Finite Element Integration using CUDA and
OpenCL

Matthew Knepley, Karl Rupp, Andy Terrel

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

GPU-SMP 2013
Changchun, China July 28—-Aug 2, 2013

47\ RUSH UNIVERSITY
\l/ MEDICAL CENTER

M. Knepley (UC) FEM-GPU GPU-SMP ’13 1/31

Collaborators

ViennaCL Creator
ANL

SciPy 2013 Chair
TACC

Andy Terrel

M. Knepley (UC) FEM-GPU GPU-SMP ’13 3/31

http://viennacl.sourceforge.net/
https://conference.scipy.org/scipy2013/

Introduction
Research Products

o Efficiently vectorized FEM algorithm

e Open implementation in PETSc

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4/31

http://www.mcs.anl.gov/petsc

Introduction
Research Products

o Efficiently vectorized FEM algorithm
Traversals are handled by the PETSc library

e Open implementation in PETSc

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4/31

http://www.mcs.anl.gov/petsc

Introduction
Research Products

o Efficiently vectorized FEM algorithm
Traversals are handled by the PETSc library
Separates physics from discretization

e Open implementation in PETSc

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4/31

http://www.mcs.anl.gov/petsc

Introduction
Research Products

o Efficiently vectorized FEM algorithm

e Open implementation in PETSc
Runs in normal package examples

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4/31

http://www.mcs.anl.gov/petsc

Introduction
Research Products

o Efficiently vectorized FEM algorithm

e Open implementation in PETSc
Runs in normal package examples
Needed OpenCL, too unstructured for OpenMP

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4/31

http://www.mcs.anl.gov/petsc

Vectorizing FEM

Outline

@ Vectorizing FEM

M. Knepley (UC) FEM-GPU GPU-SMP ’13 5/31

Vectorizing FEM

Why is Vectorization Important?

For vector length k, without vectorization

. 1
we can attain only P of peak performance.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 6/31

Vectorizing FEM

Why is Vectorization Important?

For vector length k, without vectorization

. 1
we can attain only P of peak performance.

For GTX580, k = 32

so that unvectorized code runs at 3% of peak.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 6/31

Vectorizing FEM

Why is Vectorization Important?

For streaming computations,
other factors are less important:

e except coalesced (vectorized) loads
e little cache reuse
e tiling not as important

e latency covered by computation

M. Knepley (UC) FEM-GPU

GPU-SMP '13

7/31

Vectorizing FEM

Why is Vectorization Important?

Concurrent loads are necessary to saturate the memory bandwidth

Architecture STREAMS' (GB/s) Peak (GB/s) Eff (%)
NVIDIA GTX 285 134 159 84
NVIDIA GTX 580 166 192 86
AMD HD7970 199 264 75
Dual Intel E5-26707 80 101 79
Intel Xeon Phi 95 2208 43

! Results benefit from autotuning
2 See also https://panthema.net/2013/pmbw/Intel-Xeon-E5-2670-64GB

3 This is the ring bus limit, not the processor limit of 320 GB/s

M. Knepley (UC) FEM-GPU GPU-SMP ’13 8/31

https://panthema.net/2013/pmbw/Intel-Xeon-E5-2670-64GB/

Vectorizing FEM

Impediments to Vectorization

Compiler Complexity

Compilers cannot vectorize arbitrary code, and users typically do not
vectorize

for (g = 0; g < N_g; ++q) {

for (b = 0; b < N_b; ++b) {

/ Calculate residual for test function res_0 and derivative res
b_g = basis[g*N_b+b];

db_g = basisDer [g*N_b+b];

r b += b_g * res_0;

r b += db_g * res_1;

}

}

OpenCL results show large variations, depending on the compiler

M. Knepley (UC) FEM-GPU GPU-SMP ’13

9/31

Vectorizing FEM

Impediments to Vectorization

User-specified physics routines

Vectorization is complicated by hardcoding physics routines

ig < N_g; ++q) {
late field and derviative at quadrature point
0; b < N_b; ++b) {

basis[g*N_b+b];

basisDer [g*N_b+b];

b_g * F(u_g, du_q);

db_g * G(u_qg, du_q);

for (g = 0
Calcu

for (b =
b_g =
db_qg =

r_ b +

r b +

We avoid hardcoding by adopting a separated model for integration.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 10/31

Vectorizing FEM

FEM Integration Model

Proposed by Jed Brown
We consider weak forms dependent only on fields and gradients,

/ng-fo(u,Vu)qLqu:ﬁ(u,Vu)zo. (1)

Discretizing we have

el [BTWC’fO(UQ,qu)+ZD{WQﬁk(UQ,qu) =0 (2
e k

fn pointwise physics functions

u? field at a quad point

W49 diagonal matrix of quad weights

B,D basis function matrices which
reduce over quad points

& assembly operator

M. Knepley (UC) FEM-GPU GPU-SMP ’13 11/31

Vectorizing FEM

Impediments to Vectorization
Code Complexity

Many levels of blocking are necessary:
@ Chunk: Basic tile
@ Batch: Executed in serial

@ Block: Executed concurrently
and are more easily dealt with generically by the library.

