Computational Bioelectrostatics

Matthew Knepley

Computation Institute University of Chicago

Computational and Applied Mathematics Colloquium
Rice University
Houston, TX February 9, 2015

1/45

Computational Science & Applied Mathematics

Begins with the numerics of BIEs and PDEs, and mathematics of the computation,

Computational Science & Applied Mathematics

Begins with the numerics of BIEs and PDEs, and mathematics of the computation, is

Distilled into high quality numerical libraries, and

Computational Science & Applied Mathematics

Begins with the numerics of BIEs and PDEs, and mathematics of the computation, is

Distilled into high quality numerical libraries, and

Culminates in scientific discovery.

Research Areas

Mathematics

- Scalable solution of Nonlinear PDE
- Discretization on unstructured meshes
- Massively parallel algorithms
- Fast methods for integral equations

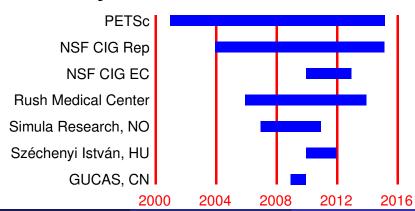
Applications

- Bioelectrostatics
- Crustal and Magma Dynamics
- Wave Mechanics
- Fracture Mechanics

Funding

6/45

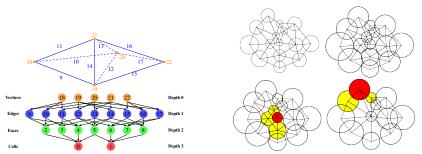
Community Involvement



PETSc is one of the most popular software libraries in scientific computing.

- unstructured meshes (model, algorithms, implementation),
- nonlinear preconditioning (model, algorithms),
- FEM discretizations (data structures, solvers optimization),
- optimizations for multicore and GPU architectures.

Knepley, Karpeev, Sci. Prog., 2009. Brune, Knepley, Scott, SISC, 2013.



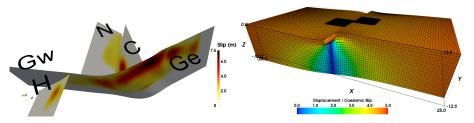
- unstructured meshes (model, algorithms, implementation),
- nonlinear preconditioning (model, algorithms),
- FEM discretizations (data structures, solvers optimization),
- optimizations for multicore and GPU architectures.

Brune, Knepley, Smith, and Tu, SIAM Review, 2015.

Type	Sym	Statement	Abbreviation
Additive	+	$ec{m{x}} + lpha(\mathcal{M}(\mathcal{F}, ec{m{x}}, ec{m{b}}) - ec{m{x}})$	$\mathcal{M} + \mathcal{N}$
		$+\ eta(\mathcal{N}(\mathcal{F},ec{x},ec{b})-ec{x})$	
Multiplicative	*	$\mathcal{M}(\mathcal{F},\mathcal{N}(\mathcal{F},ec{x},ec{b}),ec{b})$	$\mathcal{M}*\mathcal{N}$
Left Prec.	_ <i>L</i>	$\mathcal{M}(ec{x}-\mathcal{N}(\mathcal{F},ec{x},ec{b}),ec{x},ec{b})$	$\mathcal{M}{\mathcal{L}} \mathcal{N}$
Right Prec.	R	$\mathcal{M}(\mathcal{F}(\mathcal{N}(\mathcal{F},ec{x},ec{b})),ec{x},ec{b})$	$\mathcal{M}{R}\mathcal{N}$
Inner Lin. Inv.	\	$ \vec{y} = \vec{J}(\vec{x})^{-1}\vec{r}(\vec{x}) = K(\vec{J}(\vec{x}), \vec{y}_0, \vec{b})$	$\mathcal{N}\setminusK$

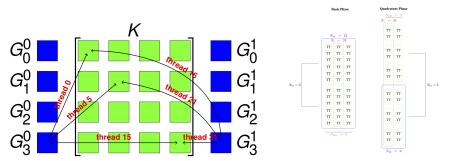
- unstructured meshes (model, algorithms, implementation),
- nonlinear preconditioning (model, algorithms),
- FEM discretizations (data structures, solvers optimization),
- optimizations for multicore and GPU architectures.

Aagaard, Knepley, and Williams, J. of Geophysical Research, 2013.



