Finite Element Integration using CUDA and
OpenCL

Matthew Knepley, Karl Rupp, Andy Terrel

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

GPU-SMP 2013
Changchun, China  July 28—-Aug 2, 2013

47\ RUSH UNIVERSITY
\l/ MEDICAL CENTER

M. Knepley (UC) FEM-GPU GPU-SMP ’13 1/31



Collaborators

ViennaCL Creator
ANL

SciPy 2013 Chair
TACC

Andy Terrel

M. Knepley (UC) FEM-GPU GPU-SMP ’13 3/31


http://viennacl.sourceforge.net/
https://conference.scipy.org/scipy2013/

Introduction
Research Products

o Efficiently vectorized FEM algorithm

e Open implementation in PETSc

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4/31


http://www.mcs.anl.gov/petsc

Introduction
Research Products

o Efficiently vectorized FEM algorithm
Traversals are handled by the PETSc library

e Open implementation in PETSc

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4/31


http://www.mcs.anl.gov/petsc

Introduction
Research Products

o Efficiently vectorized FEM algorithm
Traversals are handled by the PETSc library
Separates physics from discretization

e Open implementation in PETSc

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4/31


http://www.mcs.anl.gov/petsc

Introduction
Research Products

o Efficiently vectorized FEM algorithm

e Open implementation in PETSc
Runs in normal package examples

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4/31


http://www.mcs.anl.gov/petsc

Introduction
Research Products

o Efficiently vectorized FEM algorithm

e Open implementation in PETSc
Runs in normal package examples
Needed OpenCL, too unstructured for OpenMP
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Vectorizing FEM

Why is Vectorization Important?

For vector length k, without vectorization

. 1
we can attain only P of peak performance.
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Vectorizing FEM

Why is Vectorization Important?

For vector length k, without vectorization

. 1
we can attain only P of peak performance.

For GTX580, k = 32

so that unvectorized code runs at 3% of peak.
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Vectorizing FEM

Why is Vectorization Important?

For streaming computations,
other factors are less important:

e except coalesced (vectorized) loads
e little cache reuse
e tiling not as important

e latency covered by computation
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Vectorizing FEM

Why is Vectorization Important?

Concurrent loads are necessary to saturate the memory bandwidth

Architecture STREAMS' (GB/s) Peak (GB/s) Eff (%)
NVIDIA GTX 285 134 159 84
NVIDIA GTX 580 166 192 86
AMD HD7970 199 264 75
Dual Intel E5-26707 80 101 79
Intel Xeon Phi 95 2208 43

! Results benefit from autotuning
2 See also https://panthema.net/2013/pmbw/Intel-Xeon-E5-2670-64GB

3 This is the ring bus limit, not the processor limit of 320 GB/s
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Vectorizing FEM

Impediments to Vectorization

Compiler Complexity

Compilers cannot vectorize arbitrary code, and users typically do not
vectorize

for (g = 0; g < N_g; ++q) {

for (b = 0; b < N_b; ++b) {

/ Calculate residual for test function res_0 and derivative res
b_g = basis[g*N_b+b];

db_g = basisDer [g*N_b+b];

r b += b_g * res_0;

r b += db_g * res_1;

}

}

OpenCL results show large variations, depending on the compiler
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Vectorizing FEM

Impediments to Vectorization

User-specified physics routines

Vectorization is complicated by hardcoding physics routines

ig < N_g; ++q) {
late field and derviative at quadrature point
0; b < N_b; ++b) {

basis[g*N_b+b];

basisDer [g*N_b+b];

b_g * F(u_g, du_q);

db_g * G(u_qg, du_q);

for (g = 0
Calcu

for (b =
b_g =
db_qg =

r_ b +

r b +

We avoid hardcoding by adopting a separated model for integration.
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Vectorizing FEM

FEM Integration Model

Proposed by Jed Brown
We consider weak forms dependent only on fields and gradients,

/ng-fo(u,Vu)qLqu:ﬁ(u,Vu)zo. (1)

Discretizing we have

el [BTWC’fO(UQ,qu)+ZD{WQﬁk(UQ,qu) =0 (2
e k

fn pointwise physics functions

u?  field at a quad point

W49  diagonal matrix of quad weights

B,D basis function matrices which
reduce over quad points

& assembly operator
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Vectorizing FEM

Impediments to Vectorization
Code Complexity

Many levels of blocking are necessary:
@ Chunk: Basic tile
@ Batch: Executed in serial

@ Block: Executed concurrently
and are more easily dealt with generically by the library.

