
Finite Element Integration using CUDA and
OpenCL

Matthew Knepley, Karl Rupp, Andy Terrel

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

GPU-SMP 2013
Changchun, China July 28–Aug 2, 2013

M. Knepley (UC) FEM-GPU GPU-SMP ’13 1 / 31



Collaborators

ViennaCL Creator
ANL

Karl Rupp

SciPy 2013 Chair
TACC

Andy Terrel

M. Knepley (UC) FEM-GPU GPU-SMP ’13 3 / 31

http://viennacl.sourceforge.net/
https://conference.scipy.org/scipy2013/


Introduction

Research Products

Efficiently vectorized FEM algorithm
Traversals are handled by the PETSc library
Separates physics from discretization

Open implementation in PETSc
Runs in normal package examples
Needed OpenCL, too unstructured for OpenMP

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4 / 31

http://www.mcs.anl.gov/petsc


Introduction

Research Products

Efficiently vectorized FEM algorithm
Traversals are handled by the PETSc library
Separates physics from discretization

Open implementation in PETSc
Runs in normal package examples
Needed OpenCL, too unstructured for OpenMP

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4 / 31

http://www.mcs.anl.gov/petsc


Introduction

Research Products

Efficiently vectorized FEM algorithm
Traversals are handled by the PETSc library
Separates physics from discretization

Open implementation in PETSc
Runs in normal package examples
Needed OpenCL, too unstructured for OpenMP

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4 / 31

http://www.mcs.anl.gov/petsc


Introduction

Research Products

Efficiently vectorized FEM algorithm
Traversals are handled by the PETSc library
Separates physics from discretization

Open implementation in PETSc
Runs in normal package examples
Needed OpenCL, too unstructured for OpenMP

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4 / 31

http://www.mcs.anl.gov/petsc


Introduction

Research Products

Efficiently vectorized FEM algorithm
Traversals are handled by the PETSc library
Separates physics from discretization

Open implementation in PETSc
Runs in normal package examples
Needed OpenCL, too unstructured for OpenMP

M. Knepley (UC) FEM-GPU GPU-SMP ’13 4 / 31

http://www.mcs.anl.gov/petsc


Vectorizing FEM

Outline

1 Vectorizing FEM

2 Performance

M. Knepley (UC) FEM-GPU GPU-SMP ’13 5 / 31



Vectorizing FEM

Why is Vectorization Important?

For vector length k , without vectorization

we can attain only
1
k

of peak performance.

For GTX580, k = 32

so that unvectorized code runs at 3% of peak.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 6 / 31



Vectorizing FEM

Why is Vectorization Important?

For vector length k , without vectorization

we can attain only
1
k

of peak performance.

For GTX580, k = 32

so that unvectorized code runs at 3% of peak.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 6 / 31



Vectorizing FEM

Why is Vectorization Important?

For streaming computations,
other factors are less important:

except coalesced (vectorized) loads

little cache reuse

tiling not as important

latency covered by computation

M. Knepley (UC) FEM-GPU GPU-SMP ’13 7 / 31



Vectorizing FEM

Why is Vectorization Important?

Concurrent loads are necessary to saturate the memory bandwidth

Architecture STREAMS1 (GB/s) Peak (GB/s) Eff (%)
NVIDIA GTX 285 134 159 84
NVIDIA GTX 580 166 192 86
AMD HD7970 199 264 75
Dual Intel E5-26702 80 101 79
Intel Xeon Phi 95 2203 43

1 Results benefit from autotuning
2 See also https://panthema.net/2013/pmbw/Intel-Xeon-E5-2670-64GB
3 This is the ring bus limit, not the processor limit of 320 GB/s

M. Knepley (UC) FEM-GPU GPU-SMP ’13 8 / 31

https://panthema.net/2013/pmbw/Intel-Xeon-E5-2670-64GB/


Vectorizing FEM

Impediments to Vectorization
Compiler Complexity

Compilers cannot vectorize arbitrary code, and users typically do not
vectorize

for (q = 0; q < N_q; ++q) {
for (b = 0; b < N_b; ++b) {

/* Calculate residual for test function res_0 and derivative res_1 */
b_q = basis[q*N_b+b];
db_q = basisDer[q*N_b+b];
r_b += b_q * res_0;
r_b += db_q * res_1;

}
}

OpenCL results show large variations, depending on the compiler

M. Knepley (UC) FEM-GPU GPU-SMP ’13 9 / 31



Vectorizing FEM

Impediments to Vectorization
User-specified physics routines

Vectorization is complicated by hardcoding physics routines

for (q = 0; q < N_q; ++q) {
/* Calculate field and derviative at quadrature point */
for (b = 0; b < N_b; ++b) {

b_q = basis[q*N_b+b];
db_q = basisDer[q*N_b+b];
r_b += b_q * F(u_q, du_q);
r_b += db_q * G(u_q, du_q);

}
}

We avoid hardcoding by adopting a separated model for integration.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 10 / 31



