

HO : a - q* (x xd) =x0*d

H1 : forall x : Z, (x | b) > (x| a-q*b) > (x| d)

exists z : Z, a =2z *x d

subgoal 2 is:

@l v
subgoal 3 is:

forall x : Z, (x | a) -> (x| b) -> (x| d

and then we shift the negative term in HO to the other side,

Zis_gcd_for_euclid < apply Z.sub_move_r in HO.
3 subgoals

HO : a =x0 *d+q* (x *xd)
H1 : forall x : Z, (x | b) > (x|l a-qx*b) > (x| d)

exists z : Z, a=2z * d

subgoal 2 is:

@l b

subgoal 3 is:

forall x : Z, (x| a) > (x| b) => (x| d)

rewrite the goal,

Zis_gcd_for_euclid < rewrite HO.
3 subgoals

A : Set

a, b,d, q, x: 2

H:b=x=x*xd

x0 : Z

HO : a =x0 *d+ q * (x * d)

H1 : forall x : Z, (x | b) > (x| a-q*b) > (x| d)

exists z : Z, xO x d +q * (x *xd) =z *xd
subgoal 2 is:
[CIN )]

subgoal 3 is:
forall x : Z, (x| a) -> (x | ) > x| 4

and we have our witness

Zis_gcd_for_euclid < exists (x0 + q*x).

3 subgoals
A : Set
a, b,d, q, x: 2
H:b=x=x*d
x0 : Z

HO : a=x0 *xd+ q* (x xd)
Hi : forall x : Z, (x | ®) > (x|l a-qg*b) > x| d
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x0 *d+q* (x*xd =(x0+q*x)*xd

subgoal 2 is:

@l v
subgoal 3 is:

forall x : Z, (x | a > (x | b) > (x | &

Zis_gcd_for_euclid < ring.
2 subgoals

A : Set
a, b,d, q: 2
H : Zis_gcd b (a - q * b) d

(d | b)

subgoal 2 is:
forall x : Z, (x | a) => (x | b) > (x | )

The second goal is easier since it becomes an assumption.

Zis_gcd_for_euclid < destruct H.
2 subgoals

A : Set

a, b,d, q: 2

H: (d ]| b)

HO : (d | a-q * b)

Hi : forall x : Z, (x | ®) > (x | a-q*Db) > (x| d)

[CRIN )]

subgoal 2 is:
forall x : Z, (x | &) > (x | b) > (x | &

Zis_gcd_for_euclid < assumption.
1 subgoal

A : Set
a, b,d, q: 2
H : Zis_gcd b (a - q * b) d

forall x : Z, (x| a) -> (x| b) > (x| 4d)

For the last goal, we begin by introducing hypotheses and expanding the gcd
definition.

Zis_gcd_for_euclid < intros y divA divB.
1 subgoal

A : Set

a, b,d, q: 2

H : Zis_gcd b (a - q * b) d
y:Z

divA : (y | a)

divB : (y | b)

(y I d

Zis_gcd_for_euclid < destruct H.
1 subgoal

A : Set

a, b,d, q: 2

H: @] b)

HO : A | a-q*b)

H1 : forall x : Z, (x | b) > (x|l a-qg*Db) -> (x1|4d
y: Z
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divA : (y | &)
divB : (y | )

y I &
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Now we can apply hypothesis Hq, generating two new goals. The first is trivial,

as it is already an assumption.

Zis_gcd_for_euclid < apply H1.
2 subgoals

A : Set

a, b,d, q: 2

H: (d| b

HO : d | a-q* b)

H1 : forall x : Z, (x| b) > (x| a-qg*b) > (x| d
y: Z

divA : (y | a)

divB : (y | b)

(y I b)

subgoal 2 is:
(y |l a-qx*b)

Zis_gcd_for_euclid < assumption.
1 subgoal

A : Set

a, b,d, q: 2

H: (d ] b)

HO : (d | a-q*Db)

H1 : forall x : Z, (x | b) > (x|l a-qgx*xb) -> (x| d)
y:Z

divA : (y | &

divB : (y | b)

(y | a-qx*b)

The second needs a suitable witness.

Zis_gcd_for_euclid < unfold Z.divide.
1 subgoal

A : Set

a, b,d, q:2Z

H: (d] b)

HO : (d | a-q*Db)

H1 : forall x : Z, (x | b) > (x| a-qx*b) > (x| d)
y:Z

divA : (y | &

divB : (y | b)

exists z : Z, a-q*b=2z %y

We can construct the witness for the goal by first extracting the witnesses from

our divisibility hypotheses.

Zis_gcd_for_euclid < destruct divA.
1 subgoal

A : Set

a, b,d, q: 2

H: (@] b)

HO : d | a-q*b)

H1 : forall x : Z, (x | b) > (x|l a-q*b) > (x| 4d
y, X : Z
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H2 : a=x*y
divB : (y | b)

exists z : Z, a-q*xb=2z %y

Zis_gcd_for_euclid < destruct divB.
1 subgoal

A : Set

a, b,d, q: 2

H: (d 1| b)

HO : A | a-q*b)

H1 : forall x : Z, (x | b) > (x| a-qx*b) > (x| d)

y, X : Z
H2 : a=x *y
x0 : Z

H3 : b =x0 *xy

exists z : Z, a-q*b=2zx*xy

After rewriting the goal, our witness = — qxq is clear.

Zis_gcd_for_euclid < rewrite H2.
1 subgoal

A : Set

a, b,d, q:2Z

H: (d 1] b)

HO : (d | a-q* D)

H1 : forall x : Z, (x | B) > (x|l a-q*b) > (x| d

y, X : Z
H2 : a=x*y
x0 : Z

H3 : b =x0 *y

exists z : Z, x ¥y - q*b=2zx*xy

Zis_gcd_for_euclid < rewrite H3.
1 subgoal

A : Set

a, b,d, q:2Z

H: (d 1] b)

HO : (d ]| a-q*b)

Hi : forall x : Z, (x | ®) > (x | a-q*Db) > (x| d)

y, X : Z
H2 : a=x*y
x0 : Z

H3 : b =x0 *y

exists z : Z, x x y - q * (x0 xy) =z xy

Zis_gcd_for_euclid < exists (x - g*x0).
1 subgoal

A : Set

a, b,d, q: 2

H: (d 1| b)

HO : d | a-q* D)

H1 : forall x : Z, (x | b) > (x| a-qx*b) > (x| d)

y, x : Z
H2 : a=x %y
x0 : Z

H3 : b=x0*y

x*xy-qgx* (x0*xy)=(x-qx*x0) *xy

Zis_gcd_for_euclid < ring.
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No more subgoals.

Zis_gcd_for_euclid < Qed.
(intros a b d q).
intro H.
(apply Zis_gcd_intro).
(destruct H).
(unfold Z.divide).
(destruct H).
(destruct HO).
(rewrite H in HO).
(apply Z.sub_move_r in HO).
(rewrite HO).
exists (x0 + g * x).
ring.

(destruct H).
assumption.

(intros y divA divB).
(destruct H).
(apply H1).

assumption.

(unfold Z.divide).
(destruct divA).
(destruct divB).
(rewrite H2).
(rewrite H3).

exists (x - q * x0).
ring.

Qed.
Zis_gcd_for_euclid is defined

5.5 The Euclidean Algorithm

The FEuclidean Algorithm is an iterative process that computes the GCD of
two integers. At each step, it uses the division algorithm from Section 5.2 to
compute a remainder r,, from the division of two previous numbers r,_s/r,_1,
which we can express as

Tn—2 = qnTn—1+ Tn. (5.36)

What is the motivation for this computation? Very often, an iterative method
can be defined by an invariant preserved by each iteration of the loop. This
is the basis for reasoning about loops in Hoare logic. Now, we are looking for
g = ged(a, b), and without loss of generality we assume a > b. Our induction
hypothesis P(n) will be that

P(n) =g = ged(rn—1,7n) (5.37)

where g = ged(a, b). For our base case P(0), suppose that we start with r_o = a
and r_; = b, meaning that P(—1) is true. Then we have

P(0) := g = ged(r—1,70) (5.38)
= ged(b, ro) (5.39)
—T, (5.40)
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which follows from Eq. (5.27). Now, assuming P(n) is true, the inductive step
is

P(n+1):=g=ged(ry, rni1) (5.41)
= ged (T, qnrn + Tn-1) (5.42)
= ged(rp, rn—1) (5.43)
=T, (5.44)

where we again used Eq. (5.27), which follows from Eq. (5.8). By the division
algorithm 0 < r, < r,_1, so at each step the remainder decreases. At some
step N it must vanish, so that

P(N):=g=ged(rn-1,7n) (5.45)
= ged(ry-1,0) (5.46)
=TN-1- (5.47)

Our induction is proved, and the final nonegative result ry_; is the GCD of a
and b.

