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Computational Science
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Operator Approximation

Outline

1 Operator Approximation

2 Residual Evaluation

3 Applications
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Operator Approximation

Collaborators

BIBEE
Researchers

Jaydeep Bardhan

Classical DFT
Researchers

Dirk Gillespie Bob Eisenberg
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Operator Approximation

Bioelectrostatics
The Natural World

Lysozyme
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Operator Approximation

Bioelectrostatics
Physical Model

Region II: solvent
Region I: protein

Surface
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Operator Approximation

Bioelectrostatics
Mathematical Model

σ(⃗r) + ϵ̂

∫
Γ

∂

∂n(⃗r)
σ(⃗r ′)d2r⃗ ′

4π||⃗r − r⃗ ′||
= −ϵ̂

Q∑
k=1

∂

∂n(⃗r)
qk

4π||⃗r − r⃗k ||
(1)

(I + ϵ̂D∗)σ(⃗r) = (2)

where we define
ϵ̂ =

1
2
ϵ1 − ϵ2

ϵ1 + ϵ2
< 0
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Operator Approximation

Bioelectrostatics
Mathematical Model

The reaction potential is given by

ϕR (⃗r) =
∫
Γ

σ(⃗r ′)d2r⃗ ′

4πϵ1||⃗r − r⃗ ′||

which defines the electrostatic part of the solvation free energy

∆Ges =
1
2

qTϕR

=
1
2

qT Lq

=
1
2

qT CA−1Bq
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Operator Approximation

Problem

Boundary element discretizations of the
solvation problem (Eq. 1):

can be expensive to solve, and
hard to precondition

are more accurate than required by
intermediate design iterations
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Operator Approximation

BIBEE
Approximate D∗ by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field(
1 − ϵ̂

2

)
σCFA = Bq (3)

Preconditioning: consider only local effects

σP = Bq (4)

Lower Bound: no good physical motivation(
1 +

ϵ̂

2

)
σLB = Bq (5)
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Operator Approximation

Energy Bounds: First Step
Replace C with B

We will need the single layer operator S

Sτ (⃗r) =
∫

τ (⃗r ′)d2r⃗ ′

4π||⃗r − r⃗ ′||
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Operator Approximation

Energy Bounds: First Step
Replace C with B

The potential at the boundary Γ given by

ϕCoulomb (⃗r) = CT q

can also be obtained by solving an exterior Neumann problem for τ ,

ϕCoulomb (⃗r) = Sτ

= S(I − 2D∗)−1(
2
ϵ̂

Bq)

=
2
ϵ̂
S(I − 2D∗)−1Bq

so that the solvation energy is given by

1
2

qT CA−1Bq =
1
ϵ̂

qT BT (I − 2D∗)−TS(I + ϵ̂D∗)−1Bq
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Operator Approximation

Energy Bounds: Second Step
Quasi-Hermiticity

It is well known that (Hsaio and Wendland)

SD∗ = DS

and
S = S1/2S1/2

which means that we can define a Hermitian operator H similar to D∗

H = S1/2D∗S−1/2

leading to an energy

1
2

qT CA−1Bq =
1
ϵ̂

qT BTS1/2(I − 2H)−1(I + ϵ̂H)−1S1/2Bq
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http://books.google.com/books/about/Boundary_Integral_Equations.html?id=_Gy56YLlGXEC


Operator Approximation

Energy Bounds: Third Step
Eigendecomposition

The spectrum of D∗ is in [−1
2 ,

1
2), and the energy is

1
2

qT CA−1Bq =
∑

i

1
ϵ̂
(1 − 2λi)

−1 (1 + ϵ̂λi)
−1 x2

i

where
H = VΛV T

and
x⃗ = V TS1/2Bq
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Operator Approximation

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

1
2

qT CA−1
CFABq =

∑
i

1
ϵ̂
(1 − 2λi)

−1
(

1 − ϵ̂

2

)−1

x2
i (6)

1
2

qT CA−1
P Bq =

∑
i

1
ϵ̂
(1 − 2λi)

−1 x2
i (7)

