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Computational Science

My approach to
Computational Science is

Holistic

M. Knepley (UC) CompSci Columbia 3 / 1



Computational Science

My approach to
Computational Science is

Holistic

M. Knepley (UC) CompSci Columbia 3 / 1



Computational Science

starting with the numerics of PDEs,

and mathematics of the computation,

through the distillation into
high quality numerical libraries,

to scientific discovery through computing.
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Community Involvement
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Operator Approximation

Outline
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Operator Approximation

Collaborators

BIBEE
Researchers

Jaydeep Bardhan

Classical DFT
Researchers

Dirk Gillespie Bob Eisenberg

M. Knepley (UC) CompSci Columbia 7 / 1



Operator Approximation

Bioelectrostatics
The Natural World

Induced Surface Charge on Lysozyme
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Operator Approximation

Bioelectrostatics
Physical Model

Electrostatic Potential ϕ

Region II: solvent
Region I: protein

Surface
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Operator Approximation

Bioelectrostatics
Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced
surface charge σ,

σ(⃗r) + ϵ̂

∫
Γ

∂

∂n(⃗r)
σ(⃗r ′)d2r⃗ ′

4π||⃗r − r⃗ ′||
= −ϵ̂

Q∑
k=1

∂

∂n(⃗r)
qk

4π||⃗r − r⃗k ||

(I + ϵ̂D∗)σ(⃗r) =

where we define
ϵ̂ = 2

ϵI − ϵII

ϵI + ϵII
< 0
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Operator Approximation

Bioelectrostatics
Mathematical Model

The reaction potential is given by

ϕR (⃗r) =
∫
Γ

σ(⃗r ′)d2r⃗ ′

4πϵ1||⃗r − r⃗ ′||
= Cσ

which defines Ges, the electrostatic part of the solvation free energy

∆Ges =
1
2

〈
q, ϕR

〉
=

1
2
⟨q,Lq⟩

=
1
2

〈
q,CA−1Bq

〉
where

Bq = −ϵ̂

∫
Ω

∂

∂n(⃗r)
q(⃗r ′)d3r⃗ ′

4π||⃗r − r⃗ ′||
Aσ = I + ϵ̂D∗

M. Knepley (UC) CompSci Columbia 11 / 1



Operator Approximation

Problem

Boundary element discretizations of the
solvation problem (Eq. ??):

can be expensive to solve

are more accurate than required by
intermediate design iterations
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Operator Approximation

BIBEE
Approximate D∗ by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation:
uniform normal field(

1 − ϵ̂

2

)
σCFA = Bq

Lower Bound:
no good physical motivation(

1 +
ϵ̂

2

)
σLB = Bq

Eigenvectors: BEM ei · ej BIBEE/P
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BIBEE
Approximate D∗ by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation:
uniform normal field(

1 − ϵ̂

2

)
σCFA = Bq

Preconditioning:
consider only local effects

σP = Bq

Eigenvectors: BEM ei · ej BIBEE/P
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Operator Approximation

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy ∆Ges has upper and
lower bounds given by

1
2

(
1 +

ϵ̂

2

)−1

⟨q,CBq⟩ ≤ 1
2

〈
q,CA−1Bq

〉
≤ 1

2

(
1 − ϵ̂

2

)−1

⟨q,CBq⟩ ,

and for spheres and prolate spheroids, we have the improved lower
bound,

1
2
⟨q,CBq⟩ ≤ 1

2

〈
q,CA−1Bq

〉
,

and we note that
|ϵ̂| < 1

2
.
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Operator Approximation

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

I will break the proof into three steps,

Replace C with B

Symmetrization

Eigendecomposition
shown in the following slides.

We will need the single layer operator S for step 1,

Sτ (⃗r) =
∫

τ (⃗r ′)d2r⃗ ′

4π||⃗r − r⃗ ′||
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Operator Approximation

Energy Bounds: First Step
Replace C with B

The potential at the boundary Γ given by

ϕCoulomb (⃗r) = CT q

can also be obtained by solving an exterior Neumann problem for τ ,

ϕCoulomb (⃗r) = Sτ

= S(I − 2D∗)−1(
2
ϵ̂

Bq)