For illustration, we use the Euclidean algorithm to find the GCD of a =
1071 =3-3-7-17 and b = 462 = 2-3-7-11, which should be 21 from comparing
the prime factorizations. To begin, multiples of 462 are subtracted from 1071
until the remainder is less than 462. Two such multiples can be subtracted
(go = 2), leaving a remainder ro = 147,

1071 = 2- 462 + 147. (5.48)

Then multiples of 147 are subtracted from 462 until the remainder is less than
147. Three multiples can be subtracted (¢; = 3), leaving a remainder r; = 21,

462 = 3 - 147 + 21. (5.49)

Then multiples of 21 are subtracted from 147 until the remainder is less than
21. Seven multiples can be subtracted (g2 = 7), leaving no remainder ro = 0,

147 =721 +0. (5.50)

Since the last remainder is zero, the algorithm ends with 21 as the GCD of
1071 and 462. This agrees with the ged(1071,462) found by prime factorization
above. In tabular form, the steps are

Step Equation Quotient Remainder
0 1071 = 2 - 462 + 147 2 147
1 462 = 3 - 147 + 21 3 21
2 147=7-21+0 7 0

Note also that we can replace the division step with a direct modulo operation

Ty, = Tp—2 mod r,_1. (5.51)
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We remember that Bézout’s Theorem states that the GCD g of two integers a
and b can be represented as a linear sum of the original two numbers, Eq. (5.28),

ds,t € Z, g = sa + tb.

The integers s and ¢ of Bézout’s Theorem can be computed efficiently using the
Ezxtended Fuclidean Algorithm. The extension adds two recursive equations to
original algorithm,

Sp = Sn—2 — dnSn—1 (552)

tn = tn72 - qntnfl (553)
with the starting values

S_o9 = ]., S_1 = 0 (554)

t_o =0, t_1=1. (5.55)

Using this recursion, the integers s and ¢ in Eq. (5.28) are given by s = sy_1
and t = ty_1, where N is the step on which the algorithm terminates with
ry = 0, which we will prove by induction.

Our induction hypothesis P(n) follows from Bézout’s Theorem,

P(n) :=r, = spa + t,b. (5.56)

The base cases P(—2) and P(—1) are true

Assuming P(n — 1) and P(n), the inductive step is

Pn+1):=7p41 = Snt10 + tnt1d, (5.59)
Tn—1 = @n+17n = (Sn—1 = Gnt15n)a + (tn—1 — qnt1tn)D, (5.60)
—Qn+17n = (—qn+15n)a + (= Gn11tn)b, (5.61)
Tn = Spa + tyb, (5.62)
P(n),
T

so our induction is successful and the theorem is proved. Note that this type of
induction, where multiple prior hypotheses are used, is called strong induction.

We can carry out the Extended Euclid Algorithm on our pair of number
(1071,462) from the last example. In tabular form, the steps are

r Bézout Equation s t
147 147 =1-1071+4+-2-462 1 -2
21 21=-3-1071+4+7-462 -3 7

0 N/A - -

Step Euclid Equation
0 1071 = 2 - 462 + 147
1 462 = 3147 + 21
2 147 =7-21+0

N W N
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5.5.1 Binary GCD

An alternative algorithm exists for finding the GCD using only division by
two, instead of division by an arbitrary integer, called the Binary GCD. It was
originally proposed by Stein (Stein 1967), but may have been known in 1st
century China (Knuth 1998). The algorithm works recursively by checking a
few cases for input (a,b):

1. If a =0 or b = 0, return the other argument.
2. If a and b are even, return 2 ged(a/2,b/2) since 2 is a common factor.
3. If only a is even, return ged(a/2,b) since 2 is not a common factor.

4. If only b is even, return ged(a, b/2) since 2 is not a common factor.

a—b
2

,b) is a is larger, or ged(a, %52).

5. If neither is even, return ged(

The GCD is 2*ry, where ry is the final remainder and & is the number of
times we apply Rule 2. The last step works because a — b is even if both
numbers are odd, and then we can apply step 3. This algorithm still requires
O(b3) iterations for b-bit input. The runtime improvement has not been very
convincing on modern architectures which have fast integer division. We will
work through the same example from above for ged(1071,462).

Step a b Rule
0 1071 462 4

1 1071 231 5

2 420 231 3

3 210 231 3
4 105 231 5

5 105 63 5

6 21 63 5

7 21 21 5

8 21 0o —

Since we never applied Rule 2, we have ged(1071,462) = 21, which matches
our answer from before. Notice that Euclid’s Algorithm took 2 steps, whereas
the Binary GCD took 8 steps. However, asymptotically both algorithms take a
number of steps proportional to the number of input bits squared.

5.5.2 Running Time

We will denote by T'(a, b) the number of steps in Euclid’s Algorithm to compute
their GCD g. Since g is a common divisor, then a = mg and b = ng where m
and n are coprime. Then

T(a,b) = T(m,n)
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since we can divide all the steps in the Euclidean algorithm by ¢. Likewise,
T(a,b) = T'(na,nbd)
for any n. We can also derive a recursion for T using the algorithm itself,

T(a,b) = 1+ T(b, ro)
=2+ T(ro,71)

=N+T(rn_2,"N-1),

terminating when we hit 7'(n,0) = 0.

If Euclid’s Algorithm requires N steps for a pair of natural numbers a > b >
0, the smallest values of @ and b for which this is true are the Fibonacci numbers
Fnyo and Fyy1 (Wikipedia 2019), respectively. More precisely, we will show
by induction that if Euclid’s Algorithm requires N steps for the pair a > b, then
one has a > Fyyo and b > Fiyyg.

If N =1, then ro = 0 or b evenly divides a; the smallest integers for which
this is true are b = 1 and a = 2, meaning a = F5 and b = F,. Now we assume
that the result holds for all values up to N — 1. The first step of a run taking
N steps is a = gob + 7o, and then Euclid’s Algorithm requires N — 1 steps for
the pair (b,r9). By our induction hypothesis, we has b > Fy11 and 7o > Fy.
Therefore,

a=qob+rg
>b+rg
> Fyy+Fy
=Fny2

where we used the Fibonacci relation in the last line, and we have shown our
inductive implication. This proof was first published by Gabriel Lamé in 1844.

Now suppose that Euclid’s Algorithm takes IV steps, so that b > Fy1 as we
proved above. Using the closed form solution for Fibonacci numbers, we know
that

bZFN—‘rla
¢N+1 1
-5l

where ¢ is the Golden Ratio
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Thus we have
N+1
logyo b > logy 7

2 (N+1) logy ¢
S N +1
- 5

since log; ¢ > 1/5. Thus the number of Euclid iterations is less than five times
the number of decimal digits in the smaller argument to the GCD, and Euclid’s
Algorithm is linear in the size of b.

We know that the number of bit operations required to divide a k-bit positive
integer by an [-bit positive integer, k > [, is (k—I+1). Thus, if we let b; = logy 7;
be the number of bits in the ith remainder, then the total algorithmic cost is
given by

D bilbi—bis1+1) <bo > (b —big1 +1)
i<N <N

=bo(bo + N)

< bo(bo + 5bo)

< 6b3

so that the running time of Euclid’s Algorithm is in O(b2), where by is the
number of bits in the input.

5.5.3 Coq Proofs

We would like a constructive realization of the GCD algorithm embodying the
Euclidean algorithm. In order to get this inductively, we need some variable
to decrease. When we described the Euclidean Algorithm above, we concluded
that there was a finite number of steps because the remainder must vanish at
some step V. In defining our inductive function, we will instead decrease in our
argument n, demanding that we start with an adequate step limit V.

Fixpoint Zgcdn (n:nat) : Z -> Z -> Z := fun a b =>
match n with
| 0 => 1 (* arbitrary, since n should be big enough *)
| S n => match a with
| ZO => Zabs b
| Zpos _ => Zgcdn n (Zmod b a) a
| Zneg a => Zgcdn n (Zmod b (Zpos a)) (Zpos a)
end
end.

This is given in the zarith.zcgd_a1t package in Coq. We can give a simple estimate
for the number of iterations N. If we start with a = 0, then the answer is just
|b], so we do one iterate. Otherwise, the number of iterates is less than twice
the number of binary digits given by psize, which follows from our bound using
the number of decimal digits.
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Definition Zgcd_bound (a:Z) :=
match a with

| 20=>50

| Zpos p => let n := Psize p in (n+n)%nat

| Zneg p => let n := Psize p in (n+n)%nat
end.

Using this bound, we can define our complete algorithm

Definition Zgcd_alt a b := Zgcdn (Zgcd_bound a) a b.
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As a demonstration, let us prove that this function is always non-negative,

assuring us that our definition for arbitrary integers is correct.

Coq < Lemma Zgcdn_pos : forall n a b, 0 <= Zgcdn n a b.

1 subgoal

forall (n : nat) (ab : Z), 0 <= Zgcdnn a b

We will do induction on n

Zgcdn_pos < induction n.
2 subgoals

forall ab : Z, 0 <= Zgcdn 0 a b

subgoal 2 is:
forall ab : Z, 0 <= Zgcdn (S n) a b

Zgcdn_pos < intros a b.
2 subgoals

a, b: Z

0 <= Zgcdn 0 a b

subgoal 2 is:
forall ab : Z, 0 <= Zgcdn (S n) a b

and take care of the base case with auto, although we can do this by hand using

the theorems for the less than operator.