- unstructured meshes (model, algorithms, implementation),
- nonlinear preconditioning (model, algorithms),
- FEM discretizations (data structures, solvers optimization),
- optimizations for multicore and GPU architectures.

Knepley and Terrel, Transactions on Mathematical Software, 2012.



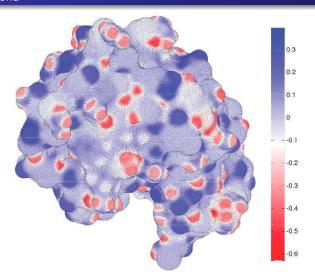
- unstructured meshes (model, algorithms, implementation),
- nonlinear preconditioning (model, algorithms),
- FEM discretizations (data structures, solvers optimization),
- optimizations for multicore and GPU architectures.

Outline

- Bioelectrostatics
- Approximate Operators
- Approximate Boundary Conditions
- Future Directions

8/45

The Natural World

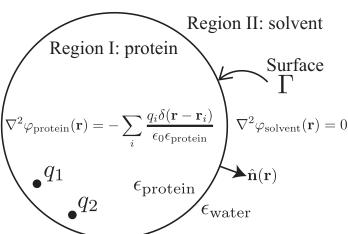


Induced Surface Charge on Lysozyme

9/45

Physical Model





Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced surface charge σ ,

$$\sigma(\vec{r}) + \hat{\epsilon} \int_{\Gamma} \frac{\partial}{\partial n(\vec{r})} \frac{\sigma(\vec{r}') d^{2} \vec{r}'}{4\pi ||\vec{r} - \vec{r}'||} = -\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial}{\partial n(\vec{r})} \frac{q_{k}}{4\pi ||\vec{r} - \vec{r}_{k}||}$$
$$(\mathcal{I} + \hat{\epsilon} \mathcal{D}^{*}) \sigma(\vec{r}) =$$

where we define

$$\hat{\epsilon} = 2 \frac{\epsilon_I - \epsilon_{II}}{\epsilon_I + \epsilon_{II}} < 0$$

Problem

Boundary element discretizations of the solvation problem:

- can be expensive to solve
- are more accurate than required by intermediate design iterations

Outline

- Bioelectrostatics
- 2 Approximate Operators
- Approximate Boundary Conditions
- Future Directions

Mathematical Model

The reaction potential is given by

$$\phi^R(\vec{r}) = \int_{\Gamma} \frac{\sigma(\vec{r}') d^2 \vec{r}'}{4\pi\epsilon_1 ||\vec{r} - \vec{r}'||} = C\sigma$$

which defines G_{es} , the electrostatic part of the solvation free energy

$$egin{aligned} \Delta \textit{G}_{\textit{es}} &= rac{1}{2} \left\langle \textit{q}, \phi^{\textit{R}}
ight
angle \ &= rac{1}{2} \left\langle \textit{q}, \textit{L} \textit{q}
ight
angle \ &= rac{1}{2} \left\langle \textit{q}, \textit{CA}^{-1} \textit{B} \textit{q}
ight
angle \end{aligned}$$

where

$$egin{align} Bq &= -\hat{\epsilon} \int_{\Omega} rac{\partial}{\partial n(ec{r})} rac{q(ec{r}') d^3 ec{r}'}{4\pi ||ec{r} - ec{r}'||} \ A\sigma &= \mathcal{I} + \hat{\epsilon} \mathcal{D}^* \end{split}$$

BIBEE

Approximate \mathcal{D}^* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

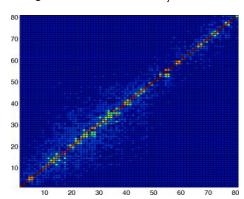
$$\left(1-rac{\hat{\epsilon}}{2}
ight)\sigma_{ extit{CFA}}= extit{B} q$$

Lower Bound:

no good physical motivation

$$\left(1+rac{\hat{\epsilon}}{2}
ight)\sigma_{LB}=Bq$$

Eigenvectors: BEM $e_i \cdot e_i$ BIBEE/P



15/45

BIBEE

Approximate \mathcal{D}^* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

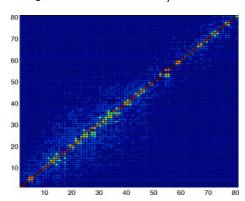
$$\left(1-rac{\hat{\epsilon}}{2}
ight)\sigma_{ extit{CFA}}= extit{B} q$$

