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Tools and Infrastructure
What | Need From You

e Tell me if you do not understand

e Tell me if an example does not work

e Suggest better wording or figures

e Followup problems at petsc-maint@mcs.anl.gov
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Tools and Infrastructure

Ask Questions!!!

e Helps me understand what you are missing
e Helps you clarify misunderstandings

e Helps others with the same question
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Tools and Infrastructure
How We Can Help at the Tutorial

e Point out relevant documentation

e Answer email at petsc-maint@mcs.anl.gov
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Tools and Infrastructure
How We Can Help at the Tutorial

e Point out relevant documentation

e Quickly answer questions

e Help install

e Guide design of large scale codes

e Answer email at petsc-maint@mcs.anl.gov
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Tools and Infrastructure
New Model for Scientific Software

Simplifying Parallelization of Scientific Codes
by a Function-Centric Approach in Python

Jon K. Nilsen, Xing Cai, Bjorn Hoyland, and Hans Petter Langtangen
@ Python at the application level
@ numpy for data structures

@ petscdpy for linear algebra and solvers
@ PyCUDA for integration (physics) and assembly
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Tools and Infrastructure
New Model for Scientific Software
Application
FFC/SyFi

data structures
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Tools and Infrastructure

What is Missing from this Scheme?

@ Unstructured graph traversal
o lteration over cells in FEM

o (Transitive) Closure of a vertex

o Depth First Search

@ Logic in computation
e Limiters in FV methods

o Flux Corrected Transport for shock capturing

e Boundary conditions
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Tools and Infrastructure

What is Missing from this Scheme?

@ Unstructured graph traversal
o lteration over cells in FEM
@ Use a copy via numpy, use a kernel via Queue

o (Transitive) Closure of a vertex
@ Use a visitor and copy via numpy
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@ Hell if | know
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@ Can sometimes use tricks for branchless logic

o Flux Corrected Transport for shock capturing
@ Maybe use WENO schemes which can be branchless

e Boundary conditions
@ Restrict branching to PETSc C numbering and assembly calls

@ Audience???
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Tools and Infrastructure Version Control

Location and Retrieval

“Where’s the Tarball”

@ Version Control
e Mercurial, Git, Subversion

@ Hosting
e BitBucket, GitHub, Launchpad

@ Community involvement
e arXiv, PubMed
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Tools and Infrastructure Version Control

Distributed Version Control

@ CVS/SVN manage a single repository

e Versioned data
e Local copy for modification and checkin

@ Mercurial manages many repositories

o Identified by URLs
o No one Master

@ Repositories communicate by ChangeSets

@ Use push and pull to move changesets
e Can move arbitrary changes with patch queues
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Tools and Infrastructure Version Control

Project Workflow

Figure: Single Repository

M. Knepley Robust PASI ’11 12/1



Tools and Infrastructure Version Control

Project Workflow

Figure: Master Repository with User Clones
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Tools and Infrastructure Version Control

Project Workflow

Master |=========-= »| Release

Figure: Project with Release and Bugfix Repositories
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Tools and Infrastructure Configuration and Build
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Tools and Infrastructure Configuration and Build

Configuration and Build

“It won’t run on my iPhone”

@ Portability
o PETSc BuildSystem, autoconf

@ Dependencies
@ Does this work with UnsupportedGradStudentAMG?

@ Configurable build

e Build must integrate with the configuration system
e CMake, SCons
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Tools and Infrastructure Configuration and Build

BuildSystem

Provides tools for Configuration and Build

@ Dependency tracking and analysis

@ Package management and hierarchy

@ Library of standard tests

@ Standard build rules

@ Automatic package build and integration

http://petsc.cs.iit.edu/petsc/BuildSystem
http://petsc.cs.iit.edu/petsc/SimpleConfigure
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Tools and Infrastructure Configuration and Build

Configure

Modules

BuildSystem.config.base configures a specific functionality

@ Entry points:

@ setupHelp ()
@ setupDependencies ()
@ configure ()

@ Builtin capabilities:
e Preprocessing, compilation, linking, running
e Manages languages
o Checks for executables

@ Output types:

o Define, typedef, or prototype
o Make macro or rule
o Substitution (old-style)
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Tools and Infrastructure Configuration and Build