Zgcdn_pos < simpl.
2 subgoals

subgoal 2 is:
forall ab : Z, 0 <= Zgcdn (S n) a b

Zgcdn_pos < auto with zarith.
1 subgoal

n : nat
IHn : forall ab : Z, 0 <= Zgcdn n a b

forall ab : Z, 0 <= Zgcdn (S n) a b

Now we can do induction on a, which will give us the three case for integers,
namely 0, positive, and negative. This can also be obtained using destruct a in

the proof assistant.
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Zgcdn_pos < intros a b.
1 subgoal

n : nat
IHn : forall ab : Z, 0 <= Zgcdn n a b
a, b : 2

0 <= Zgcdn (S n) ab

Zgcdn_pos < induction a.
3 subgoals

n : nat
IHn : forall ab : Z, 0 <= Zgcdn n a b
b:2Z

0 <= Zgcdn (S n) 0D

subgoal 2 is:
0 <= Zgcdn (S n) (Z.pos p) b
subgoal 3 is:
0 <= Zgcdn (S n) (Z.neg p) b

CHAPTER 5. MODULAR ARITHMETIC

The zero case amounts to showing that the absolute value of a number is non-

negative, which auto can handle.

Zgcdn_pos < simpl.
3 subgoals

n : nat
IHn : forall ab : Z, 0 <= Zgcdnn ab
b: 2

0 <= Z.abs b

subgoal 2 is:
0 <= Zgcdn (S n) (Z.pos p) b
subgoal 3 is:
0 <= Zgcdn (S n) (Z.neg p) b

Zgcdn_pos < auto with zarith.
2 subgoals

n : nat

IHn : forall ab : Z, 0 <= Zgcdnn a b
p : positive

b:2Z

0 <= Zgcdn (S n) (Z.pos p) b

subgoal 2 is:
0 <= Zgcdn (S n) (Z.neg p) b

For the positive case, we can expand the inductive definition one step, which
gives us something that exactly fits our induction hypothesis.

Zgcdn_pos < simpl.
2 subgoals

n : nat

IHn : forall ab : Z, 0 <= Zgcdn n a b
p : positive

b:2Z

0 <= Zgcdn n (b mod Z.pos p) (Z.pos p)

subgoal 2 is:
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0 <= Zgcdn (S n) (Z.neg p) b

Zgcdn_pos < apply IHn.
1 subgoal

n : nat

IHn : forall ab : Z, 0 <= Zgcdn n a b
p : positive

b:Z

0 <= Zgcdn (8 n) (Z.neg p) b

The negative case is handled identically, completing our proof.

Zgcdn_pos < simpl.
1 subgoal

n : nat

IHn : forall ab : Z, 0 <= Zgcdn n a b
p : positive

b:Z

0 <= Zgcdn n (b mod Z.pos p) (Z.pos p)

Zgcdn_pos < apply IHn.
No more subgoals.

Zgcdn_pos < Qed.
(induction n).
(intros a b).
(simpl).
auto with zarith.

(intros a b).
(induction a).
(simpl).

auto with zarith.

(simpl).
(apply IHn).

(simpl).
(apply IHn).

Qed.
Zgcdn_pos is defined

We can use our proof above to justify the result for our full algorithm.

Coq < Lemma Zgcd_alt_pos : forall a b, 0O <= Zgcd_alt a b.

1 subgoal

forall a b : Z, 0 <= Zgcd_alt a b

Zgcd_alt_pos < intros a b.
1 subgoal

a, b: Z

0 <= Zgcd_alt a b

Zgcd_alt_pos < unfold Zgcd_alt.
1 subgoal

a, b : 2

0 <= Zgcdn (Zgcd_bound a) a b

301
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Zgcd_alt_pos < apply Zgcdn_pos.
No more subgoals.

Zgcd_alt_pos < Qed.
(intros a b).

(unfold Zgcd_alt).
(apply Zgcdn_pos) .

Qed.
Zgcd_alt_pos is defined

Now we are ready for an initial verification of our algorithm. We would like
to prove that the output of our function is indeed the gcd of the two inputs.
To verify this, we can use the zis_gecda predicate we saw in Section 5.4.2. We also
need to bound the number of steps the algorithm will take. We know from our
complexity estimate that this is bounded by the number of bits in a, but here
we will use the much weaker bound a since it is easier to prove. We begin with
a statement of the theorem, and use induction on n.

Coq < Lemma Zgcdn_linear_bound : forall n a b, Zabs a < Z_of_nat n -> Zis_gcd a b (Zgcdn n a b).
1 subgoal

forall (n : nat) (ab : Z),
Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)

Zgcdn_linear_bound < induction n.
2 subgoals

forall a b : Z, Z.abs a < Z.of_nat 0 -> Zis_gcd a b (Zgcdn 0 a b)

subgoal 2 is:
forall a b : Z, Z.abs a < Z.of_nat (S n) -> Zis_gcd a b (Zgcdn (S n) a b)

The base case produces a hypothesis H which is impossible, |a] < 0. Since a
false antecedent proves anything, we can replace our goal with r using the tactic
exfalso. This comes from the Latin phrase ex falso quodlibet which means ”from
falsehood, anything follows”, first proved by 12th century French philosopher
William of Soissons (Priest 2011).

Zgcdn_linear_bound < intros a b H.
2 subgoals

a, b : 2
H: Z.abs a < Z.of_nat O

Zis_gcd a b (Zgedn 0 a b)

subgoal 2 is:
forall a b : Z, Z.abs a < Z.of_nat (S n) -> Zis_gcd a b (Zgcdn (S n) a b)

Zgcdn_linear_bound < simpl in H.
2 subgoals

a, b : 2
H: Z.abs a <0

Zis_gcd a b (Zgedn O a b)

subgoal 2 is:
forall a b : Z, Z.abs a < Z.of_nat (S n) -> Zis_gcd a b (Zgcdn (S n) a b)
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Zgcdn_linear_bound < exfalso.
2 subgoals

a, b: Z
H: Z.abs a <0

False

subgoal 2 is:
forall a b : Z, Z.abs a < Z.of_nat (S n) -> Zis_gcd a b (Zgcdn (S n) a b)

Now we need a way to expose this as a contradiction. First, we introduce a new
hypothesis H1 which tells us that the absolute value of any integer must be non-
negative. Then we can use the built-in solver omega for Pressburger arithmetic,
which can handle integer math and inequalities.

Zgcdn_linear_bound < pose (H1 := Zabs_pos a).
2 subgoals

a, b : 2
H: Z.abs a <0
H1 := Z.abs_nonneg a : 0 <= Z.abs a

False

subgoal 2 is:
forall a b : Z, Z.abs a < Z.of_nat (S n) -> Zis_gcd a b (Zgcdn (S n) a b)

Zgcdn_linear_bound < omega.
1 subgoal

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)

forall ab : Z, Z.abs a < Z.of_nat (S n) -> Zis_gcd a b (Zgcdn (S n) a b)

Now we have to prove the induction step, for which we will use induction on
the input a. Remember that induction over integers amounts to proving the
statement for zero, positive numbers, and negative numbers. We start with the
Z€ro case.

Zgcdn_linear_bound < intros a b H.
1 subgoal

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
a, b : 2

H : Z.abs a < Z.of_nat (S n)

Zis_gcd a b (Zgecdn (S n) a b)

Zgcdn_linear_bound < induction a.
3 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b:2Z

H : Z.abs 0 < Z.of_nat (S n)

Zis_gcd 0 b (Zgedn (S n) 0 b)

subgoal 2 is:
Zis_gcd (Z.pos p) b (Zgcdn (S n) (Z.pos p) b)
subgoal 3 is:
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Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < simpl.
3 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b: Z

H : Z.abs 0 < Z.of_nat (S n)

Zis_gcd O b (Z.abs b)

subgoal 2 is:
Zis_gcd (Z.pos p) b (Zgedn (S n) (Z.pos p) b)
subgoal 3 is:
Zis_gcd (Z.neg p) b (Zgecdn (S n) (Z.neg p) b)

We will expand the ged predicate using the theorem we saw in the last section,
which gives us three new goals. The first divisibility statement just needs a
witness, which is clearly zero.

Zgcdn_linear_bound < apply Zis_gcd_intro.
5 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b:2Z

H : Z.abs 0 < Z.of_nat (S n)

(Z.abs b | 0)

subgoal 2 is:

(Z.abs b | b)
subgoal 3 is:

forall x : Z, (x | 0) => (x | b) => (x | Z.abs b)
subgoal 4 is:

Zis_gcd (Z.pos p) b (Zgcdn (S n) (Z.pos p) b)
subgoal 5 is:

Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < exists O.
5 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)

H : Z.abs 0 < Z.of_nat (S n)

0=0%Z.abs b

subgoal 2 is:

(Z.abs b | b)
subgoal 3 is:

forall x : Z, (x | 0) => (x | b) -> (x | Z.abs b)
subgoal 4 is:

Zis_gcd (Z.pos p) b (Zgcdn (S n) (Z.pos p) b)
subgoal 5 is:
Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < ring.
4 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b:2Z

H : Z.abs 0 < Z.of_nat (S n)
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(Z.abs b | b)

subgoal 2 is:

forall x : Z, (x| 0) -> (x| b) => (x | Z.abs b)
subgoal 3 is:

Zis_gcd (Z.pos p) b (Zgcdn (S n) (Z.pos p) b)
subgoal 4 is:

Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

The second statement asks for m such that m|b| = b, so it is just the sign of b.
It takes a few more steps until we can apply a theorem telling us that this is
true.