1
2

qT CA−1
LB Bq =

∑
i

1
ϵ̂
(1 − 2λi)

−1
(

1 +
ϵ̂

2

)−1

x2
i (8)

where we note that
|ϵ̂| < 1

2
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Operator Approximation

Energy Bounds: Diagonal Approximations
Electrostatic solvation free energies of met-enkephalin structures

BEM, GBMV, SGB/CFA, BIBEE/CFA, and BIBEE/P. Figure
3!a" is a plot of the eigenvalues of the calculated matrices.
The SGB/CFA eigenvalues are slightly more accurate than
the BIBEE/CFA eigenvalues for the dominant eigenmodes
but less accurate for the smaller eigenmodes. Of the four
electrostatic approximations, the GBMV method appears to
provide the most accurate eigenvalue estimates. As noted
previously, BIBEE/CFA is most accurate for the largest-
magnitude eigenvalues and the BIBEE/P method offers the
best fidelity to BEM for the smallest eigenvalues.38

It is important that methods for estimating electrostatic
interactions calculate not only an accurate total free energy
but also preserve the energetics of interaction between
chemical groups. To analyze how different methods preserve
pairwise interactions with respect to the BEM calculations,
we project the eigenvectors of the approximate reaction-
potential matrices onto the eigenvectors of the reaction-
potential matrix from BEM. For example, the !i , j" entry of
the matrix

VBEM
T VSGB/CFA !33"

represents the projection of the jth eigenvector of the SGB/
CFA reaction-potential matrix onto the jth eigenvector of the
BEM reaction-potential matrix. In this projection framework,
perfect preservation of the pairwise interactions would give
rise to a diagonal matrix with diagonal entries of unit mag-
nitude. Conversely, if a method imperfectly reproduces pair-
wise interactions, the off-diagonal entries are nonzero. The
degree to which the approximate-method eigenvectors align
with the actual eigenvectors can then be assessed visually
using a heat map; Figs. 4–6 are plots of the projections of the
SGB/CFA, GBMV, and BIBEE/P eigenvectors onto the
eigenvectors of the BEM reaction-potential matrix.38 We be-
lieve that discrepancies between the BIBEE and BEM eigen-
vectors may be a result of discretizing the integral equation
for simulation using BEM.72 However, the various BIBEE
methods give rise to essentially identical eigenvectors !data
not shown", which is expected given that the diagonal ap-
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FIG. 1. !Color online" Comparison of electrostatic solvation free energies using met-enkephalin structures taken from a 500-ps MD simulation plotted as time
series; snapshots have been taken at 10-ps intervals. Energies are in kcal/mol. !a" All estimates are plotted. !b" BIBEE/LB has been omitted for clarity.
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FIG. 2. !Color online" Comparison of estimated electrostatic solvation free
energies using met-enkephalin structures taken from a 500-ps MD simula-
tion plotted as a scatter plot against energies calculated using BEM. Ener-
gies are in kcal/mol.
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FIG. 3. !Color" Eigenvalues of the reaction-potential matrices computed
from the final met-enkephalin structure using BEM, BIBEE/CFA, BIBEE/P,
GBMV, and SGB/CFA methods.

104108-5 Bounding electrostatic free energies J. Chem. Phys. 130, 104108 !2009"

Downloaded 11 Mar 2009 to 18.51.1.222. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Snapshots taken from a 500-ps MD simulation at 10-ps intervals.
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Operator Approximation

BIBEE Scalabiltiy
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Operator Approximation

Resolution

Boundary element discretizations of the
solvation problem:

can be expensive to solve, and
hard to precondition

Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, JCP, 2009
BIBEE-FMM (uses kifmm3d)

are more accurate than required by
intermediate design iterations

Accuracy is not tunable
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http://jcp.aip.org/resource/1/jcpsa6/v130/i10/p104108_s1
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Operator Approximation

Evolution of BIBEE

Sharp bounds for solvation energy

Exploration of behavior in simplified geometries
Mathematical Analysis of the BIBEE Approximation for Molecular Solvation:
Exact Results for Spherical Inclusions, JCP, 2011
Represent BIBEE as a deformed boundary condition
Fully developed series solution
Improve accuracy by combining CFA and P approximations