Configure

Framework

BuildSystem.config.framework manages the configure run

@ Manages configure modules

o Dependencies with DAG, require ()
@ Options table
o Initialization, run, cleanup

@ Outputs

o Configure headers and log
o Make variable and rules
o Pickled configure tree
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Tools and Infrastructure Configuration and Build

Configure

Third Party Packages

BuildSystem.config.package manages other packages

@ BuildSystem/config/packages/* examples (MPI, FIAT, etc.)
@ Standard location and install hooks

@ Standard header and library tests

@ Uniform interface for parameter retrieval

@ Special support for GNU packages
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Tools and Infrastructure Configuration and Build

Configure

Build Integration

A module can declare a dependency using:

self.framework
fw.require ('config.packages.MPI’, self)

fw
self.mpi

so that MPI is configured before self.
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Tools and Infrastructure Configuration and Build

Configure

Build Integration

A module can declare a dependency using:

self.framework
fw.require ('config.packages.MPI’, self)

fw
self.mpi

so that MPI is configured before self. Information is retrieved during

configure ():

if self.mpi.found:
include .extend(self.mpi.include)
libs .extend(self.mpi.lib)
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Tools and Infrastructure Configuration and Build

Configure

Build Integration

A build system can acquire the information using:

class ConfigReader(script.Script):
def __init__(self):
import RDict
argDB = RDict.RDict(None, None, 0, 0)
argDB.saveFilename = os.path.join( 'path’, RDict.db’)
argDB . load ()
script.Script.__init__(self, argDB = argDB)
return

def getMPIModule(self):
self.setup ()

fw = self.loadConfigure ()
mpi = fw.require(’config.packages.MPl’, None)
return mpi
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Tools and Infrastructure Configuration and Build

GNU Make automates a package build

@ Has a single predicate, older-than

@ Executes shell code for actions

@ PETSc has support for

e configuration integration
e automatic compilation

@ Alternatives

@ SCons
e CMake

M. Knepley Robust

PASI 11
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Tools and Infrastructure Configuration and Build

builder

Simple replacement for GNU make

Excellent configure integration

User-defined predicates

°
°
@ Dependency analysis and tracking
@ Python actions

°

Support for test execution
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Tools and Infrastructure Configuration and Build

builder

Two Interfaces

The simple interface handles the entire build:

./config/builder.py

A more flexible front end allows finer control:

./config/builder2.py help [command]

./config/builder2.py clean

./config/builder2.py stubs fortran

./config/builder2.py build [src/snes/interface/snesj.c]
./config/builder2.py check [src/snes/examples/tutorials/ex10.c]
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Tools and Infrastructure Configuration and Build

Testing

“They are identical in the eyeball norm”

@ Unit tests
o cppUnit

@ Regression tests
o buildbot

@ Benchmarks
e Cigma
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Tools and Infrastructure PETSc
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Tools and Infrastructure PETSc

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

Domain
We want to experiment with different I]E[:ﬂmllﬂsmﬂ"
@ Models
@ Discretizations
@ Solvers
@ Algorithms

@ which blur these boundaries

M. Knepley Robust PASI ’11
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Tools and Infrastructure PETSc

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
— Barry Smith
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Tools and Infrastructure PETSc

Advice from Bill Gropp

You want to think about how you decompose your data
structures, how you think about them globally. [...] If you
were building a house, you'd start with a set of blueprints
that give you a picture of what the whole house looks like.
You wouldn’t start with a bunch of tiles and say. “Well I'll
put this tile down on the ground, and then I'll find a tile
to go next to it.” But all too many people try to build their
parallel programs by creating the smallest possible tiles
and then trying to have the structure of their code emerge
from the chaos of all these little pieces. You have to have
an organizing principle if you’re going to survive making
your code parallel.

(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)
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Tools and Infrastructure PETSc

What is PETSc?

A freely available and supported research code
for the parallel solution of nonlinear algebraic
equations

Free

e Download from http://www.petsc.org
o Free for everyone, including industrial users

Supported

e Hyperlinked manual, examples, and manual pages for all routines
@ Hundreds of tutorial-style examples
@ Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python
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Tools and Infrastructure PETSc

What is PETSc?