Preconditioning:

consider only local effects

$$\sigma_P = Bq$$

Eigenvectors: BEM $e_i \cdot e_i$ BIBEE/P



15/45

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy ΔG_{es} has upper and lower bounds given by

$$\frac{1}{2}\left(1+\frac{\hat{\epsilon}}{2}\right)^{-1}\left\langle q,\textit{CBq}\right\rangle \leq \frac{1}{2}\left\langle q,\textit{CA}^{-1}\textit{Bq}\right\rangle \leq \frac{1}{2}\left(1-\frac{\hat{\epsilon}}{2}\right)^{-1}\left\langle q,\textit{CBq}\right\rangle,$$

and for spheres and prolate spheroids, we have the improved lower bound.

$$\frac{1}{2}\left\langle \textit{q},\textit{CBq}\right\rangle \leq \frac{1}{2}\left\langle \textit{q},\textit{CA}^{-1}\textit{Bq}\right\rangle,$$

and we note that

$$|\hat{\epsilon}| < \frac{1}{2}.$$

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

I will break the proof into three steps,

- Replace C with B
- Symmetrization
- Eigendecomposition

shown in the following slides.

We will need the single layer operator S for step 1,

$$\mathcal{S} au(\vec{r}) = \int rac{ au(\vec{r}')d^2\vec{r}'}{4\pi||\vec{r}-\vec{r}'||}$$

Energy Bounds: First Step

Replace C with B

The potential at the boundary Γ given by

$$\phi^{\textit{Coulomb}}(\vec{r}) = C^{T}q$$

can also be obtained by solving an exterior Neumann problem for τ ,

$$\begin{split} \phi^{\textit{Coulomb}}(\vec{r}) &= \mathcal{S}\tau \\ &= \mathcal{S}(\mathcal{I} - 2\mathcal{D}^*)^{-1}(\frac{2}{\hat{\epsilon}}Bq) \\ &= \frac{2}{\hat{\epsilon}}\mathcal{S}(\mathcal{I} - 2\mathcal{D}^*)^{-1}Bq \end{split}$$

so that the solvation energy is given by

$$\frac{1}{2}\left\langle q, \textit{CA}^{-1}\textit{Bq}\right\rangle = \frac{1}{\hat{\epsilon}}\left\langle \mathcal{S}(\mathcal{I}-2\mathcal{D}^*)^{-1}\textit{Bq}, (\mathcal{I}+\hat{\epsilon}\mathcal{D}^*)^{-1}\textit{Bq}\right\rangle$$

M. Knepley (UC) MGK CAAM 18/45

Energy Bounds: Second Step

Quasi-Hermiticity

Plemelj's symmetrization principle holds that

$$\mathcal{SD}^* = \mathcal{DS}$$

and we have

$$\mathcal{S}=\mathcal{S}^{1/2}\mathcal{S}^{1/2}$$

which means that we can define a Hermitian operator H similar to \mathcal{D}^*

$$H = \mathcal{S}^{1/2} \mathcal{D}^* \mathcal{S}^{-1/2}$$

leading to an energy

$$\frac{1}{2}\left\langle q, CA^{-1}Bq\right\rangle = \frac{1}{\hat{\epsilon}}\left\langle Bq, \mathcal{S}^{1/2}(\mathcal{I}-2H)^{-1}(\mathcal{I}+\hat{\epsilon}H)^{-1}\mathcal{S}^{1/2}Bq\right\rangle$$

M. Knepley (UC) MGK CAAM 19/45

Energy Bounds: Third Step

Eigendecomposition

The spectrum of \mathcal{D}^* is in $\left[-\frac{1}{2}, \frac{1}{2}\right]$, and the energy is

$$rac{1}{2}\left\langle q,\mathit{CA}^{-1}\mathit{B}q
ight
angle =\sum_{i}rac{1}{\hat{\epsilon}}\left(1-2\lambda_{i}
ight)^{-1}\left(1+\hat{\epsilon}\lambda_{i}
ight)^{-1}x_{i}^{2}$$

where

$$H = V \Lambda V^T$$

and

$$\vec{x} = V^T \mathcal{S}^{1/2} Bq$$

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

$$\frac{1}{2} \left\langle q, CA_{CFA}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} (1 - 2\lambda_{i})^{-1} \left(1 - \frac{\hat{\epsilon}}{2} \right)^{-1} x_{i}^{2}$$

$$\frac{1}{2} \left\langle q, CA_{P}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} (1 - 2\lambda_{i})^{-1} x_{i}^{2}$$

