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Multicore Parallelism
Code Generation

Big ldea: Code Generation

@ Compile time examples
e Dense linear algebra
o Digital Signal Processing
e FEM Accumulation/Assembly
e Model coupling
@ Runtime support
e Inspector-Executor
e PGAS
o Libraries, if written correctly, can be oblivious

M. Knepley (ANL) Parallelism CSRI 08



Multicore Parallelism

DFT (single precision): on 3 GHz 2 x Core 2 Extreme
performance [Gflop/s]
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@ Spiral Team, http://www.spiral.net
@ Uses an intermediate language, SPL, and then generates C
@ Works by circumscribing the algorithmic domain
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Multicore Parallelism

FLAME & FLASH

Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070
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@ Robert van de Geijn, http://www.cs.utexas.edu/users/flame
@ FLAME is an Algorithm-By-Blocks interface
@ FLASH/SuperMatrix is a runtime system
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Multicore Parallelism
Conclusions

@ Circumscribe algorithmic domain
@ Specialize to algorithm/hardware with code generation

@ Runtime decisions informed by high level information
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Multiprocessor Parallelism
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

@ Stitch together to form a global solution

M. Knepley (ANL) Parallelism CSRI 08 11/28



Multiprocessor Parallelism
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems
o Locality of operations is key for efficient implementation

@ Stitch together to form a global solution

M. Knepley (ANL) Parallelism CSRI 08 11/28



Multiprocessor Parallelism
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
e Should enable reuse of serial implementation

@ Stitch together to form a global solution

M. Knepley (ANL) Parallelism CSRI 08 11/28



Multiprocessor Parallelism
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
e Should enable reuse of serial implementation

@ Stitch together to form a global solution
e Manifold or Domain Decomposition idea: local pieces w/ overlap

M. Knepley (ANL) Parallelism CSRI 08 11/28



Multiprocessor Parallelism
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
e Should enable reuse of serial implementation

@ Stitch together to form a global solution

e Manifold or Domain Decomposition idea: local pieces w/ overlap
o Global complexity is encoded in the (small) Overlap
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Multiprocessor Parallelism
MPICH-G2

Early Attempt at Hierarchy

@ Communicator hierarchy, topology depth
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Multiprocessor Parallelism
MPICH-G2

Early Attempt at Hierarchy

@ Communicator hierarchy, topology depth

@ Only exposed to the user through Comm attributes
o Still have to support flat model

@ Hierarchy information is buried too deep
@ Only really accessible in the implementation (collectives)
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Multiprocessor Parallelism
Sieve Overview

@ Hierarchy is the centerpiece
e Strip out unneeded complexity (dimension, shape, ...)
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Multiprocessor Parallelism
Sieve Overview

@ Hierarchy is the centerpiece
e Strip out unneeded complexity (dimension, shape, ...)

@ Single relation, covering, handles all hierarchy
e Rich enough for FEM

@ Single operation, completion, for parallelism
e Enforces consistency of the relation
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Multiprocessor Parallelism
Uses

Completion has many uses:
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Multiprocessor Parallelism
Uses

Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
@ distributing mesh entities after partition
@ redistributing mesh entities and data for load balance
@ accumlating matvec for a partially assembled matrix
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Multiprocessor Parallelism
Hierarchical Interfaces

Global/Local Dichotomy is the Heart of DD

Software interfaces do not adequately reflect this

@ PETSc DA is too specialized

@ Basically 1D methods applied to Cartesian products
@ PETSc Index Sets and VecScatters are too fine

o User “does everything”, no abstraction
@ PETSc Linear Algebra (Vec & Mat) is too coarse

@ No access to the underlying connectivity structure
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Multiprocessor Parallelism
Conclusions

@ Have concise, abstract, flexible interface for hierarchy
@ Need support for interaction with communication primitives

@ Specialized networks cannot currently implement sophisticated
tree algorithms
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Conclusion
Conclusions

@ Multicore performance should be improved with:
o Better code generation and runtime tools

o Algorithmic specificity

@ Multiprocess scalability should be improved with:
o Explicitly hierarchical interfaces/libraries

o Better interaction of algorithms with communication
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Questions and Answers
Question 15

Are there extensions that can be made to MPI so that MPI is more
amenable to writing scalable applications and to building
next-generation libraries and languages?
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Questions and Answers
Answer 15

Hierarchy is the key notion in nearly every optimal algorithm known.
For example, the solvers Multigrid (MG), Fast Multipole Method (FMM),
and FETI are all based upon a hierarchical decomposition of the
problem domain, which is then used to aggregate the effects of local,
usually linear, operations. Use of these algorithms, particularly in large
community codes, has been impeded by the high cost of
implementation. However, they are arguably key to the scalability and
efficiency of application codes on next-generation exascale
architectures. Simple hierarchical extensions to MPI could greatly
ease the implementation process, and result in much faster and more
scalable applications. For instance, a hierarchical relation between
communicators could be directly mapped onto tree algorithms, such as
FMM.

Moreover, modern implementations of MPI must reduce the data
stored per node in order to avoid explosion of local storage for the
implementation. Space eff|C|ent |mplementat|ons of MPI would make
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Questions and Answers
Question 23

HPC is small compared to the commercial software market. What are
commercial leaders like Microsoft and Google doing to prepare for an
era of multicore/manycore parallelism, and how will this affect the
scientific HPC world?
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Questions and Answers
Answer 23

The most significant development in the commercial software market
for HPC is the recent practicality of outsourced computation. The
enabling technology for this development is exactly the same as that
which enabled the huge growth in portable numerical libraries over the
past two decades, namely abstraction of a large set of community
problems to a common algorithmic domain. With a common
algorithmic language, users can encode individual problems which can
then be run by any computation service.

The best known example of this paradigm in the Google MapReduce
implementation. However, other large players now offer much the
same service to any computing customer, for instance Yahoo with
Hadoop and Amazon with EC2. Outsourced computing greatly
expands the notion of computing facilities, today embodied by the
national centers for computation such as NERSC. This also opens the
door to centralized storage of and computation on large scientific data
sets. In essence, bringing computing to the data, rather than data to
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Questions and Answers
Question 29

Will hierarchical problem decomposition (I call it fractal or self-similar
computing) get around the billion thread programming problem
(nobody is smart enough to develop billion thread codes that do

anything significant)?
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Questions and Answers
Answer 29

Yes, hierarchy is the key to better, more scalable algorithms. However,
without sufficient computation to occupy each thread, we will not make
efficient use of the machine. Migration to algorithms which have better
balance between computation and communication/memory bandwidth
will likely entail refactoring current applications and production of high
quality middleware encapsulating both the dependency structure for
computations and the task scheduling and dispatch procedure.
Machine hierarchies will also play a role in managing exascale
execution. We believe that specialized networks will be a key
component of scalable performance for these algorithms. For example,
the reduction network on BG/L allows Krylov methods to continue
scaling to thousands of processors while utilizing many dot products.
Extension of these networks to support scans with matrix operations
would enable an even wider array of scalable algorithms, such as FMM
or MG.
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Questions and Answers
A New Standard?

MPI provides a good interface for data parallel algorithms. However,
the extensions to task parallelism are confusing, incomplete, and
sometimes slow. OpenMP does provide an interface for task
parallelism. However, it does not abstract the main operations and
relegates much of the user control to environment variables, rather
than an API. Moreover, basic operations are absent. For example, we
would like the system to accept a computation DAG from the
application and use this to schedule taks dynamically at runtime. Thus,
we might consider an effort to produce a standard, similar to MPI,
which encapsulated task parallel algorithms.
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