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There is an isomorphism

between meshes and DAGs.
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Future Work



Hasse Diagram

Mesh Representation (KnepleyKarpeev09;
LangeMitchellKnepleyGorman2015)

for a CW-complex (Whitehead1949)

DAG vertices ←→ k-cells
DAG edges ←→ boundary adjacency
Edge labels ←→ dihedral group representers

We call each DAG vertex a mesh point



Sample Meshes
Interpolated triangular mesh
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Sample Meshes
Optimized triangular mesh
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Sample Meshes
Interpolated quadrilateral mesh
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Sample Meshes
Optimized quadrilateral mesh
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Sample Meshes
Interpolated tetrahedral mesh
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Basic Operations
Cone

We begin with the basic
covering relation,

cone(0) = {2, 3, 4} 7
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Basic Operations
Support

reverse arrows to get the
dual operation,

support(9) = {3, 4, 6} 7
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Basic Operations
Closure

add the transitive closure of
the relation,

closure(0) = {0, 2, 3, 4, 7, 8, 9} 7
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Basic Operations
Star

and the transitive closure of
the dual,

star(7) = {7, 2, 3, 0} 7
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Basic Operations
Meet

and augment with lattice
operations.

meet(0, 1) = {4} 7
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Basic Operations
Join

and augment with lattice
operations.

join(8, 9) = {4} 7
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Sample Meshes
Interpolated triangular mesh

Starting with an interpolated mesh,
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Sample Meshes
Interpolated triangular mesh

we can infer the depth in O(N) (BFS),
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Sample Meshes
Interpolated triangular mesh

and we can infer the intermediate levels in O(N) (Join).
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Cell Orientation

Orientation 0 1 2

Arrangement

1 2
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4

56
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Orientation -1 -2 -3

Arrangement
1
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Table: The dihedral group D3 for the triangle



Orientation
Edge Decoration
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Transformation

Production Rule:

p→ {(qk, ok)}

or

qk ∈ child(p)



Example Transformation
Refinement



Transformation Conditions

Condition 1:

cone(child(p)) ∈ child(cl(p)),

Condition 2:

parent(st(q)) ∈ st(parent(q))



Transformation Conditions

Condition 1:

cone(child(p)) ∈ child(cl(p)),

Condition 2:

|parent(q)| = 1



Closure Complexity
Consider a point q′ in the cone of q, so that

q′ ∈ cone(q)

∈ child(cl(p))

by Condition 1, meaning

∃p′ ∈ cl(p), q′ ∈ child(p′).

We may take the cone of each side and use Condition 1 again,

cone(q′) ∈ cone(child(p′))

∈ child(cl(p′))

∈ child(cl(p))

Thus

cl(child(p)) ∈ child(cl(p)).



Support Complexity
Let p produce q, and consider a point q′ in the star of q,

q′ ∈ st(q) ⇐⇒ q ∈ cl(q′)

Let q′ be produced by a point p′,

q′ ∈ child(p′)

cl(q′) ∈ child(cl(p′))

q ∈ child(cl(p′))

Using Condition 2,

parent(q) ∈ cl(p′)

p ∈ cl(p′)

p′ ∈ st(p)

and thus

st(child(p)) ∈ child(st(p)).



Numbering

With unique parents,
we can number everything a priori,
in parallel.



Output Sensitivity

To generate a closure in the output mesh,
we need only the producing point closure.

To generate a star in the output mesh,
we need only the producing point star.
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Possible Proofs

▶ Transformation always produces a valid local CW-complex

▶ Transformation always produces a valid parallel CW-complex

▶ Transformation is output sensitive

▶ Transformation produces the intended output

▶ Parallel numbering with relaxed parent condition



References I


	Meshes
	Mesh Transformations
	Future Work