Zgcdn_linear_bound < exists (Zsgn b).
4 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b: Z

H : Z.abs 0 < Z.of_nat (S n)

b=12Z.sgn b *x Z.abs b

subgoal 2 is:

forall x : Z, (x | 0) => (x | b) => (x | Z.abs b)
subgoal 3 is:

Zis_gcd (Z.pos p) b (Zgcdn (S n) (Z.pos p) b)
subgoal 4 is:

Zis_gcd (Z.neg p) b (Zgecdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < symmetry.
4 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b:2Z

H : Z.abs 0 < Z.of_nat (S n)

Z.sgn b * Z.abs b = b

subgoal 2 is:

forall x : Z, (x| 0) -=> (x | b) -> (x | Z.abs b)
subgoal 3 is:

Zis_gcd (Z.pos p) b (Zgcdn (S n) (Z.pos p) b)
subgoal 4 is:

Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < rewrite Z.mul_comm.
4 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (chdn n ab)
b:Z

H: Z.abs 0 < Z.of_nat (S n)

Z.abs b * Z.sgn b = b

subgoal 2 is:

forall x : Z, (x| 0) => (x | b) => (x | Z.abs b)
subgoal 3 is:

Zis_gcd (Z.pos p) b (Zgecdn (S8 n) (Z.pos p) b)
subgoal 4 is:

Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < apply Z.abs_sgn.
3 subgoals
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n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b: Z

H : Z.abs 0 < Z.of_nat (S n)

forall x : Z, (x| 0) => (x | ) => (x | Z.abs b)

subgoal 2 is:
Zis_gcd (Z.pos p) b (Zgecdn (S n) (Z.pos p) b)
subgoal 3 is:
Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Now we have to prove the defining implication for the ged, namely that it is
divisible by any other common divisor. The main complication here is from the
sign ambiguity. For the first step, we know that b = kzx for some k, so that
|b] = sgn(b)kz.

Zgcdn_linear_bound < intros x H1 H2.
3 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b: Z

H : Z.abs 0 < Z.of_nat (S n)

x : Z
H1 : (x| 0)
H2 : (x | b)

(x | Z.abs b)

subgoal 2 is:
Zis_gcd (Z.pos p) b (Zgcdn (S n) (Z.pos p) b)
subgoal 3 is:
Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < destruct H2 as [k H2].
3 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b:2Z

H : Z.abs 0 < Z.of_nat (S n)

x : Z
H1 : (x | 0)
k:Z

H2 : b=k * x

(x | Z.abs b)

subgoal 2 is:
Zis_gcd (Z.pos p) b (Zgcdn (S n) (Z.pos p) b)
subgoal 3 is:
Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < exists (Z.sgn b * k).
3 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b:2Z

H : Z.abs 0 < Z.of_nat (S n)

x : 2
H1 : (x| 0)
k:2Z

H2 : b=k * x

Z.abs b = Z.sgn b * k * x



5.5. THE EUCLIDEAN ALGORITHM

subgoal 2 is:
Zis_gcd (Z.pos p) b (Zgecdn (S8 n) (Z.pos p) b)
subgoal 3 is:
Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < rewrite <- Z.mul_assoc.
3 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b:Z

H: Z.abs 0 < Z.of_nat (S n)

x : 2

H1 : (x | 0)

k:2Z

Z.abs b = Z.sgn b * (k * x)

subgoal 2 is:
Zis_gcd (Z.pos p) b (Zgedn (S8 n) (Z.pos p) b)
subgoal 3 is:
Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < rewrite <- H2.

3 subgoals
n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b:Z
H : Z.abs 0 < Z.of_nat (S n)
x : Z
H1 : (x | 0)
k:2Z

Z.abs b = Z.sgn b * b

subgoal 2 is:
Zis_gcd (Z.pos p) b (Zgecdn (S8 n) (Z.pos p) b)
subgoal 3 is:
Zis_gcd (Z.neg p) b (Zgecdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < symmetry.

3 subgoals
n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
b:Z
H: Z.abs 0 < Z.of_nat (S n)
x : Z
H1 : (x | 0)
k:2Z

Z.sgn b * b = Z.abs b

subgoal 2 is:
Zis_gcd (Z.pos p) b (Zgcdn (S n) (Z.pos p) b)
subgoal 3 is:
Zis_gcd (Z.neg p) b (Zgecdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < rewrite Z.mul_comm.
3 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
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b:2Z
H : Z.abs 0 < Z.of_nat (S n)
x : 2
HL : (x| 0)
k:2Z

H2 : b=k * x

b *x Z.sgn b = Z.abs b

subgoal 2 is:
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Zis_gcd (Z.pos p) b (Zgcdn (S n) (Z.pos p) b)

subgoal 3 is:

Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < apply Z.sgn_abs.

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)

2 subgoals
n : nat
p : positive
b: 2
H

: Z.abs (Z.pos p) < Z.of_nat (S n)

Zis_gcd (Z.pos p) b (Zgedn (S n) (Z.pos p) b)

subgoal 2 is:

Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

This completes our proof for the zero case. Now we will deal with the positive
integers. We execute the first step of our Euclidean Algorithm, replacing (b, a)
with (a,bmod a). Now we would like to replace the modulo operator with
an explicit representation in terms of the remainder. To do this, we use the
definition of modulo and integer division, employing the generalize tactic, which
like pose, helps us create an additional hypothesis.

Zgcdn_linear_bound < simpl.
2 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)

p : positive
b: 2

H : Z.abs (Z.pos p) < Z.of_nat (S n)

Zis_gcd (Z.pos p) b (Zgcdn n (b mod Z.pos p) (Z.pos p))

subgoal 2 is:

Zis_gcd (Z.neg p) b (Zgedn (S n) (Z.neg p) b)

Zgcdn_linear_bound < unfold Zmod.

2 subgoals

n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)

p : positive
b:2Z

H : Z.abs (Z.pos p) < Z.of_nat (8 n)

Zis_gcd (Z.pos p) b

(Zgcdn n (let (_, r) := Z.div_eucl b (Z.pos p) in r) (Z.pos p))

subgoal 2 is:

Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < generalize (Z_div_mod b (Zpos p) (refl_equal Gt)).

2 subgoals
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n : nat

IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:Z

H : Z.abs (Z.pos p) < Z.of_nat (S n)

(let (q, r) := Z.div_eucl b (Z.pos p) in
b=Z.posp*q+r /\0<=r< Z.posp) ->
Zis_gcd (Z.pos p) b
(Zgcdn n (let (_, r) := Z.div_eucl b (Z.pos p) in r) (Z.pos p))

subgoal 2 is:
Zis_gcd (Z.neg p) b (Zgecdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < destruct (Zdiv_eucl b (Zpos p)) as (q, r).
2 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:Z
H : Z.abs (Z.pos p) < Z.of_nat (S n)
q, r : Z

b=1Z.posp*q+r /\0<=r< Zposp —>
Zis_gcd (Z.pos p) b (Zgecdn n r (Z.pos p))

subgoal 2 is:
Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < intros (HO,H1).
2 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:Z
H : Z.abs (Z.pos p) < Z.of_nat (S n)
q, r : Z

HO : b =Z.posp *xq+r
Hi : 0 <= r < Z.pos p

Zis_gcd (Z.pos p) b (Zgcdn n r (Z.pos p))

subgoal 2 is:
Zis_gcd (Z.neg p) b (Zgecdn (S n) (Z.neg p) b)

Now we need to handle the S(n) for our step bound in H. Since p < n+ 1 and
r < p, we know that r < n. This can be proved automatically by Coq using the
inequalities in our hypotheses.

Zgcdn_linear_bound < rewrite inj_S in H.
2 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:Z
H : Z.abs (Z.pos p) < Z.succ (Z.of_nat n)
q, r : Z

HO : b =Z.posp *xq+r
0 <=r < Z.pos p

Zis_gcd (Z.pos p) b (Zgcdn n r (Z.pos p))

subgoal 2 is:
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Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < simpl Zabs in H.
2 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:2Z
H : Z.pos p < Z.succ (Z.of_nat n)
q, r : Z

HO : b =Z.posp *xq+r
Hl : 0 <=r < Z.pos p

Zis_gcd (Z.pos p) b (Zgecdn n r (Z.pos p))

subgoal 2 is:
Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < assert (H2 : Zabs r < Z_of_nat n).
3 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:Z
H : Z.pos p < Z.succ (Z.of_nat n)
q, r : Z

HO : b=Z.pos p*xq+r
Hl : 0 <=r < Z.pos p

Z.abs r < Z.of_nat n

subgoal 2 is:

Zis_gcd (Z.pos p) b (Zgcdn n r (Z.pos p))
subgoal 3 is:

Zis_gcd (Z.neg p) b (Zgecdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < rewrite Zabs_eq.
4 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:Z
H : Z.pos p < Z.succ (Z.of_nat n)
q, r : Z

HO : b=Z.pos p*xq+r
Hl : 0 <=r < Z.pos p

r < Z.of_nat n

Zgcdn_linear_bound < auto with zarith.
3 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b: 2Z
H : Z.pos p < Z.succ (Z.of_nat n)
q, r : Z

HO : b =Z.pos p *xq+r
Hl : 0 <=r < Z.pos p

0<=r

Zgcdn_linear_bound < auto with zarith.
2 subgoals
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n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:Z
H : Z.pos p < Z.succ (Z.of_nat n)
q, r : Z

HO : b =Z.posp *xq+r
Hl : 0 <= r < Z.pos p
H2 : Z.abs r < Z.of_nat n

Zis_gcd (Z.pos p) b (Zgcdn n r (Z.pos p))

Now we are at the last step, and ready to use our induction hypothesis. We
evaluate the hypothesis for b = a, a = r, and use the fact that r < n from H2.
After rewriting b using HO from our integer division, we can employ the ring
identity for gcd, Equation 5.27, which is zis_gcd_for_euc1ia2 in Coq.
Zgcdn_linear_bound < pose (IH := (IHn r (Zpos p) H2)).