@ Portable to any parallel system supporting MPI, including:
o Tightly coupled systems
@ Cray XT6, BG/Q, NVIDIA Fermi, K Computer
o Loosely coupled systems, such as networks of workstations
@ IBM, Mac, iPad/iPhone, PCs running Linux or Windows
@ PETSc History
e Begun September 1991
@ Over 60,000 downloads since 1995 (version 2)
o Currently 400 per month
@ PETSc Funding and Support
o Department of Energy
o ECP, PSAAPIIl, AMR, BES, SciDAC, MICS
o National Science Foundation
e CSSI, SI2, CIG, CISE
o Intel Parallel Computing Center
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Tools and Infrastructure PETSc

Timeline (Old People)

PETSc-1PETSc-2 PETSc-3
Barry

Bill
Lois
Satish
Dinesh
Hong
Kris
Matt
Victor
Dmitry

MPI-1
1991 1995 MPI-2 2000 2005 2010 2015
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Tools and Infrastructure PETSc

Timeline (Young People)

PETSc-3
Lisandro

Jed
Shri
Peter [
Jason
Mark
Patrick
Michael
Toby
Karl
Stefano
Dave

2000 2005 2010 2015
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Tools and Infrastructure PETSc

What Can We Handle?

@ PETSc has run implicit problems with over 500 billion unknowns

e UNIC on BG/P and XT5
o PFLOTRAN for flow in porous media
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Tools and Infrastructure PETSc

What Can We Handle?

@ PETSc has run implicit problems with over 500 billion unknowns

e UNIC on BG/P and XT5
o PFLOTRAN for flow in porous media

@ PETSc has run on over 1,500,000 cores efficiently
e Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

@ PETSc applications have run at 23% of peak (600 Teraflops)

@ Jed Brown on NERSC Edison
o HPGMG code
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Tools and Infrastructure numpy

numpy is ideal for building Python data structures

Supports multidimensional arrays

Easily interfaces with C/C++ and Fortran

High performance BLAS/LAPACK and functional operations
Python 2 and 3 compatible

Used by petsc4py to talk to PETSc
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Tools and Infrastructure Sulo%

sympy is useful for symbolic manipulation

@ Interacts with numpy

@ Derivatives and integrals
@ Series expansions

@ Equation simplification
@ Small and open source
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Tools and Infrastructure Sulo%

sSympy

Example of Series Transform

Create the shifted polynomial

def constructShiftedPolynomial (order):

from sympy import Symbol, collect, diff, limit
from sympy import factorial as f

c = [Symbol(’'c’+str(i)) for i in range(order)]

g = sum([c[i]*(x-a)==i/f(i) for i in range(order)])

# Convert to a monomial
g = collect(g.expand(), Xx)
return c, g
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Tools and Infrastructure Sulo%

sSympy

Example of Series Transform

Here is the shifted polynomial for order 5:

cO0 — a*xcl + c2xax*2/2 — c3*a*x3/6 + cdxax*4/24
+ x*x(cl — a*c2 + c3xaxx2/2 — cd*xax*3/6)

+ xXxx2x (c2/2 — a*xc3/2 + cldxaxx2/4)

+ xx*3%(c3/6 - axcd/6)

+ chdxx*x4/24

M. Knepley Robust

PASI 11
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Tools and Infrastructure Sulo%

sSympy

Example of Series Transform

Construct matrix transform from

def constructTransformMatrix (order = 5):
from sympy import diff , limit
c, g = constructShiftedPolynomial (order, debug)
M= ]
for o in range(order):
exp = g.diff(x, o). limit(x, 0)
M.append ([exp.diff (c[p]) for p in range(order)])
return M
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Tools and Infrastructure Sulo%

sSympy

Example of Series Transform

Here is the transform matrix M:

01 -a & %
00 1 -a 2
00 0 1 -a
00 0 0 1)
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Tools and Infrastructure petscapy

petsc4py

petcs4py provides Python bindings for PETSc

@ Provides ALL PETSc functionality in a Pythonic way
o Logging using the Python with statement

@ Can use Python callback functions
@ SNESSetFunction(), SNESSetJacobian()

@ Manages all memory (creation/destruction)