Vectorizing FEM

FEM Integration Model
Proposed by Jed Brown

We consider weak forms dependent only on fields and gradients,∫
Ω
ϕ · f0(u,∇u) +∇ϕ : f⃗1(u,∇u) = 0. (1)

Discretizing we have

∑
e

ET
e

[
BT W qf0(uq,∇uq) +

∑
k

DT
k W q f⃗ k

1 (u
q,∇uq)

]
= 0 (2)

fn pointwise physics functions
uq field at a quad point
W q diagonal matrix of quad weights
B,D basis function matrices which

reduce over quad points
E assembly operator

M. Knepley (UC) FEM-GPU GPU-SMP ’13 11 / 31



Vectorizing FEM

Impediments to Vectorization
Code Complexity

Many levels of blocking are necessary:

Chunk: Basic tile

Batch: Executed in serial

Block: Executed concurrently
and are more easily dealt with generically by the library.

We illustrate these sizes in the next section.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 12 / 31



Vectorizing FEM

Impediments to Vectorization
Memory bandwidth

Vectorization over basis functions increases required bandwidth
by a factor Nb

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

M. Knepley (UC) FEM-GPU GPU-SMP ’13 13 / 31



Vectorizing FEM

Impediments to Vectorization
Memory bandwidth

Vectorization over basis functions increases required bandwidth
by a factor Nb

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

M. Knepley (UC) FEM-GPU GPU-SMP ’13 13 / 31



Vectorizing FEM

Impediments to Vectorization
Memory bandwidth

Vectorization over basis functions increases required bandwidth
by a factor Nb

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

M. Knepley (UC) FEM-GPU GPU-SMP ’13 13 / 31



Vectorizing FEM

Impediments to Vectorization
Memory bandwidth

Vectorization over quadrature points increases required bandwidth
by a factor Nq

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

M. Knepley (UC) FEM-GPU GPU-SMP ’13 13 / 31



Vectorizing FEM

Impediments to Vectorization
Reductions

If we vectorize first over quadrature points,

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

and then over basis functions

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

for a batch of cells, there must be a reduction over quadrature points.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 14 / 31



Vectorizing FEM

Impediments to Vectorization
Reductions

If we vectorize first over quadrature points,

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

and then over basis functions

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

for a batch of cells, there must be a reduction over quadrature points.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 14 / 31



Vectorizing FEM

Impediments to Vectorization
Reductions

If we vectorize first over quadrature points,

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

q1

q0

and then over basis functions

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

b2

b1

b0

for a batch of cells, there must be a reduction over quadrature points.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 14 / 31



Vectorizing FEM

Thread Transposition

Map values at quadrature

points to coefficients

t5
t4
t3

t2
t1
t0

t5
t4
t3

t2
t1
t0

t5
t4
t3

t2
t1
t0

Continue with kernel

Evaluate basis and process

values at quadrature points

t5

t4

t3

t2

t1

t0

t5

t4

t3

t2

t1

t0

M. Knepley (UC) FEM-GPU GPU-SMP ’13 15 / 31



Vectorizing FEM

Basis Phase

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

Quadrature Phase

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TTNt = 24

Nt = 24

Nbc = 12

Nbs = 6

Nsbc = 3

Nsqc = 2

Nbl = 2 Nbl = 2

M. Knepley (UC) FEM-GPU GPU-SMP ’13 16 / 31



Vectorizing FEM

Thread Transposition

Removes reduction

Single pass through memory

Operate in unassembled space
Could do scattered load (better with cache)
Our cell tiling would aid this

Needs local memory

Bounded by NbNq , good for low order

M. Knepley (UC) FEM-GPU GPU-SMP ’13 17 / 31



Vectorizing FEM

Open Implementation
Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev
git fetch
git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18 / 31



Vectorizing FEM

Open Implementation
Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev
git fetch
git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco

and for CUDA you also need

--with-cudac=’nvcc -m64’ --with-cuda-only

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18 / 31



Vectorizing FEM

Open Implementation
Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev
git fetch
git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco

and for OpenCL you also need

--with-opencl

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18 / 31



Vectorizing FEM

Open Implementation
Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev
git fetch
git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco

and for OpenCL (on Mac) you also need

--with-opencl-include=/System/Library/Frameworks/
OpenCL.framework/Headers/
--with-opencl-lib=/System/Library/Frameworks/

OpenCL.framework/OpenCL

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18 / 31



Vectorizing FEM

Open Implementation
Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev
git fetch
git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco

To build, use

make

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18 / 31



Vectorizing FEM

Open Implementation
Building

All our runs may be reproduced from the PETSc development branch:
git clone https://bitbucket.org/petsc/petsc petsc-dev
cd petsc-dev
git fetch
git checkout next

To run the benchmarks, you configure using
./configure --with-shared-libraries --with-dynamic-loading
--download-mpich
--download-scientificpython --download-fiat
--download-generator
--download-triangle --download-chaco