Application to protein-ligand binding
Analysis of fast boundary-integral approximations for modeling electrostatic
contributions of molecular binding, Molecular-Based Mathematical Biology, 2013
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Operator Approximation

Future of BIBEE

Framework for systematic exploration
Both analytical and computational foundation

Reduced-basis Method with analytic solutions
Tested in protein binding paper above
The spatial high frequency part is handled by BIBEE/P
topology is not important
The spatial low frequency part is handled by analytic solutions
insensitive to bumpiness
Computational science and re-discovery: open-source implementations of
ellipsoidal harmonics for problems in potential theory, CSD, 2012.

Extend to other kernels, e.g. Yukawa

Extend to full multilevel method
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http://iopscience.iop.org/1749-4699/5/1/014006/
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Residual Evaluation

Outline

1 Operator Approximation

2 Residual Evaluation

3 Applications
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Residual Evaluation

Collaborators

PETSc
Developers

Barry Smith Jed Brown

Former UC
Students

Andy Terrel Peter Brune

M. Knepley (UC) CompSci Orsay ’13 25 / 75



Residual Evaluation

Problem

Traditional PDE codes cannot:

Compare different discretizations
Different orders, finite elements
finite volume vs. finite element

Compare different mesh types
Simplicial, hexahedral, polyhedral, octree

Run 1D, 2D, and 3D problems

Enable an optimal solver
Fields, auxiliary operators
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http://www.amazon.com/Finite-Element-Method-Mechanical-Engineering/dp/0486411818


Residual Evaluation

Problem

Traditional Mesh/Solver Interface is Too General:
Solver not told about discretization data, e.g. fields

Cannot take advantage of problem structure
blocking
saddle point structure

Cannot use auxiliary data
Eigen-estimates
null spaces
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Residual Evaluation

Problem

Traditional Mesh/Solver Interface is Too Specific:
Assembly code specialized to each discretization

dimension
cell shape
approximation space

Explicit references to element type
getVertices(faceID), getAdjacency(edgeID, VERTEX),
getAdjacency(edgeID, dim = 0)

No interface for transitive closure
Awkward nested loops to handle different dimensions
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Residual Evaluation

Mesh Representation

We represent each mesh as a Hasse Diagram:

Can represent any CW complex
Can be implemented as a Directed Acyclic Graph
Reduces mesh information to a single covering relation
Can discover dimension, since meshes are ranked posets

We use an abstract topological interface to organize traversals for:
discretization integrals
solver size determination
computing communication patterns

Mesh geometry is treated as just another mesh function.
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Residual Evaluation

Sample Meshes
Interpolated triangular mesh
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Residual Evaluation

Sample Meshes
Optimized triangular mesh
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Residual Evaluation

Sample Meshes
Interpolated quadrilateral mesh
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Residual Evaluation

Sample Meshes
Optimized quadrilateral mesh
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Residual Evaluation

Sample Meshes
Interpolated tetrahedral mesh
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Residual Evaluation

Mesh Abstraction
Interface Design

By abstracting on the key topological relations,
the interface can be both concise and quite general

Single relation

Enables dimension-independent programming

Dual is obtained by reversing arrows

Can associate function(al)s with DAG points

Dual operation gives the support of the function

Mesh Algorithms for PDE with Sieve I: Mesh Distribution, Knepley, Karpeev, Sci. Prog., 2009.
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Residual Evaluation

Basic Operations
Cone

We begin with the basic
covering relation,

cone(0) = {2, 3, 4} 7
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Residual Evaluation

Basic Operations
Support

reverse arrows to get the
dual operation,

support(9) = {3, 4, 6} 7
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Residual Evaluation

Basic Operations
Closure

add the transitive closure
of the relation,

closure(0) = {0, 2, 3, 4, 7, 8, 9} 7
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Residual Evaluation

Basic Operations
Star

and the transitive closure
of the dual,

star(7) = {7, 2, 3, 0} 7
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Residual Evaluation

Basic Operations
Meet

and augment with lattice
operations.