@ Visualization with matplotlib
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Tools and Infrastructure petscapy

petsc4py Installation

@ Automatic
@ pip install -install-options=-user petscpdy
Uses $PETSC_DIR and SPETSC_ARCH
Installed into $SHOME/ . local
No additions to PYTHONPATH

@ From Source

@ virtualenv python-env

@ source ./python-env/bin/activate

o Now everything installs into your proxy Python environment

@ hg clone https://petscdpy.googlecode.com/hg
petscdpy-dev

@ ARCHFLAGS="-arch x86_64" python setup.py sdist

@ ARCHFLAGS="-arch x86_64" pip install
dist/petscdpy-1.1.2.tar.gz

o ARCHFLAGS only necessary on Mac OSX
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Tools and Infrastructure petscapy

petsc4py Examples

@ externalpackages/petscdpy-1.1/demo/bratu2d/bratu2d.py
e Solves Bratu equation (SNES ex5) in 2D

e Visualizes solution with matplotlib

@ src/ts/examples/tutorials/ex8.py
@ Solves a 1D ODE for a diffusive process

e Visualize solution using -vec_view_draw

o Control timesteps with —-ts_max_steps
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Tools and Infrastructure PyCUDA

PyCUDA and PyOpenCL

Python packages by Andreas Klockner
for embedded GPU programming

@ Handles unimportant details automatically

o CUDA compile and caching of objects
e Device initialization
e Loading modules onto card

@ Excellent Documentation & Tutorial
@ Excellent platform for Metaprogramming

o Only way to get portable performance
o Road to FLAME-type reasoning about algorithms

M. Knepley Robust
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Tools and Infrastructure PyCUDA

Code Template

<%namespace name="pb" module="performanceBenchmarks"/>
${pb.globalMod (isGPU)} void kernel (${pb.gridSize (isGPU)} float =output) {
${pb.gridLoopStart (isGPU, load, store)}
${pb.threadLoopStart (isGPU, blockDimX)}
float G[${dim+dim}] = {${’, .join ([ 3.0 ]« (dim=dim))}};
float K[${dim=dim}] = {${’, .join ([ 3.0 ]«(dim=dim))}};
float product = 0.0;
const int Ooffset = gridldx+${numThreads};
// Contract G and K
% for n in range(numLocalElements):
%  for alpha in range(dim):

% for beta in range(dim):
<% gldx = (n=dim + alpha)+dim + beta %
<% kldx = alphaxdim + beta %
product += G[${gldx}] » K[${kldx}];
% endfor
%  endfor
% endfor

output[ Ooffset+idx] = product;
${pb.threadLoopEnd (isGPU)}
${pb.gridLoopEnd (isGPU)}
return;
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Tools and Infrastructure PyCUDA

Rendering a Template

We render code template into strings using a dictionary of inputs.

args = {’'dim’: self.dim,
"numLocalElements ' : 1,
‘numThreads " : self.threadBlockSize}

kernelTemplate = self.getKernelTemplate ()
gpuCode = kernelTemplate.render (isGPU = True, ==xargs)
cpuCode = kernelTemplate.render(isGPU = False, =xargs)
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Tools and Infrastructure PyCUDA

GPU Source Code

__global__ void kernel( float =output) {

const int gridldx = blockldx.x + blockldx.y=gridDim.x;

const int idx = threadldx.x + threadldx.y=«1; // This is (i,]]
float G[9] = {3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0};

float K[9] = {3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0};

float product = 0.0;

const int Ooffset = gridldx«1;

// Contract G and K
product += G[0] =
product += G[1] =
product += G[2] =
product += G[3] =
product += G[4] = K[4];
product += G[5] =
product += G[6] =
product += G[7] = K[7];
product += G[8] = K[8];
output[ Ooffset+idx] = product;
return;
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Tools and Infrastructure PyCUDA

CPU Source Code

void kernel(int numlnvocations, float =output) {
for(int gridldx = 0; gridldx < numlnvocations; ++gridldx) {

for(int i = 0; i < 1; ++i) {
for(int j = 0; j < 1; ++j) {
const int idx =i + j«1; // This is (i,])
float G[9] = {3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0};
float K[9] = {3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0};
float product = 0.0;
const int Ooffset = gridldx «1;