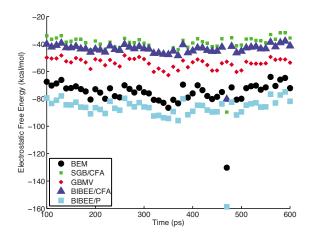
$$\frac{1}{2} \left\langle q, CA_{LB}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} (1 - 2\lambda_{i})^{-1} \left(1 + \frac{\hat{\epsilon}}{2} \right)^{-1} x_{i}^{2}$$

where we note that

$$|\hat{\epsilon}| < \frac{1}{2}$$

BIBEE Accuracy

Electrostatic solvation free energies of met-enkephalin structures



Snapshots taken from a 500-ps MD simulation at 10-ps intervals. Bardhan, Knepley, Anitescu, JCP, 2009.

Generalized Born Approximation

The pairwise energy between charges is defined by the *Still equation*:

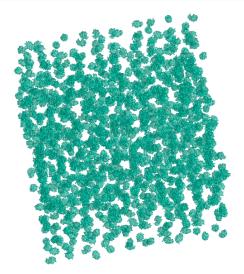
$$G_{es}^{ij} = rac{1}{8\pi} \left(rac{1}{\epsilon_{II}} - rac{1}{\epsilon_{I}}
ight) \sum_{i,j}^{N} rac{q_{i}q_{j}}{r_{ij}^{2} + R_{i}R_{j}e^{-r_{ij}^{2}/4R_{i}R_{j}}}$$

where the effective Born radius is

$$R_i = \frac{1}{8\pi} \left(\frac{1}{\epsilon_{II}} - \frac{1}{\epsilon_{I}} \right) \frac{1}{E_i}$$

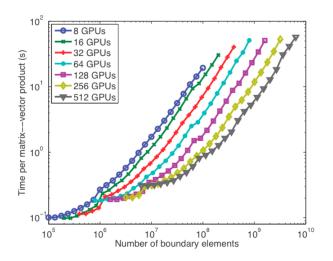
where E_i is the *self-energy* of the charge q_i , the electrostatic energy when atom i has unit charge and all others are neutral.

Crowded Protein Solution



Important for drug design of antibody therapies

BIBEE Scalability

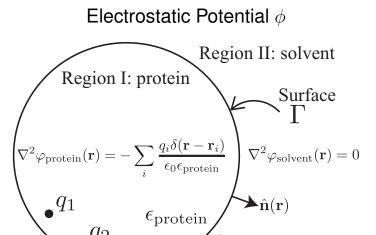


Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.

Outline

- Bioelectrostatics
- 2 Approximate Operators
- 3 Approximate Boundary Conditions
- Future Directions

Physical Model



Kirkwood's Solution (1934)

The potential inside Region I is given by

$$\Phi_I = \sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} + \psi,$$

and the potential in Region II is given by

$$\Phi_{II} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{C_{nm}}{r^{n+1}} P_n^m(\cos \theta) e^{im\phi}.$$

Kirkwood's Solution (1934)

The reaction potential ψ is expanded in a series

$$\psi = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} B_{nm} r^{n} P_{n}^{m} (\cos \theta) e^{im\phi}.$$

and the source distribution is also expanded

$$\sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{E_{nm}}{\epsilon_1 r^{n+1}} P_n^m(\cos \theta) e^{im\phi}.$$

Kirkwood's Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

$$\Phi_{I}|_{r=b} = \Phi_{II}|_{r=b}$$

$$\epsilon_{I} \frac{\partial \Phi_{I}}{\partial r}|_{r=b} = \epsilon_{II} \frac{\partial \Phi_{II}}{\partial r}|_{r=b}$$

we can eliminate C_{nm} , and determine the reaction potential coefficients in terms of the source distribution,

$$B_{nm} = \frac{1}{\epsilon_I b^{2n+1}} \frac{(\epsilon_I - \epsilon_{II})(n+1)}{\epsilon_I n + \epsilon_{II}(n+1)} E_{nm}.$$