=
2
ϵ̂
S(I − 2D∗)−1Bq

so that the solvation energy is given by

1
2

〈
q,CA−1Bq

〉
=

1
ϵ̂

〈
S(I − 2D∗)−1Bq, (I + ϵ̂D∗)−1Bq

〉
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Operator Approximation

Energy Bounds: Second Step
Quasi-Hermiticity

Plemelj’s symmetrization principle holds that

SD∗ = DS

and we have
S = S1/2S1/2

which means that we can define a Hermitian operator H similar to D∗

H = S1/2D∗S−1/2

leading to an energy

1
2

〈
q,CA−1Bq

〉
=

1
ϵ̂

〈
Bq,S1/2(I − 2H)−1(I + ϵ̂H)−1S1/2Bq

〉
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Operator Approximation

Energy Bounds: Third Step
Eigendecomposition

The spectrum of D∗ is in [−1
2 ,

1
2), and the energy is

1
2

〈
q,CA−1Bq

〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1 (1 + ϵ̂λi)
−1 x2

i

where
H = VΛV T

and
x⃗ = V TS1/2Bq
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Operator Approximation

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

1
2

〈
q,CA−1

CFABq
〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1
(

1 − ϵ̂

2

)−1

x2
i

1
2

〈
q,CA−1

P Bq
〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1 x2
i

1
2

〈
q,CA−1

LB Bq
〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1
(

1 +
ϵ̂

2

)−1

x2
i

where we note that
|ϵ̂| < 1

2
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Operator Approximation

BIBEE Accuracy
Electrostatic solvation free energies of met-enkephalin structures

BEM, GBMV, SGB/CFA, BIBEE/CFA, and BIBEE/P. Figure
3!a" is a plot of the eigenvalues of the calculated matrices.
The SGB/CFA eigenvalues are slightly more accurate than
the BIBEE/CFA eigenvalues for the dominant eigenmodes
but less accurate for the smaller eigenmodes. Of the four
electrostatic approximations, the GBMV method appears to
provide the most accurate eigenvalue estimates. As noted
previously, BIBEE/CFA is most accurate for the largest-
magnitude eigenvalues and the BIBEE/P method offers the
best fidelity to BEM for the smallest eigenvalues.38

It is important that methods for estimating electrostatic
interactions calculate not only an accurate total free energy
but also preserve the energetics of interaction between
chemical groups. To analyze how different methods preserve
pairwise interactions with respect to the BEM calculations,
we project the eigenvectors of the approximate reaction-
potential matrices onto the eigenvectors of the reaction-
potential matrix from BEM. For example, the !i , j" entry of
the matrix

VBEM
T VSGB/CFA !33"

represents the projection of the jth eigenvector of the SGB/
CFA reaction-potential matrix onto the jth eigenvector of the
BEM reaction-potential matrix. In this projection framework,
perfect preservation of the pairwise interactions would give
rise to a diagonal matrix with diagonal entries of unit mag-
nitude. Conversely, if a method imperfectly reproduces pair-
wise interactions, the off-diagonal entries are nonzero. The
degree to which the approximate-method eigenvectors align
with the actual eigenvectors can then be assessed visually
using a heat map; Figs. 4–6 are plots of the projections of the
SGB/CFA, GBMV, and BIBEE/P eigenvectors onto the
eigenvectors of the BEM reaction-potential matrix.38 We be-
lieve that discrepancies between the BIBEE and BEM eigen-
vectors may be a result of discretizing the integral equation
for simulation using BEM.72 However, the various BIBEE
methods give rise to essentially identical eigenvectors !data
not shown", which is expected given that the diagonal ap-
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FIG. 1. !Color online" Comparison of electrostatic solvation free energies using met-enkephalin structures taken from a 500-ps MD simulation plotted as time
series; snapshots have been taken at 10-ps intervals. Energies are in kcal/mol. !a" All estimates are plotted. !b" BIBEE/LB has been omitted for clarity.
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FIG. 2. !Color online" Comparison of estimated electrostatic solvation free
energies using met-enkephalin structures taken from a 500-ps MD simula-
tion plotted as a scatter plot against energies calculated using BEM. Ener-
gies are in kcal/mol.
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FIG. 3. !Color" Eigenvalues of the reaction-potential matrices computed
from the final met-enkephalin structure using BEM, BIBEE/CFA, BIBEE/P,
GBMV, and SGB/CFA methods.