// Contract G and K
product += G[0] = K[O0];
product += G[1] ;
product += G[2]
product += G[3]
product += G[4]
product += G[5]
product += G[6]
product += G[7] K[7];
product += G[8] K[81;
output[ Ooffset+idx] = product;
}
}

R
[6)]
—
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Tools and Infrastructure PyCUDA

Creating a Module

CPU:

# Output kernel and C support code
self.outputKernelC (cpuCode)

self.writeMakefile ()

out, err, status = self.executeShellCommand( make’)
\end{minted}

\bigskip

GPU:
\begin{minted}{python}
from pycuda.compiler import SourceModule

mod = SourceModule (gpuCode)
self.kernel = mod.get_function(’kernel )
self.kernelReport(self.kernel, ’'kernel’)
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Tools and Infrastructure PyCUDA

Executing a Module

import pycuda.driver as cuda
import pycuda.autoinit

blockDim = (self.dim, self.dim, 1)

start = cuda.Event()

end = cuda.Event()

grid = self.calculateGrid (N, numLocalElements)
start.record ()

for i in range(iters):

self.kernel (cuda.Out(output),
block = blockDim, grid = grid)
end.record ()
end.synchronize ()
gpuTimes.append(start.time_till (end)x1e-3/iters)
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Tools and Infrastructure FEniCS

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://www.fenics.org/fiat

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
User can build arbitrary elements specifying the Ciarlet triple (K, P, P')

FIAT is part of the FENiCS project, as is the PETSc Sieve module
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Tools and Infrastructure FEniCS

FFC is a compiler for variational forms by Anders Logg.

Here is a mixed-form Poisson equation:
a((r,w), (o, u)) = L((m,w))  VY(r,w)eV
where

a((r, w), (0, 1)) = /QTJ—V-Tu—l—WV-udX

L((r,w)) = /wadx

M. Knepley Robust PASI ’11
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Tools and Infrastructure FEniCS

FFC

Mixed Poisson

shape = "triangle"

BDM1 = FiniteElement("Brezzi-Douglas-Marini" ,shape,1)

DGO = FiniteElement("Discontinuous Lagrange" , shape,0)
element = BDM1 + DGO

(tau, w) = TestFunctions (element)

(sigma, u) = TrialFunctions (element)

a = (dot(tau, sigma) - div(tau)+u + w=«div(sigma))~dx

f
L

Function (DGO)
w+ f xdx
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Tools and Infrastructure FEniCS

FFC

Here is a discontinuous Galerkin formulation of the Poisson equation:

alv,uy=»L(v) VvveV
where
a(v,u) = /QVU-VV dx
+ Z/S— < Vv > [ulln = [V]]s < VU > —(a/h)vu dS
S
w9l = W VU (/R ds

L(v) = /Qvfdx
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Tools and Infrastructure FEniCS

FFC

DG Poisson

DGt

O TS Q +~C <

+

o+ 1

= FiniteElement("Discontinuous Lagrange" , shape,1)
TestFunctions (DG1)

TrialFunctions (DG1)

Function (DG1)

Function (DG1)

FacetNormal("triangle ")
MeshSize("triangle")

dot(grad(v), grad(u))=dx
dot(avg(grad(v)), jump(u, n))=+dS
dot(jump(v, n), avg(grad(u)))=«dS
alpha/h«dot(jump(v, n) + jump(u, n))=dS
dot(grad(v), jump(u, n))=ds

dot(jump(v, n), grad(u))=ds
gamma/h+v=u=ds

v«fxdx + v=g=«ds
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Tools and Infrastructure FEniCS

Big Picture

o Usability is paramount

o Need community by-in
o Need complete workflow

o Leverage existing systems

o Adoption is much easier with the familiar
» arXiv, package managers
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GPU Computing

Outline
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GPU Computing
Collaborators

@ Dr. Andy Terrel (FEniCS)

o Dept. of Computer Science, University of Texas
e Texas Advanced Computing Center, University of Texas

@ Prof. Andreas Klockner (PyCUDA)
o Courant Institute of Mathematical Sciences, New York University