We illustrate these sizes in the next section.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 12/31

Vectorizing FEM

Impediments to Vectorization

Memory bandwidth

Vectorization over basis functions increases required bandwidth
by a factor Njp

 EH B E = =
@ @ @ @ @ @
o A0 RO ARG AR I
" EH B OE = =
@ @ @ @ @ @
o A0 RO ARG AR I
M. Knepley (UC) FEM-GPU GPU-SMP "13

13/31

Vectorizing FEM

Impediments to Vectorization

Memory bandwidth

Vectorization over basis functions increases required bandwidth
by a factor Njp

B H H H EH OH
BRI IR IR IR,
B H H H EH H
BRI IR IR IR,

M. Knepley (UC) FEM-GPU GPU-SMP ’13 13/31

Vectorizing FEM

Impediments to Vectorization

Memory bandwidth

Vectorization over basis functions increases required bandwidth
by a factor Njp

A @ @ @ @ @
HE E OE OE OE OB
A @ @ @ @ @
HE E E OE OE OB

M. Knepley (UC) FEM-GPU GPU-SMP ’13 13/31

Vectorizing FEM

Impediments to Vectorization

Memory bandwidth

Vectorization over quadrature points increases required bandwidth
by a factor Ny

S® (I®
2m (3am
2m (3am

am gm|
2m (3am
S8 S8

M. Knepley (UC) FEM-GPU GPU-SMP ’13

13/31

Vectorizing FEM

Impediments to Vectorization

Reductions

If we vectorize first over quadrature points,

B B = =
01 IO HIREC- NI

.
.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 14/31

Vectorizing FEM

Impediments to Vectorization

Reductions

If we vectorize first over quadrature points,

B ® = B
Al e e eR
and then over basis functions

M. Knepley (UC) FEM-GPU

Ll

L]

GPU-SMP '13

14/31

Vectorizing FEM

Impediments to Vectorization

Reductions

If we vectorize first over quadrature points,

B B & & & =
01 HINNC- NIREC- NI

“n e

and then over basis functions

= (@
@
\ m) \ m)

el
Ll
el
Gl

for a batch of cells, there must be a reduction over quadrature points.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 14/31

Vectorizing FEM

Thread Transposition

Evaluate basis and process
values at quadrature points

Map values at quadrature T I D R G
points to coefficients -~ } il o fo)] i
———————————————— l
L — — | !
t t
'n m (A | oo
| | — -/
| | PR
B t A ‘ ‘
1 \, \, \, 3, Continue with kernel : 3
|
e e e U | I
| 3 | |
| | (|
; | PG
ol [/ i | |
| 1
~ < |
=~ k A |

M. Knepley (UC) FEM-GPU GPU-SMP ’13 15/31

=
w
w
(=)
=
i
S
3
>

Quadrature Phase

Nsge

o
I
3
=
EE)(eEE)(EE)I(EE)EE)
FF)LEFRF)LFEF Lk F - F)
= FE)(EFEFE)| [FFE =
FF)lFrFRJLFEFR)ILEFR)ILEFR)
- N N
s|s EEBEER EEBEER]|]o
5 !
D e e ~
|
I i FEFE B (FEB(FEEFEB
:,,TTU,,TTU ,,TTU,TTU;)
P —| |3
2 2

Basis Phase

Np =2

16/31

GPU-SMP '13

FEM-GPU

M. Knepley (UC)

Vectorizing FEM
Thread Transposition

@ Removes reduction

@ Single pass through memory

@ Operate in unassembled space
o Could do scattered load (better with cache)
@ Our cell tiling would aid this