2 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:Z
H : Z.pos p < Z.succ (Z.of_nat n)
q, r : Z

HO : b =Z.pos p*xq+r

Hi : 0 <= r < Z.pos p

H2 : Z.abs r < Z.of_nat n

IH := IHn r (Z.pos p) H2 : Zis_gcd r (Z.pos p) (Zgcdn n r (Z.pos p))

Zis_gcd (Z.pos p) b (Zgcdn n r (Z.pos p))

subgoal 2 is:
Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < rewrite HO.
2 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:Z
H : Z.pos p < Z.succ (Z.of_nat n)
q, r : Z

HO : b=Z.pos p*xq+r

Hi : 0 <= r < Z.pos p

H2 : Z.abs r < Z.of_nat n

IH := IHn r (Z.pos p) H2 : Zis_gcd r (Z.pos p) (Zgcdn n r (Z.pos p))

Zis_gcd (Z.pos p) (Z.pos p * q + r) (Zgcdn n r (Z.pos p))

Zgcdn_linear_bound < apply Zis_gcd_for_euclid2.
2 subgoals

n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive

b:Z
H : Z.pos p < Z.succ (Z.of_nat n)
q, r : Z

HO : b =Z.posp *xq+r

Hl : 0 <=r < Z.pos p

H2 : Z.abs r < Z.of_nat n

IH := IHn r (Z.pos p) H2 : Zis_gcd r (Z.pos p) (Zgcdn n r (Z.pos p))
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Zis_gcd r (Z.pos p) (Zgecdn n r (Z.pos p))

subgoal 2 is:
Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

Zgcdn_linear_bound < exact IH.

1 subgoal
n : nat
IHn : forall a b : Z, Z.abs a < Z.of_nat n -> Zis_gcd a b (Zgcdn n a b)
p : positive
b: Z
H : Z.abs (Z.neg p) < Z.of_nat (S n)

Zis_gcd (Z.neg p) b (Zgcdn (S n) (Z.neg p) b)

We perform nearly the same series of steps for the negative numbers as for the
positive. The only difference is that we need to change the negative argument
to positive in the ged call using zis_ged_minus and the symmetry of the ged.

Zgcdn_linear_bound < Qed.
(induction n).

(intros a b H).

(simpl in H).

exfalso.

(pose (H1 := Zabs_pos a)).
omega.

(intros a b H).
(induction a).
(simpl).
(apply Zis_gcd_intro).
exists 0.
ring.

exists (Zsgn b).
symmetry.

(rewrite Z.mul_comm) .
(apply Z.abs_sgn).

(intros x H1 H2).
(destruct H2 as [k H2]).
exists (Z.sgn b * k).
(rewrite <- Z.mul_assoc).
(rewrite <- H2).
symmetry.

(rewrite Z.mul_comm) .
(apply Z.sgn_abs).

(simpl).
(unfold Zmod) .
(generalize (Z_div_mod b (Zpos p) (refl_equal Gt))).
(destruct (Zdiv_eucl b (Zpos p)) as (q, r)).
(intros (HO, H1)).
(rewrite inj_S in H).
(simpl Zabs in H).
(assert (H2 : Zabs r < Z_of_nat n)).
(rewrite Zabs_eq).
auto with zarith.

auto with zarith.

(pose (IH := IHn r (Zpos p) H2)).
(rewrite HO).

(apply Zis_gcd_for_euclid2).
exact IH.
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(simpl).
(unfold Zmod).
(generalize (Z_div_mod b (Zpos p) (refl_equal Gt))).
(destruct (Zdiv_eucl b (Zpos p)) as (q, r)).
(intros (HO, H1)).
(rewrite inj_S in H).
(simpl Zabs in H).
(assert (H2 : Zabs r < Z_of_nat n)).
(rewrite Zabs_eq).
auto with zarith.

auto with zarith.

(pose (IH := IHn r (Zpos p) H2)).
(apply Zis_gcd_minus).

(apply Zis_gcd_sym).

(rewrite HO).

(apply Zis_gcd_for_euclid2).
exact IH.

Qed.
Zgcdn_linear_bound is defined
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We have proved that our algorithm does give ged(a,b) as its result and takes
no more than a steps. However, we know that it should take no more than
5 * logy @ steps, so there is considerable improvement to make. In order to do

that, we would have to formalize the definition of the Fibonacci numbers.

fibonacci_pos < Qed.
(enough (forall N n, (n < N)%nat -> O <= fibonacci n)).
eauto.

(induction N).
(inversion 1).

(intros *x*).
(destruct n).
(simpl).

auto with zarith.

(destruct n).
(simpl).
auto with zarith.

(change (0 <= fibonacci (S n) + fibonacci n)).
(generalize (IHN n), (IHN (S n))).
omega.

Qed.
fibonacci_pos is defined

5.6 The Fundamental Theorem of Arithmetic

As a further example, let us consider Euclid’s Lemma,

nlab = ged(n,a) =1 = nb. (5.63)

This can be specialized to the case n prime, as

If n divides ab and n is prime, then n divides at least one of a and b.
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We can prove this theorem using Bézout’s Theorem from Eq. (5.28),

dst € Z, sn+ta =1, (5.64)
since ged(n,a) = 1. Now if we multiply both sides by b

dst € Z, snb + tab = b, (5.65)

we see that n divides both terms on the left, so by Eq. (5.8) it must divide the
right, namely b.

We can now use Euclid’s Lemma to prove the Fundamental Theorem of
Arithmetic, namely that all natural numbers have a unique prime factorization.
We first need to show that every natural number greater than 1 is either prime
or a product of primes, which we will do by induction. For the base case, we note
that 2 is prime. For the induction step, we will use strong induction. Assume
that all k& € [2,n) have a unique prime factorization. If n is prime, then the
unique factorization is n itself. Otherwise,

dJabe N,n=abAN1<a<b<n.

Using the induction hypotheses, a and b are products of primes such that a =
pip2---pj and b= qiqgz - - - qr. Thus n is a product of primes

n=ab=pips---piqqz- - G- (5.66)

Next we will show the uniqueness of this product. Assume that n > 1 is the
product of prime numbers in two different ways:

n=Dpip2---Pj (5.67)
=q1q2° " qk- (5.68)

Since p; divides n, Euclid’s Lemma implies that p; divides at least one of the
gj- We can permute the numbering so that p; divides ¢;. However ¢, is prime,
so its only divisors are itself and 1. Thus p; = ¢;. We can repeat this argument
for all p;, associating each with ¢;. Thus the factorizations are equal. Note
that we do not have to worry about different numbers of factors. If we start
with the shorter one, since the first j terms are equal, their product must be
n, which means the other factors are unity. This is impossible since its a prime
factorization, and thus the remaining factors cannot exist.

5.7 The Chinese Remainder Theorem

5.7.1 Divisibility Lemma

Before we discuss the main theorem, we will need a preliminary result. If two
integers a and b divide a third integer ¢, alc A blc, and they are relatively prime
a L b, then their product also divides it, able. This is intuitively clear since
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relatively prime means they have no prime factors in common. Thus the product
of all their prime factors, which is just ab, divides c¢. However, we can prove this
using just our results from above.

alc = blc = ged(a,b) =1 = able. (5.69)
First, we convert the divisibility statements using witnesses,
ma=c = nb=c¢ = ged(a,b) =1 = kab=c. (5.70)
Now, from substituting into the goal, we know that
m = kbAn = ka, (5.71)
which implies that
Elm A kn. (5.72)

This suggest that we choose as our witness k = ged(m,n), or by Bézout’s
Theorem Eq. (5.28),

k = qm+ rn. (5.73)

Now we can try and evaluate the goal

(gm +rn)ab = c, (5.74)
gmab + rnab = ¢, (5.75)
gbc + rac = c, (5.76)
gb+ra=1, (5.77)

where we used our hypotheses and then divided by ¢ which is not 0. However,
this last statement is just Bézout’s Theorem for a and b since they are relatively
prime.

We will prove this for ¢ # 0 since it is trivially true when ¢ is zero. We start
with a statement of the theorem and introduction of hypotheses.