meet(0, 1) = {4} 7
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Residual Evaluation

Basic Operations
Join

and augment with lattice
operations.

join(8, 9) = {4} 7
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Residual Evaluation

Residual Evaluation

I developed a single residual evaluation routine independent of
spatial dimension, cell geometry, and finite element:

F (u) = 0

Dim Cell Types Discretizations
1 Simplex Lagrange FEM
2 Tensor Product H(div) FEM∗

3 Polyhedral H(curl) FEM∗

6† Prism DG FEM ∗‡

† Peter Brune, ANL
∗ FEniCS Project
‡ Blaise Bourdin, LSU

We have also implemented a polyhedral FVM.
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Residual Evaluation
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Residual Evaluation

FEM Integration Model
Proposed by Jed Brown

We consider weak forms dependent only on fields and gradients,∫
Ω
ϕ · f0(u,∇u) +∇ϕ : f⃗1(u,∇u) = 0. (9)

Discretizing we have

∑
e

ET
e

[
BT W qf0(uq,∇uq) +

∑
k

DT
k W q f⃗ k

1 (u
q,∇uq)

]
= 0 (10)

fn pointwise physics functions
uq field at a quad point
W q diagonal matrix of quad weights
B,D basis function matrices which

reduce over quad points
E assembly operator
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Residual Evaluation

Batch Integration

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
<Put boundary conditions into local input vector>
<Extract coefficients and geometry for batch>
<Integrate batch of elements>
<Insert batch of element vectors into local vector>
<Local to Global addition>

}
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https://bitbucket.org/petsc/petsc-dev/src/91b3a1ba482763c5245a33da88fc5d3c2468d6a3/src/dm/impls/plex/plex.c?at=default#cl-9782


Residual Evaluation

Batch Integration
Set boundary conditions

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
DMPlexProjectFunctionLocal(dm, numComponents,

bcFuncs, INSERT_BC_VALUES, X);
<Extract coefficients and geometry for batch>
<Integrate batch of elements>
<Insert batch of element vectors into local vector>
<Local to Global addition>

}
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Residual Evaluation

Batch Integration
Extract coefficients and geometry

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
<Put boundary conditions into local input vector>
DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
for (c = cStart; c < cEnd; ++c) {
DMPlexComputeCellGeometry(dm, c, &v0[c*dim],

&J[c*dim*dim], &invJ[c*dim*dim], &detJ[c]);
DMPlexVecGetClosure(dm, NULL, X, c, NULL, &x);
for (i = 0; i < cellDof; ++i) u[c*cellDof+i] = x[i];
DMPlexVecRestoreClosure(dm, NULL, X, c, NULL, &x);

}
<Integrate batch of elements>
<Insert batch of element vectors into local vector>
<Local to Global addition>

}
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Residual Evaluation

Batch Integration
Integrate element batch

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
<Put boundary conditions into local input vector>
<Extract coefficients and geometry for batch>
for (field = 0; field < numFields; ++field) {
(*mesh->integrateResidualFEM)(Ne, numFields, field,

quad, u,
v0, J, invJ, detJ,
f0, f1, elemVec);

(*mesh->integrateResidualFEM)(Nr, ...);
}
<Insert batch of element vectors into local vector>
<Local to Global addition>

}
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Residual Evaluation

Batch Integration
Insert element vectors

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
<Put boundary conditions into local input vector>
<Extract coefficients and geometry for batch>
<Integrate batch of elements>
for (c = cStart; c < cEnd; ++c) {
DMPlexVecSetClosure(dm, NULL, F, c,

&elemVec[c*cellDof], ADD_VALUES);
}
<Local to Global addition>

}
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Residual Evaluation

Batch Integration

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
<Put boundary conditions into local input vector>
<Extract coefficients and geometry for batch>
<Integrate batch of elements>
<Insert batch of element vectors into local vector>
<Local to Global addition>
/* Also applies constraint matrix $I^u_c$ */
DMLocalToGlobalBegin(dm, F, ADD_VALUES, gF);
DMLocalToGlobalEnd(dm, F, ADD_VALUES, gF);

