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Vectorizing FEM

Why is Vectorization Important?

For vector length k , without vectorization

we can attain only
1
k

of peak performance.

For GTX580, k = 32

so that unvectorized code runs at 3% of peak.
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Vectorizing FEM

Why is Vectorization Important?

For streaming computations,
other factors are less important:

except coalesced (vectorized) loads

little cache reuse

tiling not as important

latency covered by computation

M. Knepley (UC) FEM-GPU GPU-SMP ’13 7 / 31



Vectorizing FEM

Why is Vectorization Important?

Concurrent loads are necessary to saturate the memory bandwidth

Architecture STREAMS1 (GB/s) Peak (GB/s) Eff (%)
NVIDIA GTX 285 134 159 84
NVIDIA GTX 580 166 192 86
AMD HD7970 199 264 75
Dual Intel E5-26702 80 101 79
Intel Xeon Phi 95 2203 43

1 Results benefit from autotuning
2 See also https://panthema.net/2013/pmbw/Intel-Xeon-E5-2670-64GB
3 This is the ring bus limit, not the processor limit of 320 GB/s
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Vectorizing FEM

Impediments to Vectorization
Compiler Complexity

Compilers cannot vectorize arbitrary code, and users typically do not
vectorize

for (q = 0; q < N_q; ++q) {
for (b = 0; b < N_b; ++b) {

/* Calculate residual for test function res_0 and derivative res_1 */
b_q = basis[q*N_b+b];
db_q = basisDer[q*N_b+b];
r_b += b_q * res_0;
r_b += db_q * res_1;

}
}

OpenCL results show large variations, depending on the compiler
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Vectorizing FEM

Impediments to Vectorization
User-specified physics routines

Vectorization is complicated by hardcoding physics routines

for (q = 0; q < N_q; ++q) {
/* Calculate field and derviative at quadrature point */
for (b = 0; b < N_b; ++b) {

b_q = basis[q*N_b+b];
db_q = basisDer[q*N_b+b];
r_b += b_q * F(u_q, du_q);
r_b += db_q * G(u_q, du_q);

}
}

We avoid hardcoding by adopting a separated model for integration.
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Vectorizing FEM

FEM Integration Model
Proposed by Jed Brown

We consider weak forms dependent only on fields and gradients,∫
Ω
ϕ · f0(u,∇u) +∇ϕ : f⃗1(u,∇u) = 0. (1)

Discretizing we have

∑
e

ET
e

[
BT W qf0(uq,∇uq) +

∑
k

DT
k W q f⃗ k

1 (u
q,∇uq)

]
= 0 (2)

fn pointwise physics functions
uq field at a quad point
W q diagonal matrix of quad weights
B,D basis function matrices which

reduce over quad points
E assembly operator
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Vectorizing FEM

Impediments to Vectorization
Code Complexity

Many levels of blocking are necessary:

Chunk: Basic tile

Batch: Executed in serial

Block: Executed concurrently
and are more easily dealt with generically by the library.

We illustrate these sizes in the next section.
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Vectorizing FEM

Impediments to Vectorization
Memory bandwidth

Vectorization over basis functions increases required bandwidth
by a factor Nb
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Vectorizing FEM

Impediments to Vectorization
Memory bandwidth

Vectorization over quadrature points increases required bandwidth
by a factor Nq
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Vectorizing FEM

Impediments to Vectorization
Reductions

If we vectorize first over quadrature points,
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for a batch of cells, there must be a reduction over quadrature points.
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Vectorizing FEM

Thread Transposition

Map values at quadrature

points to coefficients
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Vectorizing FEM

Basis Phase
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Vectorizing FEM

Thread Transposition

Removes reduction

Single pass through memory

Operate in unassembled space
Could do scattered load (better with cache)
Our cell tiling would aid this

Needs local memory

Bounded by NbNq , good for low order
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Vectorizing FEM

Open Implementation
Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev
git fetch
git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco
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git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco

and for CUDA you also need

--with-cudac=’nvcc -m64’ --with-cuda-only
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git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
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Vectorizing FEM

Open Implementation
Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev
git fetch
git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco

and for OpenCL (on Mac) you also need

--with-opencl-include=/System/Library/Frameworks/
OpenCL.framework/Headers/
--with-opencl-lib=/System/Library/Frameworks/

OpenCL.framework/OpenCL
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Vectorizing FEM

Open Implementation
Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev
git fetch
git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco

To build, use

make
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Vectorizing FEM

Open Implementation
Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev
git fetch
git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco

To build with Python, use

./config/builder2.py build
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Vectorizing FEM

Open Implementation
Running

A representative run for the P1 Laplacian:

./src/benchmarks/benchmarkExample.py
--events IntegBatchCPU IntegBatchGPU IntegGPUOnly
--num 52 DMComplex
--refine 0.0625 0.00625 0.000625 0.0000625 0.00003125

0.000015625 0.0000078125 0.00000390625
--blockExp 4 --order 1
CPU=’dm_view show_residual=0 compute_function batch’
GPU=’dm_view show_residual=0 compute_function batch gpu

gpu_batches=8’

All run parameters are listed in the forthcoming paper.
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Vectorizing FEM

Open Implementation
Running

A representative run for the P1 Laplacian:
which is translated to

./\${PETSC_ARCH}/lib/ex52-obj/ex52
-refinement_limit 0.0625 -compute_function -batch
-gpu -gpu_batches 8 -gpu_blocks 16
-log_summary summary.dat -log_summary_python
-dm_view -show_residual 0 -preload off

All run parameters are listed in the forthcoming paper.
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Performance

Nvidia GTX285 CUDA
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Performance

Nvidia GTX285 OpenCL
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Performance

Nvidia GTX580 CUDA
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Performance

Nvidia GTX580 OpenCL
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Performance

Block size variation
Nvidia GTX580
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Performance

ATI HD7970
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Performance

Block size variation
ATI HD7970
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Performance

Intel Xeon Phi
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Performance

Scaling on the TACC Longhorn cluster

Each node uses an Nvidia Quadro FX5800 GPUM. Knepley (UC) FEM-GPU GPU-SMP ’13 29 / 31
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Conclusions

Conclusions

Traversals should be handled by the library
Allows efficient vectorization
Separates physics from discretization

Performance portability requires better compilers
Vectorization is somewhat behind
MIC programming model is broken
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Conclusions

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard
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