Coq < Lemma div_a_perp_b : forallabc : Z, c<>0->(a |l c) -> (b | c)->Zisgecdabl->(a*b | c).
1 subgoal

A : Set

forall abc : Z,
c<>0->(lc)->(M]|c)->Zisgcdabl->(ax*xDbl c)

div_a_perp_b < intros a b ¢ CnotZero AdivC BdivC AperpB.
1 subgoal

A : Set

a, b, c : Z

CnotZero : ¢ <> 0
AdivC : (a | ¢)

BdivC : (b | ¢)
AperpB : Zis_gcd a b 1

(a*xb | c)
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Next we turn the ged(a, b) into a statement of Bézout’s Theorem unfold all the
divisibility defintions,

div_a_perp_b < apply rel_prime_bezout in AperpB.
1 subgoal

A : Set

a, b, c: Z

CnotZero : ¢ <> 0
AdivC : (a | ¢)

BdivC : (b | ¢)
AperpB : Bezout a b 1

(a*Db | c)

div_a_perp_b < destruct AdivC as [m H1].
1 subgoal

A : Set

a, b, c: Z

CnotZero : ¢ <> 0

m: Z

Hl : c=m* a

BdivC : (b | ¢)
AperpB : Bezout a b 1

(a *Db | c)

div_a_perp_b < destruct BdivC as [n H2].

1 subgoal
A : Set
a, b, c: Z
CnotZero : ¢ <> 0
m: Z
Hl : c=m* a
n:2Z

H2 : c=n*b
AperpB : Bezout a b 1

(a *Db | ¢c)

div_a_perp_b < unfold Zdivide.

1 subgoal
A : Set
a, b, c: Z
CnotZero : ¢ <> 0
m: Z
Hl : c=m* a
n:2Z

H2 : c=n*b
AperpB : Bezout a b 1

exists z : Z, c =z * (a * b)

div_a_perp_b < destruct AperpB as [r q H3].
1 subgoal

A : Set
a, b, c: Z
CnotZero : ¢ <> 0
m: Z

Hl : c=m * a
n:2Z

H2 : c =
r,q:2
H3 : r *
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exists z : Z, c =z * (a * b)

Now we multiply the Bézout relation by c so that we can rewrite our goal,

div_a_perp_b < apply Z.mul_cancel_r with (p:=c) in H3.
2 subgoals

a, b, c: 2

CnotZero : ¢ <> 0

m: Z

Hl : c=m* a

n: 2z

H2 : c=n*b

r,q:2

H3 : (r *a+qx*b) xc=1%c

exists z : Z, c =z * (a * b)

subgoal 2 is:
c<>0

div_a_perp_b < rewrite Z.mul_1_1 in H3.
2 subgoals

a, b, c : Z

CnotZero : c <> 0

m: Z

Hl : c=m* a

n: 2z

H2 : c=n *b

r,q:2

H3 : (r xa+q*Db) xc=c

exists z : Z, c =z * (a * b)

subgoal 2 is:
c<>0

div_a_perp_b < rewrite Z.mul_add_distr_r in H3.

2 subgoals
a, b, c: 2
CnotZero : ¢ <> 0
m: Z
Hl : c=m* a
n: =z
H2 : c=n *b
r,q:2
H3 : r*a*xc+q*bxc=c

exists z : Z, c =z * (a * b)

subgoal 2 is:
c<>0

div_a_perp_b < rewrite H2 in H3 at 1.

2 subgoals
a, b, c: Z
CnotZero : c <> 0
m: Z
Hi : c=m * a
n: 2z
H2 : c=n*b
r,q:2
H3 : r*ax*x (n*xb) +qg*bx*xc=c
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exists z : Z, c =z * (a * b)

subgoal 2 is:
c<>0

div_a_perp_b < rewrite H1 in H3 at 1.

2 subgoals
a, b, c: 2
CnotZero : c <> 0
m: Z
Hl : c=m* a
n:2Z
H2 : c=n *b
r,q:2
H3 : r*ax*x (n*b) +q*bx* (mx*a)=c

exists z : Z, c =z * (a * b)

subgoal 2 is:
c<>0

div_a_perp_b < rewrite <- H3.

2 subgoals
a, b, c : Z
CnotZero : ¢ <> 0
m: Z
Hl : c=m* a
n:2Z
H2 : c=nx*b
r,q:2
H3 : r*ax*x(n*b) +g*bx*(m*a)=c

exists z : Z, r *a * (n *b) + q*b * (m*a) =z * (a*b)

subgoal 2 is:
c<>0

Now we can provide the witness to the existence goal

div_a_perp_b < exists (g*m + r*n).

2 subgoals
a, b, c : Z
CnotZero : c <> 0
m: Z
Hl : c=m* a
n:2Z
H2 : c=n *b
r,q:2
H3 : r*xax*x (n*b) +q*bx* (mx*a)=c

r*a*x (n*b) +q*bx* (m*a)=(*m+71*n)* (ax*b)

subgoal 2 is:
c<>0

div_a_perp_b < ring.
1 subgoal

a, b, c: Z

CnotZero : ¢ <> 0
m: Z
H1 : c
n:2Z
H2 : c=n *b
r,q:2

n
8
*
o
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H3 : r*a+qx*xb=1
H: forallnmp : Z, p<>0->n=m->n*p=m*p

c<>0

div_a_perp_b < exact CnotZero.
No more subgoals.

div_a_perp_b < Qed.

(intros a b ¢ CnotZero AdivC BdivC AperpB).
(apply rel_prime_bezout in AperpB).
(destruct AdivC as [m H1]).

(destruct BdivC as [n H2]).

(unfold Zdivide).

(destruct AperpB as [r q H3]).

(apply Z.mul_cancel_r with (p := c¢) in H3).
(rewrite Z.mul_1_1 in H3).

(rewrite Z.mul_add_distr_r in H3).
(rewrite H2 in H3 at 1).

(rewrite H1 in H3 at 1).

(rewrite <- H3).

exists (g * m + r * n).

ring.

exact CnotZero.

Qed.
div_a_perp_b is defined

5.7.2 Ring Isomorphism

The Chinese Remainder Theorem states that if one knows the remainders from
FEuclidean division of an integer n by several other integers, called moduli or
divisors, then one can determine uniquely the remainder from division of n by
the product of the divisors, under the condition that the divisors are pairwise
coprime. More formally, let the divisors nq,...,n;,...,n; be integers greater
than 1. Let us denote by N their product N = [[, n;. The Chinese Remainder
Theorem (CRT) asserts that if the n; are pairwise coprime, and if the remainders
ai,...,ay are integers such that 0 < a; < n; for every i, then there is one and
only one integer z, such that 0 < z < N and the remainder of the Euclidean
division of x by n; is a; for every 7. This may be restated as follows in term of
congruences: If the n; are pairwise coprime, and if aq,...,a; are any integers,
then there exists an integer = such that

x=a; (mod ng) (5.78)

x=a; (mod ny) (5.79)

and any two such z are congruent modulo .

A simple argument shows that any solution to the congruences above is
unique. Suppose that z and 2’ are both solutions to all the congruences. As
z and z’ give the same remainder when divided by n;, their difference z — 2’
is a multiple of each n;. As the n; are pairwise coprime, their product N also
divides  — 2’ by Eq. (5.69), and thus z and 2’ are congruent modulo N. If
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we assume the x and z’ are non-negative and less than N, then their difference
may be a multiple of N only if z = 2’. However, we still need to show that such
a solution exists.

Consider the function f : Zy — Zyp, X -+ X Ly,

f(z) = (x mod ny, ...,z mod ny) (5.80)

that maps congruence classes modulo N to k-tuples of congruence classes mod-
ulo n;. The proof of uniqueness above shows that the function f is injective.
As the domain, integers 0 < k < N, and the codomain, tuples (k1,...,kp)
where 0 < k; < ny, of f have the same number of elements, the function is also
surjective, which proves the existence of the solution. Since the map is bijec-
tive, we call the map between the two spaces an isomorphism. Unfortunately,
this short proof does not tell us how to compute the solution, and is called a
nonconstructive proof .

5.7.3 Constructive CRT

We will first show a constructive proof of CRT in the special case of only two
divisors using the same idea we used to prove Eq. (5.69). Suppose that

=a; (mod ng) (5.81)
=as (mod ny), (5.82)

where ny L ny (meaning that they are coprime), and by Bézout’s Theorem
Eq. (5.28) we have

ds,t € Z,sny +tng = 1. (5.83)

We can compute s and ¢ using the Extended Euclidean Algorithm, and form
the solution

T = agsnq + artns. (5.84)

We can verify the first congruence

x=a; (modny) (5.85)
agsny + aitne = a1 (mod nq) (5.86)
agsni +a1(1 —sny) =a; (mod ny) (5.87)
(ags —a18)ny + a1 = a1 (mod ny) (5.88)
a1 =a; (mod nq) (5.89)

and the second
x=ay (mod ng) (5.90)
assni + aitng = as  (mod no) (5.91)
az(1 —tng) + artng = az  (mod ng) (5.92)
as + (a1t — ast)ne = az  (mod ns) (5.93)
as =as (mod no) (5.94)
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Thus z is a solution to the congruences and CRT is true for the case of two
congruences. Now we take the general case of k congruences

r=a; (modny) (5.95)
5.96)
x=ar (mod ng), 5.97)

where n; L nj, 7 # j. We use our solution algorithm above to solve the first two
equations, giving solution a2. Now all solutions of the general equation must
also satisfy

x=ajz (mod ning), (5.98)

so next we can solve the equation above and the third equation to get ajo3,
giving us

x =ajzs (mod ningng). (5.99)

Each step of our algorithm removes a congruence. Thus at the end we will have
the general solution to k congruences.