}
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Residual Evaluation

Element Integration

FEMIntegrateResidualBatch(Ne, numFields, field,
quad[], coefficients[],
v0s[], jacobians[], jacobianInv[], jacobianDet[],
f0_func, f1_func)

{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>
<Make x_q>
<Make u_q and gradU_q>
<Call f_0 and f_1>

<Loop over element vector entries (f, fc)>
<Add contributions from f_0 and f_1>

}
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Residual Evaluation

Element Integration
Calculate xq

FEMIntegrateResidualBatch(...)
{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>

for (d = 0; d < dim; ++d) {
x[d] = v0[d];
for (d2 = 0; d2 < dim; ++d2) {
x[d] += J[d*dim+d2]*(quadPoints[q*dim+d2]+1);

}
}
<Make u_q and gradU_q>
<Call f_0 and f_1>

<Loop over element vector entries (f, fc)>
<Add contributions from f_0 and f_1>

}
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Residual Evaluation

Element Integration
Calculate uq and ∇uq

FEMIntegrateResidualBatch(...)
{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>
<Make x_q>
for (f = 0; f < numFields; ++f) {

for (b = 0; b < Nb; ++b) {
for (comp = 0; comp < Ncomp; ++comp) {
u[comp] += coefficients[cidx]*basis[q+cidx];
for (d = 0; d < dim; ++d) {
<Transform derivative to real space>
gradU[comp*dim+d] +=
coefficients[cidx]*realSpaceDer[d];

}
}

}
}
<Call f_0 and f_1>

<Loop over element vector entries (f, fc)>
<Add contributions from f_0 and f_1>

}
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Residual Evaluation

Element Integration
Calculate uq and ∇uq

FEMIntegrateResidualBatch(...)
{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>
<Make x_q>
for (f = 0; f < numFields; ++f) {

for (b = 0; b < Nb; ++b) {
for (comp = 0; comp < Ncomp; ++comp) {
u[comp] += coefficients[cidx]*basis[q+cidx];
for (d = 0; d < dim; ++d) {
realSpaceDer[d] = 0.0;
for (g = 0; g < dim; ++g) {
realSpaceDer[d] +=

invJ[g*dim+d]*basisDer[(q+cidx)*dim+g];
}
gradU[comp*dim+d] +=
coefficients[cidx]*realSpaceDer[d];

}
}

}
}
<Call f_0 and f_1>

<Loop over element vector entries (f, fc)>
<Add contributions from f_0 and f_1>

}
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Residual Evaluation

Element Integration
Call f0 and f1

FEMIntegrateResidualBatch(...)
{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>

<Make x_q>
<Make u_q and gradU_q>
f0_func(u, gradU, x, &f0[q*Ncomp]);
for (i = 0; i < Ncomp; ++i) {
f0[q*Ncomp+i] *= detJ*quadWeights[q];

}
f1_func(u, gradU, x, &f1[q*Ncomp*dim]);
for (i = 0; i < Ncomp*dim; ++i) {
f1[q*Ncomp*dim+i] *= detJ*quadWeights[q];

}
<Loop over element vector entries (f, fc)>

<Add contributions from f_0 and f_1>
}
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Residual Evaluation

Element Integration
Update element vector

FEMIntegrateResidualBatch(...)
{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>
<Make x_q>
<Make u_q and gradU_q>
<Call f_0 and f_1>

<Loop over element vector entries (f, fc)>
for (q = 0; q < Nq; ++q) {
elemVec[cidx] += basis[q+cidx]*f0[q+comp];
for (d = 0; d < dim; ++d) {
<Transform derivative to real space>
elemVec[cidx] +=

realSpaceDer[d]*f1[(q+comp)*dim+d];
}

}
}
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Residual Evaluation

GPU Integration

Porting to the GPU meant changing
only the element integration function:

Has the same flexibility as CPU version

Multiple threads execute each cell integral

Achieves 100 GF/s for 2D P1 Laplacian

Code is available here

Finite Element Integration on GPUs, TOMS, 2013
Finite Element Integration with Quadrature on the GPU, PLC,
2013
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http://arxiv.org/abs/1103.0066


