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Plex is an interface for manifold topology that encodes a CW-complex as a Hasse diagram
(DAG). It allows true dimension independent programming, and arbitrary subsetting of
meshes. Below are two tetrahedra sharing a face and the corresponding Hasse diagram.
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Basic Operations: cone() for in-edges and support() for out-edges, along with their
transitive closures in the graph closure() and star().

Plex

We augment the interface with parent() and child() operations to identify subcells and
subfaces, and we break the cone()/support() duality such that
•p ∈ supp(q) ≠⇒ q ∈ cone(p)

•star(p) covers the support of p’s basis functions (also for FVM and DG)
•cone(p) covers the boundary of p, but not child subfaces
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The snaking lines show parent(d), parent(e), and parent(δ); the bold support arrows do
not have matching cone arrows, breaking the duality that is present in conformal meshes.

Nonconforming Extension

•Finite element assembly using Plex operations (right) requires a nodal basis W for the
discrete dual space V ∗

h .
•Nodal bases of nonconformal meshes are overdetermined : W has linear dependencies.
•We constrain degrees of freedom of child points to anchors() := closure() ◦ parent().

→enforced transparently during parallel synchronization (DMGlobalToLocalBegin() /
DMGlobalToLocalEnd()), constraints automatically computed

•There are three requirements for H1 conformal construction:

→ two on the Ciarlet triple for the reference element T ,

T := (P (T ) [approximation sp.], Q(T ) [dual sp.], S(T ) [reference cell CW-complex]),

→one on the cell embeddings {φi} and their pullbacks and pushforwards,

φ∗i f := f ◦ ϕi [pullback function f from Ki to reference cell]
φi∗σ := σ ◦ φ∗i [pushforward functional σ from reference cell to Ki].

I.∀σj ∈ Q,∃p ∈ S s.t. σj(ψk) = δjk ⇒ supp(ψk) =
⋃
star(p)

(“S decomposes the nodal basis of P ”)
Here ψk ∈ P (T ) is a basis function on the reference cell, and the requirement says that
the support() relation also describes the support for functions “attached” to the points. The
dual basis functions are naturally attached to mesh points, because the support of the
measure defining the functional is contained within the star() of that point.
This assumption allow for the definition of compactly supported basis functions.

II.∀F := Ti ∩ Tj ̸= ∅, ψ ∈ P (φ−1
j F) ⇒ φ∗

iφ
−∗
j ψ ∈ P (φ−1

i F)
(“Bases on neighboring cells line up”)

Here φ−∗
j := (φ∗j)

−1 and P (X) is the trace space of P (T ) on X ⊂ T . This makes sure that
the embeddings of neighboring cells are compatible. This will allow us to build approximate
solutions lying in the correct global function space. The notation is somewhat dense, so
we can break this down in the following way for H1,

φ∗iφ
−∗
j ψ ∈ P (φ−1

i F), φ−∗
j ψ ∈ P (F), ψ ∈ P (φ−1

j F)

III.∀p, q ∈ S s.t. φi(p) = φj(q) ⇒ ∃M ∈ Sn s.t. Qp
i = MQq

j.
(“Neighboring dual bases line up, modulo permutations”)

Here we must have Ti∩ Tj ̸= ∅. This assumes that the dual bases of adjacent cells match
up, in that the mappings of adjacent cells push functionals forward into each other. The
permutations encode the symmetries of the polytopes in S and ensure that we choose the
same member of the global dual basis. For example, the outward normal for a shared face
is opposite for two cells sharing it, and only one direction must be chosen. Similarly, point
evaluations on faces must follow the dihedral symmetries of the polytope.

Nonconforming FEM: H1 Conformal Spaces on Nonconformal Meshes

With this concise, flexible interface, Plex supports
•Parallel mesh loading, partitioning, and redistribution for load balance
•FEM and FVM discretizations
•Unstructured data layout with boundary condition elimination
•Multigrid and block solvers

Capabilities

The above figure shows a shock impinging on an oblique density contrast simulating using
the Euler equation discretized with a TVD FV method, reproduced using TS ex11:
./ex11 -ufv_vtk_interval 1 -monitor density,energy -f -grid_size 2,1 -grid_bounds -1,1.,0.,1 -bc_wall 1,2,3,4

-dm_type p4est -dm_forest_partition_overlap 1 -dm_forest_maximum_refinement 6 -dm_forest_minimum_refinement 2 -dm_forest_initial_refinement 2

-ufv_use_amr -refine_vec_tagger_box 0.5,inf -coarsen_vec_tagger_box 0,1.e-2 -refine_tag_view -coarsen_tag_view

-physics euler -eu_type iv_shock -ufv_cfl 10 -eu_alpha 60. -grid_skew_60 -eu_gamma 1.4 -eu_amach 2.02 -eu_rho2 -3.

-petscfv_type leastsquares -petsclimiter_type minmod -petscfv_compute_gradients 0

-ts_final_time 1 -ts_ssp_type rks2 -ts_ssp_nstages 10

Finite Volume Example

Instantaneous variable-viscosity Stokes
simulation with exponential viscosity
constrast e2Bx, reproduced using SNES
ex69:
./ex69 -dm_plex_separate_marker -dm_refine 4

-vel_petscspace_order 2 -pres_petscspace_order 1

-ksp_rtol 1e-12 -pc_type fieldsplit -pc_fieldsplit_type schur

-pc_fieldsplit_schur_factorization_type full

-pc_fieldsplit_schur_precondition a11 -fieldsplit_velocity_pc_type lu

-fieldsplit_pressure_ksp_rtol 1e-12 -fieldsplit_pressure_pc_type lu

-dm_view hdf5:sol.h5 -sol_vec_view hdf5:sol.h5::append

Finite Element Example
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