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•Ability to interface with parallel N -body algorithms
•Flexbility in discretization (Galerkin, collocation, higher-order methods)
•Ability to couple to other models, including FEM, time-stepping, nonlinear solvers

Design goals:

The prototypical linear BEM problem Ax = b can be decomposed into

Aij =

∫
panel i

βi(r⃗)

[∫
panel j

G(r⃗, r⃗′)χj(r⃗
′)dr⃗′

]
dr⃗ (1)

where

G Green’s Function or derivative
χ basis function (usually piecewise constant or linear)
β test function (χ for Galerkin, δ(r⃗ − r⃗i) collocation)

In order to compute these parts, we propose a divison of the software into four pieces:

PSparse, matrix-free projection maps
basis function weights to source densities
at quadrature points

I Sparse, matrix-free interpolation evaluates
integrals over test functions

KScalable N -body algorithm
(point-to-point kernel)

DSparse pre-correction can be applied
matrix-free

BIE Architecture:

Software and modeling components in boundary-integral methods are usually tightly
coupled, so that the computational choices are linked:

Modeling decisions

Discretization-speci�c

Scalable primitive

Element type
(planar, curved)

Basis and testing 
functions

Far-�eld
quadrature

Near-singular and 
singular integration

Fast multipole
Treecode
FFT-based

Flat panels, constant basis
(linear convergence)

Curved panels, constant basis
(quadratic convergence)

Challenge

Algorithmic Breakdown

All BEM packages today are based upon linear integral operators. However, nonlinearity
can be crucial for model fidelity. In molecular electrostatics, we have shown that replacing
the standard Maxwell boundary condition at the molecular surface with

(ϵin −∆ϵ h (En(rS−)))
∂ϕin
∂n

(rS−) = (ϵout −∆ϵ h (En(rS−)))
∂ϕout
∂n

(rS+) (2)

can calculate very accurate energies (matching Generalized Born models wih hundreds
of parameters), and also deliver accurate entropy in solution. Here ∆ϵ = ϵout − ϵin and
En(r⃗S−) is the normal electric field at r⃗S−. Note that the electric field just outside the
surface does not explicitly enter into the interface condition. The equivalent BIE is then
given by (
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in which the nonlinear operator h represents a pointwise multiplication, and is given by

h (En) = α tanh (βEn − γ) + µ. (4)

which we term the Solvation Layer Interface Condition (SLIC).

Our BIE framework now plugs into the PETSc SNES interface for parallel nonlinear al-
gebraic equations. We provide
- the action of the integral operator, perhaps using a fast method
- (Optional) the action of a simplified linearization, perhaps using a cutoff
This affords a range of nonlinear solvers, even using only the operator action,
•Nonlinear Richardson
•Nonlinear Conjugate Gradients
•Nonlinear Krylov and Anderson mixing
•Quasi-Newton methods like BFGS
•Nonlinear Multigrid

Solver Integration

In addition, we can integrate with the PETSc DM framework for specifying data layout,
function spaces, and equations. We can use a DMPlex object to specify our boundary
mesh and data layout, even for higher order discretizations. This can be combined with
other discretized fields which have support on the boundary mesh itself or a volumetric
mesh which intersects the boundary. We can use
-finite element fields, using PetscFE
-finite volume fields, using PetscFV
-finite difference fields, using DMDA
and then the full residual for the combined system can be formed as fed to a PETSc TS
or SNES object which solves the full time-dependent system.

Model Coupling

Nonlinear BIE

•Explicit, specialized panel integrals as needed for pre-correction
•Fast summation algorithm is completely orthogonal to discretization
•Discretization choices (element types, basis and test functions) local to one layer
•Handle Galerkin, collocation, other approaches readily via the IKPD decomposition
•Panel quadrature order can be adjusted as needed
•Multiple panel types and basis/test functions can be used in a single BEM simulation

Architecture Capabilities:

Our extensible framework allowed us to investigate the tradeoff between work and accu-
racy for representative variants of the BEM discretization, and quantify the dependence of
this tradeoff on mesh resolution and the geometric complexity of the molecular boundary
(https://arxiv.org/abs/1512.08406). Point discretizations are generally assumed to lack the
accuracy for practical prediction. This intuition is borne out by simple experiments on a
sphere of radius 6 Å and ϵ = 4, immersed in water (ϵ = 80), with 10 random charges
inside it. The panel method is superior below 3 Kcal/mol accuracy, but considering only
the surface-to-surface operator (S2S) the point method is superior down to 1.5 Kcal/mol.

The convergence for an arginine molecule (ARG) is much noisier due to the geometric
complexity, and the panel method does not outperform the point method until 0.75 Kcal/mol
(0.25 Kcal/mol for S2S), enough accuracy for many molecular conformational searches.

Panel vs. Point Discretization

https://arxiv.org/abs/1512.08406

