Plex

Plex is an interface for manifold topology that encodes a CW-comple (DAG). It allows true *dimension independent* programming, and meshes. Below are two tetrahedra sharing a face and the correspor

Basic Operations: cone() for in-edges and support() for out-edges and support() for out transitive closures in the graph closure() and star().

Nonconforming Extension

We augment the interface with parent() and child() operations to subfaces, and we break the cone()/support() duality such that

- $p \in supp(q) \implies q \in cone(p)$
- star(p) covers the support of p's basis functions (also for FVM and
- cone(p) covers the boundary of p, but not child subfaces

The snaking lines show parent(d), parent(e), and $parent(\delta)$; the bold support arrows do not have matching cone arrows, breaking the duality that is present in conformal meshes.

The Impact of Structured AMR Representation on Software Design in PETSc https://arxiv.org/abs/1508.02470

Tobin Isaac Computation Institute, University of Chicago tisaac@uchicago.edu

Matthew G. Knepley Computational and Applied Mathematics, Rice University knepley@gmail.com

Nonconforming FEM:
$$H^1$$
 Conformal Space
ex as a Hasse diagram
arbitrary subsetting of
inding Hasse diagram.
• Finite element assembly using *Plex opera*.
discrete dual space V_h^* .
• Nodal bases of nonconformal meshes are in-
we constrain degrees of freedom of *child* p
 \rightarrow enforced transparently during *paralle*
DEGobalToLocalEnd(), constraints automatified
• the constraint degrees of freedom of *child* p
 \rightarrow enforced transparently during *paralle*
DEGobalToLocalEnd(), constraints automatified
• the constraint degrees of freedom of *child* p
 \rightarrow enforced transparently during *paralle*
DEGobalToLocalEnd(), constraints automatified
• there are three requirements for H^1 confor-
• two on the Clarlet triple for the reference of
 $T := (P(T) \text{ [approximation sp.]}, Q(T) \text{ [d}}$
• one on the cell embeddings { φ_i } and their
 $\varphi_i^* f := f \circ \phi_i$ [pullback
 $\varphi_i^* g := \sigma \circ \varphi_i^*$ [pullback
 $\varphi_i^* g := \sigma \circ \varphi_i^*$ [pullback
 $\varphi_i g := \varphi_i (\varphi_i) = \varphi_i (\varphi_i)$
Hi. $\forall \mathcal{F} := \overline{T_i} \cap \overline{T_j} \neq \emptyset, \psi \in P(\varphi_i)$
("Neighboring dual bases line
Here we must have $T_i \cap T_j \neq \emptyset$. This assumption
 φ_i in that the mappings of adjacent cells p
 φ_i in that the mappings of adjacent cells p
 φ_i meanwer of the global dual basis. For efforter on the parameter of the global dual basis. For efforter on the parameter of the global dual basis. For efforter on the parameter of the global dual basis. For efforter on the parameter of the global dual basis. Foreforter on the para

ces on Nonconformal Meshes

ations (right) requires a nodal basis W for the

overdetermined: W has linear dependencies.

points to $anchors() := closure() \circ parent()$.

synchronization (DMGlobalToLocalBegin()

ically computed

ormal construction:

element T,

dual sp.], S(T) [reference cell CW-complex]),

ir *pullbacks* and *pushforwards*,

ck function f from K_i to reference cell] functional σ from reference cell to K_i].

$\delta_{jk} \Rightarrow \operatorname{supp}(\psi_k) = \bigcup \operatorname{star}(p)$ asis of P")

reference cell, and the requirement says that oport for functions "attached" to the points. The to mesh points, because the support of the within the *star()* of that point.

ompactly supported basis functions.

 $(\varphi_i^{-1}\mathcal{F}) \Rightarrow \varphi_i^* \varphi_i^{-*} \psi \in P(\varphi_i^{-1}\mathcal{F})$ line up")

space of P(T) on $X \subset \overline{T}$. This makes sure that npatible. This will allow us to build approximate space. The notation is somewhat dense, so for H^{\perp} ,

 $f^*\psi \in P(\mathcal{F}),$

 $\psi \in P(\varphi_i^{-1}\mathcal{F})$

$\Rightarrow \exists M \in S_n \text{ s.t. } \mathcal{Q}_i^p = M \mathcal{Q}_j^q.$ up, modulo permutations")

nes that the dual bases of adjacent cells match oush functionals forward into each other. The polytopes in S and ensure that we choose the r example, the outward normal for a shared face is opposite for two cells sharing it, and only one direction must be chosen. Similarly, point evaluations on faces must follow the dihedral symmetries of the polytope.

Capabilities

Energy Office of Advanced Scientific Computing, the NSF SI2 Program, and the Rice Intel Parallel Computing Cente

- Parallel mesh loading, partitioning, and redistribution for load balance FEM and FVM discretizations
- Unstructured data layout with boundary condition elimination Multigrid and block solvers

Finite Volume Example

The above figure shows a shock impinging on an oblique density contrast simulating using the Euler equation discretized with a TVD FV method, reproduced using TS ex11:

./ex11 -ufv_vtk_interval 1 -monitor density,energy -f -grid_size 2,1 -grid_bounds -1,1.,0.,1 -bc_wall 1,2,3,4 -ufv_use_amr -refine_vec_tagger_box 0.5,inf -coarsen_vec_tagger_box 0,1.e-2 -refine_tag_view -coarsen_tag_view -physics euler -eu_type iv_shock -ufv_cfl 10 -eu_alpha 60. -grid_skew_60 -eu_gamma 1.4 -eu_amach 2.02 -eu_rho2 -3. -petscfv_type leastsquares -petsclimiter_type minmod -petscfv_compute_gradients 0 -ts_final_time 1 -ts_ssp_type rks2 -ts_ssp_nstages 10

Finite Element Example

With this concise, flexible interface, Plex supports

- -dm_type p4est -dm_forest_partition_overlap 1 -dm_forest_maximum_refinement 6 -dm_forest_minimum_refinement 2 -dm_forest_initial_refinement 2

Instantaneous variable-viscosity Stokes simulation with exponential viscosity constrast e^{2Bx} , reproduced using SNES ex69:

./ex69 -dm_plex_separate_marker -dm_refine 4 -vel_petscspace_order 2 -pres_petscspace_order 1 -ksp_rtol 1e-12 -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_factorization_type full -pc_fieldsplit_schur_precondition a11 -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-12 -fieldsplit_pressure_pc_type lu -dm_view hdf5:sol.h5 -sol_vec_view hdf5:sol.h5::append