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

$$egin{aligned} A_{CFA} &= \mathcal{I}\left(1+rac{\hat{\epsilon}}{2}
ight) \ A_{P} &= \mathcal{I} \end{aligned}$$

have an equivalent PDE formulation,

$$\epsilon_{I} \Delta \Phi_{CFA,P} = \sum_{k=1}^{Q} q_{k} \delta(\vec{r} - \vec{r}_{k}) \qquad \qquad \frac{\epsilon_{I}}{\epsilon_{II}} \frac{\partial \Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial \Phi_{II}}{\partial r} - \frac{\partial \psi_{CFA}}{\partial r}|_{r=b}$$

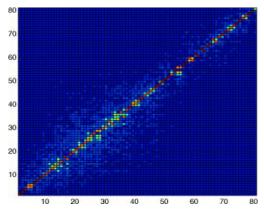
$$\epsilon_{II} \Delta \Phi_{CFA,P} = 0 \qquad \qquad \text{or}$$

$$\Phi_{I}|_{r=b} = \Phi_{II}|_{r=b} \qquad \frac{3\epsilon_{I} - \epsilon_{II}}{\epsilon_{I} + \epsilon_{II}} \frac{\partial \Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial \Phi_{II}}{\partial r} - \frac{\partial \psi_{P}}{\partial r}|_{r=b},$$

where Φ_1^C is the Coulomb field due to interior charges.

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral operator approximations have eigenspaces are identical to that of the original operator.



BEM eigenvector $e_i \cdot e_j$ BIBEE/P eigenvector

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

- Note that, for a spherical boundary, \mathcal{D}^* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

- Note that, for a spherical boundary, \mathcal{D}^* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

Series Solutions

Note that the approximate solutions are *separable*:

$$egin{aligned} B_{nm} &= rac{1}{\epsilon_1 \, n + \epsilon_2 (n+1)} \gamma_{nm} \ B_{nm}^{CFA} &= rac{1}{\epsilon_2} rac{1}{2n+1} \gamma_{nm} \ B_{nm}^P &= rac{1}{\epsilon_1 + \epsilon_2} rac{1}{n+rac{1}{2}} \gamma_{nm}. \end{aligned}$$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm}=B_{nm}^{CFA}=B_{nm}^{P}=rac{1}{\epsilon(2n+1)}\gamma_{nm}$$

Series Solutions

Note that the approximate solutions are *separable*:

$$B_{nm} = rac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
 $B_{nm}^{CFA} = rac{1}{\epsilon_2} rac{1}{2n+1} \gamma_{nm}$
 $B_{nm}^P = rac{1}{\epsilon_1 + \epsilon_2} rac{1}{n+rac{1}{2}} \gamma_{nm}.$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm}=B_{nm}^{CFA}=B_{nm}^{P}=rac{1}{\epsilon(2n+1)}\gamma_{nm}.$$

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$extbf{\textit{B}}_{00} = extbf{\textit{B}}_{00}^{ extit{\textit{CFA}}} = rac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n o \infty$

$$\lim_{n o \infty} B_{nm} = \lim_{n o \infty} B_{nm}^P = rac{1}{(\epsilon_1 + \epsilon_2)n} \gamma_{nm}$$

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$B_{00}=B_{00}^{CFA}=rac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n \to \infty$:

$$\lim_{n\to\infty}B_{nm}=\lim_{n\to\infty}B_{nm}^P=\frac{1}{(\epsilon_1+\epsilon_2)n}\gamma_{nm}.$$

Asymptotics

In the limit $\epsilon_1/\epsilon_2 \rightarrow 0$,

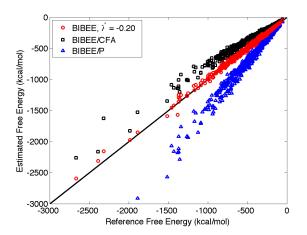
$$\begin{split} &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm} = \frac{\gamma_{nm}}{\epsilon_2(n+1)} \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^{CFA} = \frac{\gamma_{nm}}{\epsilon_2(2n+1)}, \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^P = \frac{\gamma_{nm}}{\epsilon_2\left(n+\frac{1}{2}\right)}, \end{split}$$

so that the approximation ratios are given by

$$\frac{B_{nm}^{CFA}}{B_{nm}} = \frac{n+1}{2n+1}, \qquad \frac{B_{nm}^P}{B_{nm}} = \frac{n+1}{n+\frac{1}{2}}.$$

Improved Accuracy

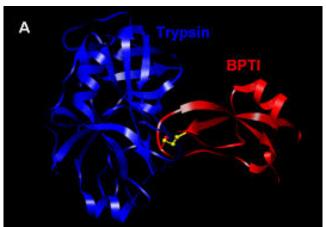
BIBEE/I interpolates between BIBEE/CFA and BIBEE/P



Bardhan, Knepley, JCP, 2011.