@ Dr. Brad Aagaard (PyLith)
e United States Geological Survey, Menlo Park, CA

@ Dr. Charles Williams (PyLith)
@ GNS Science, Wellington, NZ
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http://andy.terrel.us/Professional/
http://mathema.tician.de/aboutme/
http://profile.usgs.gov/baagaard
http://w3.geodynamics.org/cig/Members/willic3

GPU Computing
Code Generation

Big ldea: Code Generation

@ Compile time examples

@ Runtime support
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GPU Computing
Code Generation

Big ldea: Code Generation

@ Compile time examples

e Dense linear algebra

o Digital Signal Processing

e FEM Accumulation/Assembly
e Model coupling

@ Runtime support
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GPU Computing
Code Generation

Big Idea: Code Generation

@ Compile time examples
e Dense linear algebra
o Digital Signal Processing
e FEM Accumulation/Assembly
e Model coupling
@ Runtime support
e Inspector-Executor
e PGAS
o Libraries, if written correctly, can be oblivious
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GPU Computing
Other Software

@ High Order, Discontinuous Galerkin FEM
e Hedge, Andreas Kléckner

@ Cartesian, Finite Difference Multigrid
e OpenCurrent, Jon Cohen

@ Fast Multipole Method
o PetFMM, Lorena Barba, Felipe Cruz, Matthew Knepley

@ Parallel Linear Algebra and Solvers

e PETSc, Barry Smith, et.al.
@ Cusp, Nathan Bell, et.al.
o CUSPARSE, NVIDIA
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http://mathema.tician.de/software/hedge
http://code.google.com/p/opencurrent/wiki/OpenCurrent
http://www.bitbucket.org/petfmm/petfmm-dev
http://www.mcs.anl.gov/petsc
http://code.google.com/p/cusp-library/
http://www.nvidia.com/content/GTC-2010/pdfs/2070_GTC2010.pdf

GPU Computing FEM-GPU

Outline
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GPU Computing FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

http://www.bitbucket.org/aterrel/flamefem
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GPU Computing FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility
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GPU Computing FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility

e Computational Flexibility

http://www.bitbucket.org/aterrel/flamefem
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GPU Computing FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility
e Computational Flexibility

e Efficiency

http://www.bitbucket.org/aterrel/flamefem
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GPU Computing FEM-GPU

Analytic Flexibility

Laplacian

/T Vi(X) - Vey(x)dx (1)
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GPU Computing FEM-GPU

Analytic Flexibility

Laplacian

/T Vi(X) - Vey(x)dx (1)

element = FiniteElement(’Lagrange’, tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction (element)
a = inner(grad(v), grad(u))=dx
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GPU Computing FEM-GPU

Analytic Flexibility

Linear Elasticity

: | (930 +9T600) : (Vi + Vi) ax @
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GPU Computing FEM-GPU

Analytic Flexibility

Linear Elasticity

: | (930 +9T600) : (Vi + Vi) ax @

element = VectorElement(’Lagrange’, tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction (element)
a = inner(sym(grad(v)), sym(grad(u)))=dx
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GPU Computing FEM-GPU

Analytic Flexibility

Full Elasticity

2 /7- <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + VQE}(X)> ax (3)
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GPU Computing FEM-GPU

Analytic Flexibility

Full Elasticity

1/7_ <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + VQE}(X)> ax (3)

element = VectorElement(’Lagrange’, tetrahedron, 1)
cElement = TensorElement(’Lagrange’, tetrahedron, 1,
(dim, dim, dim, dim))

TestFunction (element)

TrialFunction (element)

Coefficient (cElement)

, J, k, I = indices(4)

= sym(grad(v))[i,j]«C[i,j,k,|]«sym(grad(u))[k,|]=dx

v
u
C
i
a
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GPU Computing FEM-GPU

Analytic Flexibility

Full Elasticity

1/7_ <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + VQE}(X)> ax (3)

element = VectorElement(’Lagrange’, tetrahedron, 1)
cElement = TensorElement(’Lagrange’, tetrahedron, 1,
(dim, dim, dim, dim))

TestFunction (element)

TrialFunction (element)

Coefficient (cElement)

, J, k, I = indices(4)

= sym(grad(v))[i,j]«C[i,j,k,|]«sym(grad(u))[k,|]=dx

v
u
C
i
a

Currently broken in FEnIiCS release
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GPU Computing FEM-GPU

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

J7 Véi(x) - Vj(x)dx (4)
= - 32;(*) dg;j(x )dx (5)
= JnatBa 83; |J|dx 6)
= et [, 20 7O gy @
= GJ’Y(T)K/ (8)

Coefficients are also put into the geometric part.
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GPU Computing FEM-GPU

Form Decomposition

Additional fields give rise to multilinear forms.