@ Needs local memory
e Bounded by NyN,, good for low order

M. Knepley (UC) FEM-GPU GPU-SMP ’13 17/31

Vectorizing FEM

Open Implementation

Building
All our runs may be reproduced from the PETSc development branch:

git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch

git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18/31

Vectorizing FEM

Open Implementation

Building
All our runs may be reproduced from the PETSc development branch:

git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch

git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

and for CUDA you also need

—-—-with-cudac='"nvcc -m64’ —--with-cuda-only

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18/31

Vectorizing FEM

Open Implementation

Building
All our runs may be reproduced from the PETSc development branch:

git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch

git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

and for OpenCL you also need

--with-opencl

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18/31

Vectorizing FEM

Open Implementation

Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch
git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

and for OpenCL (on Mac) you also need

——with-opencl-include=/System/Library/Frameworks/
OpenCL. framework/Headers/

—-with-opencl-lib=/System/Library/Frameworks/
OpenCL. framework/OpenCL

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18/31

Vectorizing FEM

Open Implementation

Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch
git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

To build, use

make

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18/31

Vectorizing FEM

Open Implementation

Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev

git fetch
git checkout next

To run the benchmarks, you configure using

./configure —--with-shared-libraries —--with-dynamic-loading
——download-mpich
—-—download-scientificpython --download-fiat
—-—download—-generator
—-—download-triangle --download-chaco

To build with Python, use

./config/builder2.py build

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18/31

Vectorizing FEM

Open Implementation

Running

A representative run for the Py Laplacian:

./src/benchmarks/benchmarkExample.py

—-—events IntegBatchCPU IntegBatchGPU IntegGPUONnly

—-num 52 DMComplex

—-refine 0.0625 0.00625 0.000625 0.0000625 0.00003125
0.000015625 0.0000078125 0.00000390625

——blockExp 4 —-order 1

CPU='dm_view_show_residual=0

GPU="dm__ J i

ompute_function_batch’

esidual=0_compute_func

All run parameters are listed in the forthcoming paper.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 19/31

Vectorizing FEM

Open Implementation

Running

A representative run for the Py Laplacian:
which is translated to

./\${PETSC_ARCH}/1lib/ex52-0obj/ex52
—refinement_limit 0.0625 -compute_function -batch
—-gpu —gpu_batches 8 —-gpu_blocks 16
—log_summary summary.dat —-log_summary_python
—dm_view -show_residual 0 -preload off

All run parameters are listed in the forthcoming paper.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 19/31

Performance

Outline

e Performance

M. Knepley (UC) FEM-GPU GPU-SMP ’13 20/31

Performance

Nvidia GTX285 CUDA

Performance on SNES Example 52

120 T T T T
100} JPLRA
@ i
= 80 s
0 7/
g .
c 60} !
k] /
— r
£ '
2 L
£ aof
o 1
B
.‘- !
205,
: " ------ GPU-OpenCL-32 IntegGPUONly
o - - GPU-CUDA-32 IntegGPUOnNIy
00 200000 400000 600000 800000 1000000 1200000
Number of Dof
GPU-SMP '13 21/31

M. Knepley (UC)

FEM-GPU

Performance

Nvidia GTX285 OpenCL

Performance on SNES Example 52

60000 T :
GPU-32 IntegBatchCPU
CPU-32 IntegBatchcPU [——————
50000 GPU-32 IntegBatchGPU 1
— GPU-32 IntegGPUONly

w
i 40000} 1
=)
3
T
o
c 30000 - 1
<}
"
5
£
£ 20000 - 1
Q

10000 1

% 200000 400000 600000 800000 1000000 1200000

Number of Dof

M. Knepley (UC) FEM-GPU GPU-SMP ’13 22/31

Performance

Nvidia GTX580 CUDA

Performance on SNES Example 52

300 . . —
250 Pt)
-
/’

—_ /
[T} 7
o 200 | ’
[G] 7/
- !
9 7
2 /
5 150|)
=1 i
s '
a ro
E w00} | -
] .

[

'

50
If - - GPU-OpenCL-32 IntegGPUONly
3 -.-. GPU-CUDA-32 IntegGPUONIy
00 200000 400000 600000 800000 1000000 1200000
Number of Dof
GPU-SMP '13

M. Knepley (UC)

FEM-GPU

23/31

Performance

Nvidia GTX580 OpenCL

Performance on SNES Example 52

300000 . :
GPU32 IntegBatchcPu]
CPU-32 IntegBatchCPU
250000 GPU-32 IntegBatchGPU 1
— GPU-32 IntegGPUONly

w
= 200000 - 1
=)
3
[+
o
c 150000} 1
k]
I
5
£
5 100000} 1
Q

50000 | 1

% 200000 400000 600000 800000 1000000 1200000

Number of Dof

M. Knepley (UC) FEM-GPU GPU-SMP ’13 24/31

Performance

Block size variation

Nvidia GTX580

300 Performance on SNES Example 52 - NVIDIA GTX 580

200

150

Computation Rate (GF/s)