104108-5 Bounding electrostatic free energies J. Chem. Phys. 130, 104108 !2009"

Downloaded 11 Mar 2009 to 18.51.1.222. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Snapshots taken from a 500-ps MD simulation at 10-ps intervals.
Bardhan, Knepley, Anitescu, JCP, 2009.
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Operator Approximation

BIBEE Scalability

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.
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Operator Approximation

Resolution

Boundary element discretizations of the
solvation problem:

can be expensive to solve
Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, JCP, 2009

are more accurate than required by
intermediate design iterations

Accuracy is not tunable
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Operator Approximation

Evolution of BIBEE

Sharp bounds for solvation energy

Exploration of behavior in simplified geometries
Mathematical Analysis of the BIBEE Approximation for Molecular Solvation:
Exact Results for Spherical Inclusions, JCP, 2011
Represent BIBEE as a deformed boundary condition
Fully developed series solution
Improve accuracy by combining CFA and P approximations

Application to protein-ligand binding
Analysis of fast boundary-integral approximations for modeling electrostatic
contributions of molecular binding, Molecular-Based Mathematical Biology, 2013
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Operator Approximation

Future of BIBEE

Framework for systematic exploration
Both analytical and computational foundation

Reduced-basis Method with analytic solutions
Tested in protein binding paper above
The spatial high frequency part is handled by BIBEE/P
topology is not important
The spatial low frequency part is handled by analytic solutions
insensitive to bumpiness
Computational science and re-discovery: open-source implementations of
ellipsoidal harmonics for problems in potential theory, CSD, 2012.

Extend to other kernels, e.g. Yukawa

Extend to full multilevel method
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Residual Evaluation

Outline
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Residual Evaluation

Collaborators

PETSc
Developers

Barry Smith Jed Brown

Former UC
Students

Andy Terrel Peter Brune
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Residual Evaluation

Problem

Traditional PDE codes cannot:

Compare different discretizations
Different orders, finite elements
finite volume vs. finite element

Compare different mesh types
Simplicial, hexahedral, polyhedral, octree

Run 1D, 2D, and 3D problems

Enable an optimal solver
Fields, auxiliary operators
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http://www.amazon.com/Finite-Element-Method-Mechanical-Engineering/dp/0486411818


Residual Evaluation

Problem

Traditional Mesh/Solver Interface is Too General:
Solver not told about discretization data, e.g. fields

Cannot take advantage of problem structure
blocking
saddle point structure

Cannot use auxiliary data
Eigen-estimates
null spaces
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Residual Evaluation

Problem

Traditional Mesh/Solver Interface is Too Specific:
Assembly code specialized to each discretization

dimension
cell shape
approximation space

Explicit references to element type
getVertices(faceID), getAdjacency(edgeID, VERTEX),
getAdjacency(edgeID, dim = 0)

No interface for transitive closure
Awkward nested loops to handle different dimensions
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Residual Evaluation

Mesh Representation

We represent each mesh as a Hasse Diagram:

Can represent any CW complex
Can be implemented as a Directed Acyclic Graph
Reduces mesh information to a single covering relation
Can discover dimension, since meshes are ranked posets

We use an abstract topological interface to organize traversals for:
discretization integrals
solver size determination
computing communication patterns

Mesh geometry is treated as just another mesh function.
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Residual Evaluation

Sample Meshes
Interpolated triangular mesh
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Residual Evaluation

Sample Meshes
Optimized triangular mesh
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Residual Evaluation

Sample Meshes
Interpolated quadrilateral mesh
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Residual Evaluation

Sample Meshes
Optimized quadrilateral mesh
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Residual Evaluation

Sample Meshes
Interpolated tetrahedral mesh
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Residual Evaluation

Mesh Abstraction
Interface Design

By abstracting on the key topological relations,
the interface can be both concise and quite general

Single relation

Enables dimension-independent programming

Dual is obtained by reversing arrows

Can associate function(al)s with DAG points

Dual operation gives the support of the function

Mesh Algorithms for PDE with Sieve I: Mesh Distribution, Knepley, Karpeev, Sci. Prog., 2009.
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http://arxiv.org/abs/0908.442


Residual Evaluation

Basic Operations
Cone

We begin with the basic
covering relation,

cone(0) = {2, 3, 4} 7
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Residual Evaluation

Basic Operations
Support

reverse arrows to get the
dual operation,

support(9) = {3, 4, 6} 7
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Residual Evaluation

Basic Operations
Closure

add the transitive closure
of the relation,

closure(0) = {0, 2, 3, 4, 7, 8, 9} 7
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Residual Evaluation

Basic Operations
Star

and the transitive closure
of the dual,

star(7) = {7, 2, 3, 0} 7
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Residual Evaluation

Basic Operations
Meet

and augment with lattice
operations.

meet(0, 1) = {4} 7
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Residual Evaluation

Basic Operations
Join

and augment with lattice
operations.

join(8, 9) = {4} 7
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