Low Order Finite Elements on the GPU

Matthew Knepley

Computation Institute University of Chicago Department of Molecular Biology and Physiology Rush University Medical Center

Large-Scale Geosciences Applications Using GPU and Multicore Architectures San Francisco, December 16, 2010

• Dr. Andy Terrel (FEniCS)

- Dept. of Computer Science, University of Texas
- Texas Advanced Computing Center, University of Texas

• Prof. Andreas Klöckner (PyCUDA)

Courant Institute of Mathematical Sciences, New York University

• Dr. Brad Aagaard (PyLith)

- United States Geological Survey, Menlo Park, CA
- Dr. Charles Williams (PyLith)
 - GNS Science, Wellington, NZ

High Order, Discontinuous Galerkin FEM

- Hedge, Andreas Klöckner
- Cartesian, Finite Difference Multigrid
 - OpenCurrent, Jon Cohen
- Fast Multipole Method
 - PetFMM, Lorena Barba, Felipe Cruz, Matthew Knepley
- Parallel Linear Algebra and Solvers
 - PETSc, Barry Smith, et.al.
 - Cusp, Nathan Bell, et.al.
 - CUSPARSE, NVIDIA

Low Order FEM on GPUs

- Analytic Flexibility
- Computational Flexibility
- Efficiency

Low Order FEM on GPUs

Analytic Flexibility

- Computational Flexibility
- Efficiency

Low Order FEM on GPUs

- Analytic Flexibility
- Computational Flexibility
- Efficiency

Low Order FEM on GPUs

- Analytic Flexibility
- Computational Flexibility
- Efficiency

Outline

1 Analytic Flexibility

2 Computational Flexibility

3 Efficiency

Analytic Flexibility

$$\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$
(1)

・ロト ・ 四ト ・ ヨト ・ ヨト

AGU '10

6/28

element = FiniteElement('Lagrange', tetrahedron, 1)
v = TestFunction(element)
u = TrialFunction(element)
a = inner(grad(y)) = grad(y)) * dy

Analytic Flexibility

$$\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$
(1)

< ロ > < 同 > < 回 > < 回 >

AGU '10

6/28

element = FiniteElement('Lagrange', tetrahedron, 1) v = TestFunction(element) u = TrialFunction(element) a = inner(grad(v), grad(u))*dx

Analytic Flexibility Linear Elasticity

$$\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^T \vec{\phi}_i(\mathbf{x}) \right) : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) d\mathbf{x}$$
(2)

element = VectorElement('Lagrange', tetrahedron, 1)

- v = lestFunction(element)
- u = TrialFunction(element)
- a = inner(sym(grad(v)), sym(grad(u))) * dx

7/28

・ロト ・四ト ・ヨト ・ヨト

Analytic Flexibility Linear Elasticity

$$\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^T \vec{\phi}_i(\mathbf{x}) \right) : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) d\mathbf{x}$$
(2)

element = VectorElement('Lagrange', tetrahedron, 1)
v = TestFunction(element)

- u = TrialFunction(element)
- a = inner(sym(grad(v)), sym(grad(u))) * dx

< ロ > < 同 > < 回 > < 回 >

Analytic Flexibility Full Elasticity

$$\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^T \vec{\phi}_i(\mathbf{x}) \right) : C : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) d\mathbf{x}$$
(3)

Currently broken in FEniCS release

Analytic Flexibility Full Elasticity

$$\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^T \vec{\phi}_i(\mathbf{x}) \right) : C : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) d\mathbf{x}$$
(3)

Currently broken in FEniCS release

< ロ > < 同 > < 回 > < 回 >

Analytic Flexibility Full Elasticity

$$\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^T \vec{\phi}_i(\mathbf{x}) \right) : C : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) d\mathbf{x}$$
(3)

Currently broken in FEniCS release

< ロ > < 同 > < 回 > < 回 >

AGU '10

Form Decomposition

Element integrals are decomposed into <u>analytic</u> and <u>geometric</u> parts:

$$\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$
(4)

$$= \int_{\mathcal{T}} \frac{\partial \phi_i(\mathbf{x})}{\partial x_{\alpha}} \frac{\partial \phi_j(\mathbf{x})}{\partial x_{\alpha}} d\mathbf{x}$$
(5)

$$= \int_{\mathcal{T}_{ref}} \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \phi_{i}(\xi)}{\partial \xi_{\beta}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} \frac{\partial \phi_{j}(\xi)}{\partial \xi_{\gamma}} |J| d\mathbf{x}$$
(6)

$$= \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} |J| \int_{\mathcal{T}_{ref}} \frac{\partial \phi_i(\xi)}{\partial \xi_{\beta}} \frac{\partial \phi_j(\xi)}{\partial \xi_{\gamma}} d\mathbf{x}$$
(7)
$$= \mathbf{G}^{\beta\gamma}(\mathcal{T}) \mathbf{K}^{ij}_{\beta\gamma}$$
(8)

AGU '10

9/28

Coefficients are also put into the geometric part.