100 5
=== blockExp 3

== blockExp 4
=== blockExp 5 ||
== blockExp 6
=== blockExp 7

50

00000 800000 1000000 1200000
Number of Dof

0 200000 400000

M. Knepley (UC) FEM-GPU GPU-SMP ’13 25/31

Performance

ATI HD7970

Performance on SNES Example 52

300000 T :
GPU-32 IntegBatchCPU
CPU-32 IntegBatchCPU
250000 GPU-32 IntegBatchGPU 1
— GPU-32 IntegGPUONly
w
= 200000 - 1
=
3
[+
o
c 150000} 1
k]
"
5
£
5 100000} 1
8]
50000 | 1
% 200000 400000 600000 800000 1000000 1200000

Number of Dof

M. Knepley (UC) FEM-GPU GPU-SMP ’13 26/31

Performance

Block size variation

ATI HD7970

Performance on SNES Example 52 - AMD Radeon HD 7970

350
L)
" T
300 .* |
4 Vi ‘t
73 *
0‘ “
@ 250+ /3 “ 1
5 .
e .
[
+ 200+ 4
P \‘
5 : A
B 150F s "‘ 1
=
o L]
£ [s
] ' .
100+ fn LY 5
: = blockExp 3
[== blockExp 4
50 : = blockExp 5 ||
L]
" == blockExp 6
0 1 1 L 1 1
0 200000 400000 600000 800000 1000000 1200000

Number of Dof
M. Knepley (UC) FEM-GPU [cVESVRES 27/31

Performance

Intel Xeon

Performance on SNES Example 52

25000 : : ; .
— GPU-32 IntegBatchCPU
CPU-32 IntegBatchCPU
20000 L| = GPU-32 IntegBatchGPU 1
— GPU-32 IntegGPUONIly
g
[
=
o 15000+ 1
©
o
c
o
i
5 10000 1
(=}
£
(=]
Q
5000 + 1
% 200000 300000 00000 800000 1000000 1200000

Number of Dof

M. Knepley (UC) FEM-GPU GPU-SMP ’13 28/31

Performance

Scaling on the

900 F'erformance on SNES Example 52

‘ — GruU32 IntegGPUOnIy
800 1

700

600 -

500

400 -

300

Computation Rate (GF/s)

200+

00 5 10 15 20 25 30 35

Number of Processors

M. Knepley (UC) FEM-GPU GPU-SMP ’13 29/31

http://www.tacc.utexas.edu/user-services/user-guides/longhorn-user-guide

Conclusions
Conclusions

e Traversals should be handled by the library

e Performance portability requires better compilers

M. Knepley (UC) FEM-GPU GPU-SMP ’13 30/31

Conclusions
Conclusions

e Traversals should be handled by the library
Allows efficient vectorization

e Performance portability requires better compilers

M. Knepley (UC) FEM-GPU GPU-SMP ’13 30/31

Conclusions
Conclusions

e Traversals should be handled by the library
Allows efficient vectorization
Separates physics from discretization

e Performance portability requires better compilers

M. Knepley (UC) FEM-GPU GPU-SMP ’13 30/31

Conclusions
Conclusions

e Traversals should be handled by the library
Allows efficient vectorization
Separates physics from discretization

e Performance portability requires better compilers
Vectorization is somewhat behind

M. Knepley (UC) FEM-GPU GPU-SMP ’13 30/31

Conclusions
Conclusions

e Traversals should be handled by the library
Allows efficient vectorization
Separates physics from discretization

e Performance portability requires better compilers
Vectorization is somewhat behind
MIC programming model is broken

M. Knepley (UC) FEM-GPU GPU-SMP ’13 30/31

Conclusions

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL TBB+C++ Templates

M. Knepley (UC) FEM-GPU GPU-SMP ’13 31/31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElement.cu
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElementOpenCL.c
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Conclusions

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization

M. Knepley (UC) FEM-GPU GPU-SMP ’13 31/31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElement.cu
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElementOpenCL.c
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging

M. Knepley (UC) FEM-GPU GPU-SMP 13 31/31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElement.cu
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElementOpenCL.c
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
@ Can use high-level reasoning @ Low-level compiler-type
for optimization (FErari) optimization

M. Knepley (UC) FEM-GPU GPU-SMP ’13 31/31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElement.cu
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElementOpenCL.c
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
@ Can use high-level reasoning @ Low-level compiler-type
for optimization (FErari) optimization
@ Kernel fusion is easy @ Kernel fusion is really hard

M. Knepley (UC) FEM-GPU GPU-SMP 13 31/31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElement.cu
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElementOpenCL.c
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

	Introduction
	Vectorizing FEM
	Performance
	Conclusions