We illustrate these sizes in the next section.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 12/31



Vectorizing FEM

Impediments to Vectorization

Memory bandwidth

Vectorization over basis functions increases required bandwidth
by a factor Njp
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Vectorizing FEM

Impediments to Vectorization

Memory bandwidth

Vectorization over quadrature points increases required bandwidth
by a factor Ny
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Vectorizing FEM

Impediments to Vectorization

Reductions

If we vectorize first over quadrature points,

B B = =
01 IO HIREC- NI

.
.
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Vectorizing FEM

Impediments to Vectorization

Reductions

If we vectorize first over quadrature points,

B ® = B
Al e e eR
and then over basis functions
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Vectorizing FEM

Impediments to Vectorization

Reductions

If we vectorize first over quadrature points,

B B & & & =
01 HINNC- NIREC- NI

“n e

and then over basis functions
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for a batch of cells, there must be a reduction over quadrature points.
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Vectorizing FEM

Thread Transposition

Evaluate basis and process
values at quadrature points

Map values at quadrature T I D R G
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Vectorizing FEM
Thread Transposition

@ Removes reduction

@ Single pass through memory

@ Operate in unassembled space
o Could do scattered load (better with cache)
@ Our cell tiling would aid this

@ Needs local memory
e Bounded by NyN,, good for low order

M. Knepley (UC) FEM-GPU GPU-SMP ’13 17/31



Vectorizing FEM

Open Implementation

Building
All our runs may be reproduced from the PETSc development branch:

git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch

git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco
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Vectorizing FEM

Open Implementation

Building
All our runs may be reproduced from the PETSc development branch:

git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch

git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

and for CUDA you also need

—-—-with-cudac='"nvcc -m64’ —--with-cuda-only
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Vectorizing FEM

Open Implementation

Building
All our runs may be reproduced from the PETSc development branch:

git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch

git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

and for OpenCL you also need

--with-opencl
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Vectorizing FEM

Open Implementation

Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch
git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

and for OpenCL (on Mac) you also need

——with-opencl-include=/System/Library/Frameworks/
OpenCL. framework/Headers/

—-with-opencl-lib=/System/Library/Frameworks/
OpenCL. framework/OpenCL
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Vectorizing FEM

Open Implementation

Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch
git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

To build, use

make
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Vectorizing FEM

Open Implementation

Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch
git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

To build with Python, use

./config/builder2.py build
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Vectorizing FEM

Open Implementation

Running

A representative run for the Py Laplacian:

./src/benchmarks/benchmarkExample.py

—-—events IntegBatchCPU IntegBatchGPU IntegGPUONnly

—-num 52 DMComplex

—-refine 0.0625 0.00625 0.000625 0.0000625 0.00003125
0.000015625 0.0000078125 0.00000390625

——blockExp 4 —-order 1

CPU='dm_view_show_residual=0

GPU="dm__ J i

ompute_function_batch’

esidual=0_compute_func

All run parameters are listed in the forthcoming paper.
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Vectorizing FEM

Open Implementation

Running

A representative run for the Py Laplacian:
which is translated to

./\${PETSC_ARCH}/1lib/ex52-0obj/ex52
—refinement_limit 0.0625 -compute_function -batch
—-gpu —gpu_batches 8 —-gpu_blocks 16
—log_summary summary.dat —-log_summary_python
—dm_view -show_residual 0 -preload off

All run parameters are listed in the forthcoming paper.
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Performance

Nvidia GTX285 CUDA

Performance on SNES Example 52
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Performance

Nvidia GTX285 OpenCL

Performance on SNES Example 52
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Performance

Nvidia GTX580 CUDA

Performance on SNES Example 52
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Performance

Nvidia GTX580 OpenCL

Performance on SNES Example 52
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Performance

Block size variation

Nvidia GTX580

300 Performance on SNES Example 52 - NVIDIA GTX 580
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Performance

ATI HD7970

Performance on SNES Example 52
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Performance

Block size variation

ATI HD7970

Performance on SNES Example 52 - AMD Radeon HD 7970
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Performance

Intel Xeon

Performance on SNES Example 52
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Performance

Scaling on the
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Conclusions
Conclusions

e Traversals should be handled by the library

e Performance portability requires better compilers
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Conclusions
Conclusions

e Traversals should be handled by the library
Allows efficient vectorization
Separates physics from discretization

e Performance portability requires better compilers
Vectorization is somewhat behind
MIC programming model is broken
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Conclusions

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL TBB+C++ Templates
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How should kernels be
integrated into libraries?

CUDA/OpenCL TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
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How should kernels be
integrated into libraries?

CUDA/OpenCL TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
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Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
@ Can use high-level reasoning @ Low-level compiler-type
for optimization (FErari) optimization
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Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
@ Can use high-level reasoning @ Low-level compiler-type
for optimization (FErari) optimization
@ Kernel fusion is easy @ Kernel fusion is really hard
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