A Residue number system (RNS) represents a large integer using a set of
smaller integers, so that computation may be performed more efficiently. By
representing a large integer as a set of smaller integers, a large calculation can
be performed as a series of smaller calculations, each of can be performed inde-
pendently and in parallel. Addition or subtraction can be performed by simply
adding or subtracting the remainder values, modulo their specific moduli, so
that

C=A+B (mod N)=c¢; =a;£b; (mod n;). (5.100)
Similarly for multiplication,
C=A-B (mod N)=c¢;=a;-b; (modny). (5.101)

No overflow checking is necessary for either operation. Division however can be
problematic if the denominator is not coprime to the large modulus N. In this
case, b; can be zero, and would not have a multiplicative inverse in the subring
L, -

For example, suppose we created a number system using 10 and 21. We
would be able to represent numbers up to 210, while only doing calculations
with numbers as large as 21. Suppose that we would like to multiply 4 x 23 = 92
using our new system. We start by representing our two numbers

4 — (4 mod 10,4 mod 21) (
= (4,4) (

23 — (23 mod 10,23 mod 21) (5.104
=(3,2) (
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Now we can perform the multiplication

4 x 23 = (4 x 3mod 10,4 x 2 mod 21) (5.106)
= (12 mod 10,8 mod 21) (5.107)
= (2,8) (5.108)

We can verify that this is the solution,

92 — (92 mod 10,92 mod 21) (5.109)
= (2,8) (5.110)

but how would we convert (2, 8) directly to 92?7 We again use Bézout’s Theorem
Eq. (5.28) to write

1=21s+10¢t (5.111)

which we can solve using the Extended Euclidean Algorithm, giving s = 1 and
t=—-2.

Step Euclid Equation ¢ r  Bézout Equation s ¢

0 21=2-10+1 2 1 1=1-214+-2-10 1 -2

1 10=10-1+0 10 O N/A - -

Now we use Eq. (5.84) for the solution to the Chinese Remainder Theorem
congruences

T = agtng + ar1sny  (mod 210) (5.112)
—8--2-10+2-1-21 (mod 210) (5.113)
= —160+42 (mod 210) (5.114)
= —118 (mod 210) (5.115)
=92 (5.116)

5.8 Problems
Problem V.1 Show that
Ya,b,c € Z,albV alc = albc

by generating Proof: mod_mult_or

Lemma mod_mult_or : forall a b c : Z, (alb) \/ (alc) -> (al(b*c)).

Problem V.2 Show that
Ya,b,c € Z,alb A alc = albec

by generating Proof: mod_mult

Lemma mod_mult : forall a b c : Z, (alb) /\ (alc) -> (al(b*c)).
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Problem V.3 Show that x =y mod n is an equivalence relation.

Problem V.4 Show that z|y is a partial order on Z (if > 0), and that it is
not a total order.

Problem V.5 Consider the integers 3213 and 1386.
e Show the steps of the Euclidean Algorithm for 3213 and 1386.
e Show the steps of the Exended Euclidean Algorithm for 3213 and 1386.

Problem V.6 A finite field is a set of numbers with four generalized op-
erations. The operations are called addition, subtraction, multiplication and
division and have their usual properties, such as commutativity, associativity
and distributivity. An example is our sets of integers modulo a prime p, Z,. In
such a field with p numbers, every nonzero element a has a unique modular mul-
tiplicative inverse, a~! such that aa~! = a~'a = 1 (mod p). This inverse can
be found by solving the congruence equation az = 1 (mod p), or the equivalent

linear Diophantine equation
ar +py = 1. (5.117)

Suppose that p = 13 and a = 5. Solve this equation by the Euclidean algorithm
and find a~ .

Problem V.7 Notice that as we compute the solution to a set of congruences
with Chinese Remainder Theorem, our moduli increase in size at each step.
This means that each computation will require numbers of greater size. Can
you reorganize the solution process to reduce the size of numbers needed at each
step?

Problem V.8 Prove Euclid’s Lemma using Coq, generating Proof: Fu-
clid_lemma

Lemma Euclid_lemma : forallnab : Z, (b <> 0) -> (n | a*b) -> Zis_gcdna 1 -> (n | b).

You Wlll need the Znumtheory package, the Zis_gcd predicate, and the rel_prime_bezout
theorem from Cogq.

Problem V.9 Prove that the divisibility relation, m|n, is antisymmetric for
all non-negative integers, rather than all positive integers as was done in the
text.

Problem V.10 Let n and m be two integers, d = ged(n,m), and k € Z. If
n | mk, prove that n | kd, which in Coq is

Lemma red_div : forallmn d k: Z, (n | m * k) -> Zis_gcdmnd -> (n | d * k).
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n

Problem V.11 Let n and m be two positive integers, d = gcd(n, m), then %
and 7 are relatively prime, which in Coq is

Lemma red_pair : forallmnd k1l : Z, m<>0->n<>0->Zis gcdmnd->k*d=n->1%d=m->Zis_gcd k 1 1.
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Chapter 6

Graph Theory

6.1 Graphs
A graph G is really just a binary relation E on a set of vertices V,
G = (V,E) (6.1)

and thus it is no surprise that we called the set of true pairs the graph of
our relation. In graph theory, each true pair v,Guv, is called an edge of the
graph, starting on vertex v, and ending on vertex v,. We can thus draw the
relation by making each member of V' a point and then adding a directed edge
between points for each true pair. For example, consider the following graph on

vV ={1,2,3},
G=({1,2,3},{(1,2),(2,3),3,1)}) (6.2)

which we can represent as

(3,1) (2,3)

(1,2)

If the relation is symmetric, we say that the graph is undirected since the edges
are no longer arrows, just lines, as we always have an edge in both directions.
If we make our relation symmetric,

G=({1,2,3},{(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)}) (6.3)

then we would have the picture,

325
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(3,1) (2,3)

(1,2)

Sometimes, it makes sense to allow multiple connections between the same pair
of vertices. This is referred to as a multigraph, as opposed to a simple graph.

Once we visualize graphs as a diagram, we begin to classify them in different
ways. We say that the indegree of a vertex is the number of edges terminating
at that vertex, whereas the outdegree is the number of edges leaving the vertex.
In an undirected graph, we just have the degree of a vertex, which is the number
of attached edges. The complexity of many graph algorithms, and higher level
algorithms, is dependent on the maximum degree. In fact, one definition of a
small world, or social, graph is a prescribed degree sequence for the vertices.
If every pair of vertices is connected, we call it a complete graph. The degree
of every vertex in a complete graph is n — 1, where n = |V, since each vertex
connects to all others. The number of edges is %, which we can see in the
following way. The first vertex makes n — 1 new edges, the second vertex makes
n — 2 since it connects to every vertex but the first one, and so on. Thus we
have

[El=(n—-1)4+(n—-2)4+---+1 (6.4)
n—1
:Zi (6.5)
nin—1)

2

where we recognize the sum from Equation (4.31).

We denote the complete graph on n nodes as K,

and exhibit K5 in Figure 6.1. Why can we speak of /
the complete graph? For a given V' there is only one
complete graph since every possible edge is present,
but surely we could have many different sets V' with
n elements. This is because mathematicians have a
peculiar way of defining equality. We often say that
two mathematical objects are the same if there is a
bijection between them. If I have two sets V and W,
both of cardinality n, then there must be a bijection
between them ¢ : V' — W. If we have the complete Figure 6.1: The Ks
graph on V| then we can form the graph complete graph

Gy = (W,Eg), Ey = {(v1,v2) € E | (¢(v1), p(v2)} (6.7)

Nzl

/
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which is also complete.

We have relations for which the domain and range sets are different, for
instance the student registration relation from Equation (3.27). We can also
imagine these as graphs, but with a partitioned space of vertices. Edges always
originate in the first vertex subset and end in the second subset. We call this a
bipartite graph. The graph from Equation (3.27) can be represented as

Alicee®
e CSE191
Bobe

/. CSEA410
Carl®

If every vertex from the first subset is connected to every vertex in the second
subset, then we call it a complete bipartite graph, and denote it K, , for m
vertices in the first set and n in the second.

6.2 Graph Tours

The original problem solved using
graph theory was the Seven Bridges of
Konigsberg. The city of Konigsberg
in Prussia (currently Kaliningrad,
Russia) was set on both sides of the
Pregel River, and included two large
islands which were connected to each
other, and to the two mainland por-
tions of the city, by seven bridges, as
shown in Fig. 6.2. A long-standing
= problem was to take a walk through

the city that would cross each of those

bridges once, but only once. The

) ) o problem was solved by Leonhard Eu-
.Flgur‘e 6.2: The city of Konigsberg and .. (1707-1783), perhaps the great-
its bridges

Y
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est mathematician of all time, and
certainly the greatest applied math-
ematician. Euler’s genius was to abstract away the non-essential parts of the
problem so that he could think through directly the kernel of the difficulty.
FEuler sees that the shape of the city, the size, street configuration, and
many other factors are all immaterial to the problem at hand. What matters is
whether there is a connection (bridge) from one part of the city to another. He
collapses each part of the city to a point, since nothing is important except the
connections to other parts. There are four parts of the city (two shores and two
islands) which become our vertex set V', and seven bridges connecting the parts


https://en.wikipedia.org/wiki/File:Konigsberg_bridges.png
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Leonhard_Euler
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which become seven edges E. This is the essence of mathematical modeling,
stripping out the inessential in order to cleanly formulate a problem that can
be solved. The bridge connection graph of Kéingsberg is show below,

ZAN
A

This is technically a multigraph since it has multiple edges between vertices,
which correspond to multiple bridges between two banks. Euler reasoned that
except possibly when starting or stopping, when on enters a part of the city
(vertex) by one bridge (edge), one then leaves by another bridge (edge). If we
are to traverse each bridge (edge) exactly once, each part of the city (vertex)
must have an even number of bridges leading from it, except for the start and
end. We recognize the “number of bridges leading from” a part of the city
as the degree of each vertex. Thus, our trip is only possible if the graph has
zero or two vertices of odd degree. The graph above has four vertices of odd
degree, and thus such a walk is impossible. Euler’s work was presented to the St.
Petersburg Academy on 26 August 1735, and published as Solutio problematis ad
geometriam situs pertinentis (The solution of a problem relating to the geometry
of position) in the journal Commentarii academiae scientiarum Petropolitanae
in 1741.