Residual Evaluation

Solver Integration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Full Schur Complement

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_velocity_ksp_type gmres -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi

(
I 0

BT A−1 I

)(
Â 0
0 Ŝ

)(
I A−1B
0 I

)
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Residual Evaluation

Solver Integration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

SIMPLE

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_velocity_ksp_type gmres -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
-fieldsplit_pressure_inner_ksp_type preonly
-fieldsplit_pressure_inner_pc_type jacobi

-fieldsplit_pressure_upper_ksp_type preonly
-fieldsplit_pressure_upper_pc_type jacobi

(
I 0

BT D−1
A I

)(
Â 0
0 Ŝ

)(
I D−1

A B
0 I

)
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Residual Evaluation

Solver Integration: No New Code

ex31: P2/P1 Stokes Problem with Temperature on Unstructured Mesh

Additive Schwarz + Full Schur Complement

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_0_fields 0,1
-pc_fieldsplit_1_fields 2 -pc_fieldsplit_type additive
-fieldsplit_0_ksp_type fgmres -fieldsplit_0_pc_type fieldsplit
-fieldsplit_0_pc_fieldsplit_type schur
-fieldsplit_0_pc_fieldsplit_schur_factorization_type full
-fieldsplit_0_fieldsplit_velocity_ksp_type preonly
-fieldsplit_0_fieldsplit_velocity_pc_type lu
-fieldsplit_0_fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_0_fieldsplit_pressure_pc_type jacobi

-fieldsplit_temperature_ksp_type preonly
-fieldsplit_temperature_pc_type lu( I 0

BT A−1 I

)(
A 0
0 S

)(
I A−1B
0 I

)
0

0 LT


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Residual Evaluation

Solver Integration: No New Code

ex31: P2/P1 Stokes Problem with Temperature on Unstructured Mesh

Least-Squares Commutator + Upper Schur Comp. + Full Schur Comp.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_0_fields 0,1
-pc_fieldsplit_1_fields 2 -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_0_ksp_type fgmres -fieldsplit_0_pc_type fieldsplit
-fieldsplit_0_pc_fieldsplit_type schur
-fieldsplit_0_pc_fieldsplit_schur_factorization_type full
-fieldsplit_0_fieldsplit_velocity_ksp_type preonly
-fieldsplit_0_fieldsplit_velocity_pc_type lu
-fieldsplit_0_fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_0_fieldsplit_pressure_pc_type jacobi

-fieldsplit_temperature_ksp_type gmres
-fieldsplit_temperature_pc_type lsc

(
I 0

BT A−1 I

)(
Â 0
0 Ŝ

)(
I A−1B
0 I

)
G

0 ŜLSC


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Residual Evaluation

Resolution
Traditional PDE codes:

Cannot compare different discretizations
Automated FEM Discretizations for the Stokes Equation, BIT, 2008
Efficient Assembly of H(div) and H(curl) Conforming Finite Elements, SISC, 2009

Compare different mesh types
A Domain Decomposition Approach to Implementing Fault Slip in
Finite-Element Models of Quasi-static and Dynamic Crustal Deformation, JGR,
2013

Run 1D, 2D, and 3D problems
Ibid.

Enabling an optimal solver without programming
Ibid.
Composable linear solvers for multiphysics, IPDPS, 2012
On the rise of strongly tilted mantle plume tails, PEPI, 2011
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Residual Evaluation

Future Work

Unify FEM and FVM residual evaulation

Batched integration on accelerators

Integrate auxiliary fields

Incorporate cell problems for coefficients
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Applications

PyLith

PyLith is an open source, parallel
simulator for crustal deformation
problems developed by myself,
Brad Aagaard, and Charles Williams.
PyLith employs a finite element
discretization on unstructured
meshes and is built on the PETSc
libraries from ANL.