Weak Form Processing

```
from ffc.analysis import analyze_forms
from ffc.compiler import compute_ir
```

```
parameters = ffc.default_parameters()
parameters['representation'] = 'tensor'
analysis = analyze_forms([a,L], {}, parameters)
ir = compute_ir(analysis, parameters)
a_K = ir[2][0]['AK'][0][0]
a_G = ir[2][0]['AK'][0][1]
K = a_K.A0.astype(numpy.float32)
G = a G
```

< ロ > < 同 > < 回 > < 回 >

AGU '10

Outline

Analytic Flexibility

2 Computational Flexibility

3 Efficiency

We generate different computations on the fly,

and can change

- Element Batch Size
- Number of Concurrent Elements
- Loop unrolling
- Interleaving stores with computation

Computational Flexibility Basic Contraction

Computational Flexibility Basic Contraction

Computational Flexibility Basic Contraction

Computational Flexibility Basic Contraction

M. Knepley (UC)

AGU '10

Computational Flexibility Element Batch Size

M. Knepley (UC)

AGU '10

Computational Flexibility

/* G K contraction: unroll = full	*/
E[0] += G[0] * K[0];	
E[0] += G[1] * K[1];	
E[0] += G[2] * K[2];	
E[0] += G[3] * K[3];	
E[0] += G[4] * K[4];	
E[0] += G[5] * K[5];	
E[0] += G[6] * K[6];	
E[0] += G[7] * K[7];	
E[0] += G[8] * K[8];	

AGU '10

Computational Flexibility

```
/* G K contraction: unroll = none */
for(int b = 0; b < 1; ++b) {
    const int n = b*1;
    for(int alpha = 0; alpha < 3; ++alpha) {
        for(int beta = 0; beta < 3; ++beta) {
            E[b] += G[n*9+alpha*3+beta] * K[alpha*3+beta];
        }
    }
}</pre>
```

AGU '10

Computational Flexibility Interleaving stores

```
/* G K contraction: unroll = none */
for(int b = 0; b < 4; ++b) {
    const int n = b*1;
    for(int alpha = 0; alpha < 3; ++alpha) {
        for(int beta = 0; beta < 3; ++beta) {
            E[b] += G[n*9+alpha*3+beta] * K[alpha*3+beta];
        }
    }
}
/* Store contraction results */
elemMat[Eoffset+idx+0] = E[0];
elemMat[Eoffset+idx+32] = E[2];
elemMat[Eoffset+idx+48] = E[3];</pre>
```

Computational Flexibility Interleaving stores

```
n = 0;
for(int alpha = 0; alpha < 3; ++alpha) {
    for(int beta = 0; beta < 3; ++beta) {
        E += G[n*9+alpha*3+beta] * K[alpha*3+beta];
    }
}
/* Store contraction result */
elemMat[Eoffset+idx+0] = E;
n = 1; E = 0.0; /* contract */
elemMat[Eoffset+idx+16] = E;
n = 2; E = 0.0; /* contract */
elemMat[Eoffset+idx+32] = E;
n = 3; E = 0.0; /* contract */
elemMat[Eoffset+idx+48] = E;
```

AGU '10

Outline

1 Analytic Flexibility

2 Computational Flexibility

æ

20/28

Performance Influence of Element Batch Sizes

Performance Influence of Element Batch Sizes

Efficiency

Performance

Influence of Code Structure

Efficiency

Performance

Influence of Code Structure

Price-Performance Comparison of CPU and GPU 3D P₁ Laplacian Integration

Model	Price (\$)	GF/s	MF/s\$
GTX285	390	90	231
Core 2 Duo	300	2	6.6

Price-Performance Comparison of CPU and GPU 3D P₁ Laplacian Integration

Model	Price (\$)	GF/s	MF/s\$
GTX285	390	90	231
Core 2 Duo	300	12*	40

* Jed Brown Optimization Engine

AGU '10

Why Should You Try This?

Many Codes Today use Low Order FEM, GPUs can Help

- Analytic Flexibility
- Computational Flexibility
- Efficiency

Extension to Quadrature

Formulation due to Jed Brown

Add additional contraction over quadrature points:

$$\int_{\Omega} \phi \cdot f_0(u, \nabla u) + \nabla \phi : f_1(u, \nabla u) = 0$$
(9)

AGU '10

28/28

$$\sum_{e} \mathcal{E}_{e}^{T} \left[B^{T} W^{q} f_{0}(u^{q}, \nabla u^{q}) + \sum_{k} D_{k}^{T} W^{q} f_{1}^{k}(u^{q}, \nabla u^{q}) \right] = 0 \quad (10)$$

Single thread computes quadrature loops to avoid reductions, just like contractions