To build with Python, use

./config/builder2.py build

M. Knepley (UC) FEM-GPU GPU-SMP ’13 18 / 31



Vectorizing FEM

Open Implementation
Running

A representative run for the P1 Laplacian:

./src/benchmarks/benchmarkExample.py
--events IntegBatchCPU IntegBatchGPU IntegGPUOnly
--num 52 DMComplex
--refine 0.0625 0.00625 0.000625 0.0000625 0.00003125

0.000015625 0.0000078125 0.00000390625
--blockExp 4 --order 1
CPU=’dm_view show_residual=0 compute_function batch’
GPU=’dm_view show_residual=0 compute_function batch gpu

gpu_batches=8’

All run parameters are listed in the forthcoming paper.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 19 / 31



Vectorizing FEM

Open Implementation
Running

A representative run for the P1 Laplacian:
which is translated to

./\${PETSC_ARCH}/lib/ex52-obj/ex52
-refinement_limit 0.0625 -compute_function -batch
-gpu -gpu_batches 8 -gpu_blocks 16
-log_summary summary.dat -log_summary_python
-dm_view -show_residual 0 -preload off

All run parameters are listed in the forthcoming paper.

M. Knepley (UC) FEM-GPU GPU-SMP ’13 19 / 31



Performance

Outline

1 Vectorizing FEM

2 Performance

M. Knepley (UC) FEM-GPU GPU-SMP ’13 20 / 31



Performance

Nvidia GTX285 CUDA

M. Knepley (UC) FEM-GPU GPU-SMP ’13 21 / 31



Performance

Nvidia GTX285 OpenCL

M. Knepley (UC) FEM-GPU GPU-SMP ’13 22 / 31



Performance

Nvidia GTX580 CUDA

M. Knepley (UC) FEM-GPU GPU-SMP ’13 23 / 31



Performance

Nvidia GTX580 OpenCL

M. Knepley (UC) FEM-GPU GPU-SMP ’13 24 / 31



Performance

Block size variation
Nvidia GTX580

M. Knepley (UC) FEM-GPU GPU-SMP ’13 25 / 31



Performance

ATI HD7970

M. Knepley (UC) FEM-GPU GPU-SMP ’13 26 / 31



Performance

Block size variation
ATI HD7970

M. Knepley (UC) FEM-GPU GPU-SMP ’13 27 / 31



Performance

Intel Xeon Phi

M. Knepley (UC) FEM-GPU GPU-SMP ’13 28 / 31



Performance

Scaling on the TACC Longhorn cluster

Each node uses an Nvidia Quadro FX5800 GPUM. Knepley (UC) FEM-GPU GPU-SMP ’13 29 / 31

http://www.tacc.utexas.edu/user-services/user-guides/longhorn-user-guide


Conclusions

Conclusions

Traversals should be handled by the library
Allows efficient vectorization
Separates physics from discretization

Performance portability requires better compilers
Vectorization is somewhat behind
MIC programming model is broken

M. Knepley (UC) FEM-GPU GPU-SMP ’13 30 / 31



Conclusions

Conclusions

Traversals should be handled by the library
Allows efficient vectorization
Separates physics from discretization

Performance portability requires better compilers
Vectorization is somewhat behind
MIC programming model is broken

M. Knepley (UC) FEM-GPU GPU-SMP ’13 30 / 31



Conclusions

Conclusions

Traversals should be handled by the library
Allows efficient vectorization
Separates physics from discretization

Performance portability requires better compilers
Vectorization is somewhat behind
MIC programming model is broken

M. Knepley (UC) FEM-GPU GPU-SMP ’13 30 / 31



Conclusions

Conclusions

Traversals should be handled by the library
Allows efficient vectorization
Separates physics from discretization

Performance portability requires better compilers
Vectorization is somewhat behind
MIC programming model is broken

M. Knepley (UC) FEM-GPU GPU-SMP ’13 30 / 31



Conclusions

Conclusions

Traversals should be handled by the library
Allows efficient vectorization
Separates physics from discretization

Performance portability requires better compilers
Vectorization is somewhat behind
MIC programming model is broken

M. Knepley (UC) FEM-GPU GPU-SMP ’13 30 / 31



Conclusions

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) FEM-GPU GPU-SMP ’13 31 / 31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElement.cu
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElementOpenCL.c
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/


Conclusions

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) FEM-GPU GPU-SMP ’13 31 / 31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElement.cu
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElementOpenCL.c
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/


Conclusions

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) FEM-GPU GPU-SMP ’13 31 / 31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElement.cu
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElementOpenCL.c
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/


Conclusions

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) FEM-GPU GPU-SMP ’13 31 / 31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElement.cu
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElementOpenCL.c
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/


Conclusions

Competing Models

How should kernels be
integrated into libraries?

CUDA/OpenCL
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) FEM-GPU GPU-SMP ’13 31 / 31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElement.cu
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52_integrateElementOpenCL.c
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

	Introduction
	Vectorizing FEM
	Performance
	Conclusions