Brad Aagaard

Charles Williams
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Applications

PyLith

Multiple problems
Dynamic rupture
Quasi-static relaxation

Multiple models
Fault constitutive models
Nonlinear visco-elastic-plastic
Finite deformation

Multiple Meshes
1D, 2D, 3D
Hex and tet meshes
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Applications

Classical DFT in Three Dimensions

I wrote the first 3D Classical DFT
with true hard sphere chemical
potential using fundamental
measure theory. It used an
O(N logN) algorithm based upon
the FFT. We examined the physics
of ion channels, such as the
ryanodine receptor. Advanced
electrostatics allowed prediction of
I-V curves for 100+ solutions,
including polyvalent species.

The implementation is detailed in An Efficient Algorithm for Classical Density

Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012.
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Applications

People Using My Mesh
Blaise Bourdin

Full variational formulation
Phase field for crack
Linear or quadratic penalty

Cracks are not prescribed
Arbitrary crack geometry
Arbitrary crack intersections

Multiple materials and composite toughness
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Applications

People Using My Mesh
HiFlow3

Multi-purpose finite element software
Arose from EMCL at Karlsruhe Institute of Technology
Flow behavior in the human respiratory system
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Applications

People Using PETSc Composable Solvers
TerraFERMA (Cian Wilson and Marc Spiegelman, Columbia)

Magma Dynamics
Flexible model builder
Finite element
Nested FieldSplit solver
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Fluid Model (ω/vs0 = 50)
Compaction & Buoyancy Buoyancy Only

16% Melt 0.1% Melt

0.01 100.0Porosity, ϕ/0.003
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Applications

People Using PETSc Composable Solvers
Sam Weatherley and Richard Katz (Oxford)

Magma Dynamics
Finite volume
Nested FieldSplit solver
Small scale parallel (102–103)
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Finite volume
Nested FieldSplit solver
Small scale parallel (102–103)
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Applications

People Using PETSc Composable Solvers
PTatin (Dave May, ETHZ)

Lithospheric and Mantle dynamics
Finite element
Lagrangian particles
Nested FieldSplit solver
Large scale parallel (103–105)
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Fluid Model (ω/vs0 = 50)
Compaction & Buoyancy Buoyancy Only
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Text

Stokes + Implicit Free Surface

“Drunken seaman”, Rayleigh 
Taylor instability test case from  
Kaus et al., 2010. Dense, viscous 
material (yellow) overlying less 
dense, less viscous material 
(blue).

Momentum

Pressure“S
to

ke
s”

Coordinates

COORDINATE RESIDUALS

JACOBIAN

NESTED PRECONDITIONER

Reuse stokes 
operators and 
saddle point 

preconditioners

[We use a full Lagrangian update of our mesh, with no remeshing]
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Applications

Impact of Mathematics on Science

Computational Leaders have always
embraced the latest technology

and been inspired by physical problems.
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Applications

Impact of Mathematics on Science

Computational Leaders have always
embraced the latest technology

and been inspired by physical problems.

Enabling Scientific Discovery
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Additional Slides

Programming with Options

ex55: Allen-Cahn problem in 2D
constant mobility
triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres
-mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65
-mg_levels_pc_fieldsplit_factorization_type full
-mg_levels_pc_fieldsplit_schur_precondition user
-mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly
-mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5
-mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin
-snes_vi_monitor -ksp_monitor_true_residual -snes_atol 1.e-11
-mg_levels_ksp_monitor -mg_levels_fieldsplit_ksp_monitor
-mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5
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Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd
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Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_factorization_type full
-mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Schur complement action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward
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Nonlinear Preconditioning

Major Point: Composable structures for computation reduce
system complexity and generate real application benefits
Minor Point: Numerical libraries are communication medium for
scientific results
Minor Point: Optimal solvers can be constructed on the fly to suit
the problem
Slides for Stokes PCs
Slide with programming with options
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Nonlinear Preconditioning

NPC in PETSc
Paper with Barry and Peter
Cite Peter and Jed paper for use cases
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Parallel Fast Multipole Method

Using mesh partitioner to develop schedule removes load balance
barrier
Partitioner can be proved to work with Teng’s result
Simple parallelization can be proved to work with overlap
Ex: Work with May, 512 GPU paper
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GPU Computing

Papers with Andy about FEM Integration
Paper with PETSc about solvers
Conferences with Yuen
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