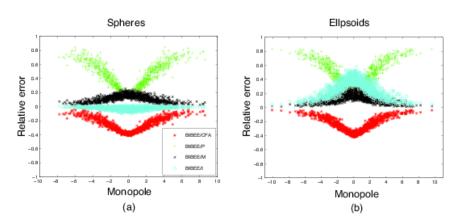
Basis Augmentation

We examined the more complex problem of protein-ligand binding using trypsin and bovine pancreatic trypsin inhibitor (BPTI), using *electrostatic component analysis* to identify residue contributions to binding and molecular recognition.



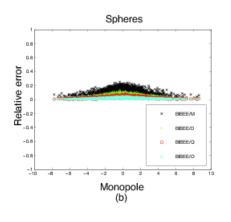
Basis Augmentation

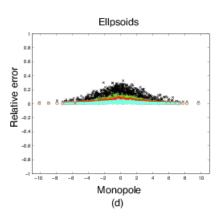
Looking at an ensemble of synthetic proteins, we can see that BIBEE/CFA becomes more accurate as the monopole moment increases, and BIBEE/P more accurate as it decreases. BIBEE/I is accurate for spheres, but must be extended for ellipses.



Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the octopole, to recover 5% accuracy for all synthetic proteins tested.





Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
 - Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
 - Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
 - Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

Outline

- Bioelectrostatics
- Approximate Operators
- Approximate Boundary Conditions
- 4 Future Directions

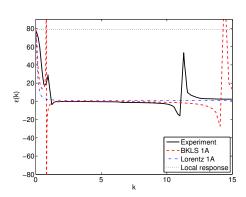
Phenomenon:

Model:

Phenomenon:

Dielectric Saturation

Model:

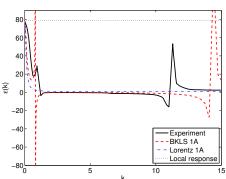


Phenomenon:

Dielectric Saturation

Model:

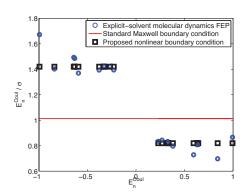
Nonlocal Dielectric



Phenomenon:

Charge—Hydration Asymmetry

Model:

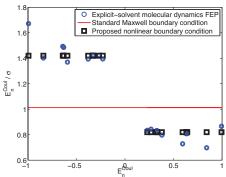


Phenomenon:

Charge—Hydration Asymmetry

Model:

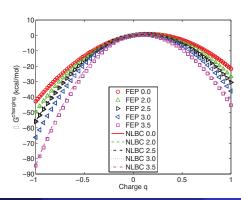
Nonlinear Boundary Condition



Phenomenon:

Solute-Solvent Interface Potential

Model:

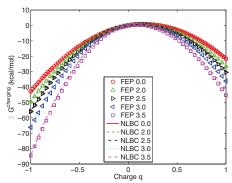


Phenomenon:

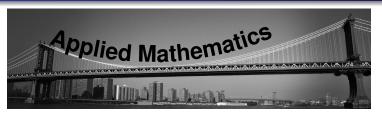
Solute-Solvent Interface Potential

Model:

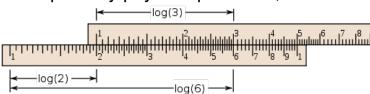
Static Solvation Potential

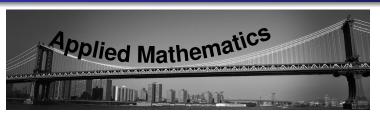


Computational Leaders have always embraced the latest technology and been inspired by physical problems,



Computational Leaders have always embraced the latest technology and been inspired by physical problems,





Computational Leaders have always embraced the latest technology and been inspired by physical problems,

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

PETSc

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

Enabling Scientific Discovery

Thank You!

http://www.cs.uchicago.edu/~knepley