We will call a set of edges, each connected to the next by a vertex, a path
through the graph, and if it starts and ends on the same vertex a cycle. If
every vertex is reachable from every other by a path, then the graph is called
connected. In honor of the above argument, a path which traverses every edge in
the graph once is called Fulerian path or Euler walk, and a cycle that does so an
Eulerian circuit or Fuler tour. For an Eulerian path to exist, it was necessary
that the graph be connected and the graph to have zero or two vertices of
odd degree. This condition turns out also to be sufficient, as proven by Carl
Hierholzer (Hierholzer 1873), and furthermore each path must start and end on
a vertex of odd degree if they exist. A related notion, the Hamiltonian path, is
a path which visits every vertex exactly once.

6.3 Trees

Another important type of graph is a tree, which is a connected graph not
containing a cycle. This is exactly the tree you might have heard about being
used for binary searches, or decision trees. To construct a tree, start with the
set of vertices V' with |V]| > 1. We must have at least one edge for the graph to



6.4. PLANAR GRAPHS 329

be connected. We add the first edge, between two vertices. We mark both of
these vertices as seen, and we have |V| = 2,|E| = 1. If the graph is connected,
we are done. If not, we add another edge starting at a marked vertex. The edge
must not terminate at a marked vertex, since if it did we would have a cycle,
since there is a path from any vertex to any other as the graph is connected.
Thus the edge terminates on an unmarked vertex, which is then marked. At
each stage, we add one edge and mark one vertex, and we have the invariant
that all marked vertices are connected. The algorithm terminates in |V] —1
steps, so that we have a connected graph with |[V| — 1 edges and no cycles.

6.4 Planar Graphs

In graph theory, a planar graph is a graph that can be embedded in the plane,
meaaning it can be drawn so that no edges cross each other, or equivalently it
can be drawn on in such a way that its edges intersect only at their endpoints.
Notice that planar graphs can also be drawn without edge crossing on the sphere,
and vice versa. The special property of planarity means that planar graphs can
be considered tesselations of the plane, meaning a division of the plane into
pieces, or faces, rather than just vertices and edges. A face is a region bounded
by a cycle. Thus a graph has one face for each cycle, and then one extra for the
infinite (or finite on a sphere) face bounding the graph. This definition allows
us to make use of a powerful theorem from topology.

Euler’s Formula is one of the bedrock results in topology, but it is straight-
forward to prove for the case of a planar graph. Simply stated, Euler’s Formula
says that for any planar graph

VI —|E[ +[F| =2 (6.8)

where |F'| is the number of faces, including the infinite face outside the graph (or
finite if the graph is drawn on the sphere). This is clearly true for our triangle
graph, since 3 — 3 + 2 = 2, where we include the triangular face and the infinite
face surrounding the graph. If we embed this instead on the sphere, we can
see that we have two finite faces, each bounded by three edges. We can move
the three vertices to the equator, and then the faces are the two hemispheres.
We can prove that the relation holds for any planar graph by induction on the
number of faces f in the graph.

The inductive hypothese will be P(f) :=v —e+
f = 2, where v = |V| and e = |E|. The base case
will be a tree, which by definition has no cycles (one
infinite face), so P(1) :=v — (v — 1)+ 1 = 2 is true.
Now suppose that we take our original graph and re-
move edges. We will remove an edge if removing it
removes a face. We keep removing edges until there
are no more faces, which is our base case. Now we will
add edges back in, one at a time. Each edge creates
a face. So suppose P(f) is true (with v and e), and

Figure 6.3: The K4
complete graph
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we add one of our removed edges which also creates
a face, so that

P(f+1)=v—(e+1)+(f+1)=2 (6.9)
v—e+ f=2 (6.10)

P(f)  (6.11)

T, (6.12)

and our result is proved.

We would like to be able to tell which graphs are
planar and which are not. We can, of course, try
drawing them. In Fig. 6.3 we draw K4 which has
edge crossings, but in Fig. 6.4 we see that an alternate
drawing reveals it is in fact planar. How would we
prove that a graph is planar? We will look at K5, as

/ \ it turns out to be an important part of the story. We
will prove that Kj5 is not planar by contradiction.

We first assume the negation, namely that K5 is

Figure 6.4: K, drawn as planar. We know that K has 5 vertices, and 10 edges,

a planar graph. but we do not know how many faces. By Euler’s For-
mula,

v—e+ f=2 (6.13)

5—10+f=2 (6.14)

f=1 (6.15)

However, each edge separates two faces (boundary edges have the infinite face
on the other side), so that if we count all edges around each face we get

2e =) e (6.16)
f

where ey is the number of edges around each face. In two dimensions, we have
es > 3, so that 2e > 3f. Using the result from Euler’s Formula, we have

2e > 3f (6.17)
20 > 21 (6.18)
F, (6.19)

and we have derived a contradiction. Thus our original assumption is false, and
K5 is nonplanar. In fact, by Wagner’s Theorem, a finite graph is planar if and
only if it does not have K5 or K33 as a minor. A graph minor is a subgraph
obtained from the original by deleting or contracting edges.

6.5 Sprouts

According to Martin Gardner, the game of Sprouts was invented by John Horton
Conway and Michael Paterson at the University of Cambridge in 1967. The


https://en.wikipedia.org/wiki/Wagner%27s_theorem

6.6. PROBLEMS 331

. X ™

\ \ \ —
OO B

Move 0 Move 1 Move 2 Move 3 Move 4

Figure 6.5: A game of Sprouts in which Player 2 wins.

game begins with any number of vertices placed on the plane. The first play
draws a edge starting and ending on a vertex (the starting and ending vertex
can be the same), and adds a vertex somewhere on the edge. The edge may
not intersect another edge or vertex, and at most three edges may meet at a
vertex. Play alternates in this fashion between players until it is impossible for
one player to move, at which point the other player wins. An example game is
shown in Fig. 6.5. At the start of a game, there are 3n places to attach edges,
but each edge destroys two spots and adds one. Thus a game cannot be longer
than 3n — 1 moves.

6.6 Problems

Problem VI.1 Suppose we have two sets V and W, both of cardinality n.
Thus there is a bijection ¢ between the sets. I can map a graph on V into a
graph on W using ¢ as shown in Section 6.1. Prove that the graph we get after
mapping the complete graph K, on V into W is complete.

Problem V1.2 Consider again Konigsberg, only now we will distinguish the
parts of the city. The northern bank of the river is occupied by the School of
Mathematics (red), the southern by the School of Physics (green), the west bank
is home to the Administration (brown), and on the small island in the east is

A

1. Tt being customary for students after some hours at the Pub to try to
walk the bridges, and many have returned for more refreshment claiming
success. However, none have been able to repeat the feat by the light of
day. A clever mathematics student, having analyzed the town’s bridge
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system by means of graph theory, concludes that the bridges cannot be
walked. He contrives a cunning plan to build a makeshift eighth bridge so
that he can begin in the evening at School, walk the bridges, and end at the
Pub to brag of his victory. Of course, he wants the physicists to be unable
to duplicate the feat from their School. Where does the mathematician
build the eighth bridge?

2. A clever physics student, infuriated by the mathematician’s solution to
the problem, wants to construct another bridge, enabling her to begin
at her School, walk the bridges, and end at the Pub to demonstrate the
superiority of physical reasoning. As an extra bit of revenge, mathemati-
cians should no longer be able to walk the bridges starting at the School
of Mathematics and ending at the Pub as before. Where does she build
her bridge?

3. The harried Provost has watched this furious bridge-building with dis-
may. It upsets the spirit of the University and, worse, contributes to
absenteeism. He wants to build a final bridge with university funds that
allows all the students to walk the bridges and return to their own dorms.
Where does the Provost build the final bridge?

Problem VI.3 Does K5 have a Hamiltonian path? If so, exhibit one.

Problem VI.4 An ancient King in Westeros had a large kingdom and five
able sons. On his deathbed, he decreed that in order to preserve harmony among
his heirs, each should receive a portion of the kingdom with a sizeable border
to all the others. A grand road should be built between each pair of palaces, so
that the princes could visit each other often. How was the kingdom divided? If
the kingdom descended into war because a division could not be agreed, explain
why.

Problem VI.5 Prove that K33 is not planar
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