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BFBT

BFBT preconditions the Schur complement using

S−1
b = L−1

p GT KGL−1
p (1)

where Lp is the Laplacian in the pressure space.
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Current Problems

The current BFBT code is limited by

Bandwidth constraints
Sparse matrix-vector product
Achieves at most 10% of peak performance

Synchronization
GMRES orthogonalization
Coarse problem

Convergence
Viscosity variation
Mesh dependence
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Alternative Proposal

Use a Boundary Element Method,

for the Laplace solves in BFBT,

accelerated by FMM.
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Missing Pieces

BEM discretization and assembly
Matrix-free operator application using the Fast Multipole Method
Overcomes bandwidth limit, 480 GF on an NVIDIA 1060C GPU
Overcomes coarse bottleneck by overlapping direct work

Solver for BEM system
Same total work as FEM due to well-conditioned operator
Possibility of multilevel preconditioner (even better)

Interpolation between FEM and BEM
Boundary interpolation just averages
Can again use FMM for interior

M. Knepley (UC) GPU AGU09 8 / 1



5 Slide Talk

Direct Fast Method for Variable-Viscosity Stokes

Complexity not currently precisely quantified
We would like a given number of flops/digit of accuracy

Brute Force
Use BEM to compute layers between regions of constant viscosity
Better conditioned, but not direct

Elegant method should be possible
The operator is pseudo-differential
“Kernel-independent” FMM exists
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What are the Problems?

Problems

The current BFBT code is limited by

Bandwidth constraints

Synchronization

Convergence
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What are the Problems? Bandwidth

Bandwidth

Small bandwidth to main memory can limit performance

Sparse matrix-vector product

Operator application

AMG restriction and interpolation

M. Knepley (UC) GPU AGU09 13 / 1



What are the Problems? Bandwidth

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

Protoypical operation is Triad (WAXPY): w = y + αx
Measures the memory bandwidth bottleneck (much below peak)
Datasets outstrip cache

Machine Peak (MF/s) Triad (MB/s) MF/MW Eq. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/
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What are the Problems? Bandwidth

Analysis of Sparse Matvec (SpMV)
Assumptions

No cache misses
No waits on memory references

Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V Number of vectors to multiply

We can look at bandwidth needed for peak performance(
8 +

2
V

)
m
nz

+
6
V

byte/flop (2)

or achieveable performance given a bandwith BW
Vnz

(8V + 2)m + 6nz
BW Mflop/s (3)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.
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http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf
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What are the Problems? Bandwidth

Improving Serial Performance
For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
(8 + 2) 1

7 + 6
bytes/flop(1122.4 MB/s) = 151 MFlops/s, (4)

which is a dismal 8.8% of peak.

Can improve performance by
Blocking
Multiple vectors

but operation issue limitations take over.
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For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
(8 + 2) 1

7 + 6
bytes/flop(1122.4 MB/s) = 151 MFlops/s, (4)

which is a dismal 8.8% of peak.

Better approaches:
Unassembled operator application (Spectral elements, FMM)

N data, N2 computation
Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

N data, Nk computation

M. Knepley (UC) GPU AGU09 16 / 1



What are the Problems? Synchronization

Outline

M. Knepley (UC) GPU AGU09 17 / 1



What are the Problems? Synchronization

Synchronization

Synchronization penalties can come from

Reductions
GMRES orthogonalization
More than 20% penalty for PFLOTRAN on Cray XT5

Small subproblems
Multigrid coarse problem
Lower levels of Fast Multipole Method tree
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What are the Problems? Convergence

Convergence

Convergence of the BFBT solve depends on
Viscosity constrast (slightly)
Viscosity topology
Mesh

Convergence of the AMG Poisson solve depends on
Mesh
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Can we do Better?

Alternative Proposal

Use a Boundary Element Method,

for the Laplace solves in BFBT,

accelerated by FMM.
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Can we do Better?

Missing Pieces

BEM discretization and assembly

Solver for BEM system

Interpolation between FEM and BEM
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Can we do Better? BEM Formulation

Boundary Element Method

The Poisson problem

∆u(x) = f (x) on Ω (5)
u(x) |∂Ω = g(x) (6)
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Can we do Better? BEM Formulation

Boundary Element Method

The Poisson problem (Boundary Integral Equation formulation)

C(x)u(x) =

∫
∂Ω

F (x,y)g(y)− G(x,y)
∂u(y)
∂n

dS(y) (5)

G(x,y) = − 1
2π

log r (6)

F (x,y) =
1

2πr
∂r
∂n

(7)
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Can we do Better? BEM Formulation

Boundary Element Method

Restricting to the boundary, we see that

1
2

g(x) =
∫
∂Ω

F (x,y)g(y)− G(x,y)
∂u(y)
∂n

dS(y) (5)
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Can we do Better? BEM Formulation

Boundary Element Method

Discretizing, we have

−Gq =

(
1
2

I − F
)

g (5)
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Can we do Better? BEM Formulation

Boundary Element Method

Now we can evaluate u in the interior

u(x) =
∫
∂Ω

F (x,y)g(y)− G(x,y)
∂u(y)
∂n

dS(y) (5)
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Can we do Better? BEM Formulation

Boundary Element Method

Or in discrete form

u = Fg − Gq (5)
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Can we do Better? BEM Formulation

Boundary Element Method

The sources in the interior may be added in using superposition

1
2

g(x) =
∫
∂Ω

F (x,y)g(y)− G(x,y)
(
∂u(y)
∂n

− f
)

dS(y) (5)
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Can we do Better? BEM Solver

BEM Solver

The solve has two pieces:

Operator application
Boundary solve
Interior evaluation
Accomplished using the Fast Multipole Method

Iterative solver
Usually GMRES
We use PETSc
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Can we do Better? BEM Solver

Operator Application

Using the Fast Multiple Method,
the Green’s functions (F and G) can be applied:

in O(N) time
using small memory bandwidth
in the interior and on the boundary
with much higher serial and parallel performance
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Can we do Better? BEM Solver

Fast Multipole Method

FMM accelerates the calculation of the function:

Φ(xi) =
∑

j

K (xi , xj)q(xj) (6)

Accelerates O(N2) to O(N) time

The kernel K (xi , xj) must decay quickly from (xi , xi)

Can be singular on the diagonal (Calderón-Zygmund operator)

Discovered by Leslie Greengard and Vladimir Rohklin in 1987

Very similar to recent wavelet techniques
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Can we do Better? BEM Solver

Fast Multipole Method

FMM accelerates the calculation of the function:

Φ(xi) =
∑

j

qj

|xi − xj |
(6)

Accelerates O(N2) to O(N) time

The kernel K (xi , xj) must decay quickly from (xi , xi)

Can be singular on the diagonal (Calderón-Zygmund operator)

Discovered by Leslie Greengard and Vladimir Rohklin in 1987

Very similar to recent wavelet techniques
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