J7 0i(x) - (¢k(X)V;(x)) dA (9)
B8
= a0 (40075 ) aa (10)
— 60392 250 yja (1)
B
= S| [y, 00(€)07(6) e oA (12)
= G (T)KE (13)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.
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http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

GPU Computing FEM-GPU

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

J7 V(%) - Véj(x)dA (14)
= 7 S 25 o (15)
= o9 83@&“|J|dA (16)
= ] [, o 208 9,7 25 g (17)
= BGM Sr, kZ5i 0 2  d (18)
= Gy (TKL (19)

A different space could also be used for Jacobians
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GPU Computing FEM-GPU

Weak Form Processing

from ffc.analysis import analyze_forms
from ffc.compiler import compute_ir

parameters = ffc.default_parameters()
parameters[ ' representation’] = ’tensor’
analysis = analyze_forms([a,L], {}, parameters)
ir = compute_ir(analysis, parameters)

a K= ir[2][0][ AK’][0][0]

a G = ir[2][0][ AK’][0][1]

K = a_K.A0. astype (numpy. float32)
G=agG

M. Knepley Robust
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GPU Computing FEM-GPU

Computational Flexibility

We generate different computations on the fly,

and can change
e Element Batch Size

o Number of Concurrent Elements
e Loop unrolling
e Interleaving stores with computation
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GPU Computing FEM-GPU

Computational Flexibility

Basic Contraction

Figure: Tensor Contraction G*(T)K?,
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GPU Computing FEM-GPU

Computational Flexibility

Basic Contraction

G K

. thread 0

Figure: Tensor Contraction G*(T)K?,

M. Knepley Robust PASI ’11 77/1



GPU Computing FEM-GPU

Computational Flexibility

Basic Contraction
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Figure: Tensor Contraction G*(T)K?,
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GPU Computing FEM-GPU

Computational Flexibility

Basic Contraction

G K

thread 0
I~
{ ~
Dt
‘70 75

Figure: Tensor Contraction G*(T)K?,
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GPU Computing FEM-GPU

Computational Flexibility

Element Batch Size

thread 0

Go
G‘I . I l/,‘;\

75

Y S
G3. e

Figure: Tensor Contraction G*(T)K,
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GPU Computing FEM-GPU

Computational Flexibility

Element Batch Size

Figure: Tensor Contraction G*(T)K,
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GPU Computing FEM-GPU

Computational Flexibility

Element Batch Size
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Figure: Tensor Contraction G*(T)K,

M. Knepley Robust PASI ’11

78/1



GPU Computing FEM-GPU

Computational Flexibility

Element Batch Size

Figure: Tensor Contraction G*(T)K,
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GPU Computing FEM-GPU

Computational Flexibility

Concurrent Elements

thread

)
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GPU Computing

Computational Flexibility

Concurrent Elements

FEM-GPU

0 .‘\%read 5
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GPU Computing FEM-GPU

Computational Flexibility

Concurrent Elements
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GPU Computing FEM-GPU

Computational Flexibility

Concurrent Elements

GO thread 15 \ EHnead G1
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GPU Computing FEM-GPU

Computational Flexibility

Loop Unrolling

/+ G K contraction: unroll = full =/
E[0] += G[0] « K[O];
E[0] += G[1] = K[1];
E[0] += G[2] « K[2];
E[0] += G[3] = K[3];
E[0] += G[4] « K[4];
E[0] += G[5] « K[5];
E[0] += G[6] « K[6];
E[0] += G[7] « K[7];
E[0] += G[8] « K[8];
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GPU Computing FEM-GPU

Computational Flexibility

Loop Unrolling

/= G K contraction: unroll = none «/
for(int b = 0; b < 1; ++b) {
const int n = b+1;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E[b] += G[n*9+alpha=3+beta] » K[alpha«3+beta];
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GPU Computing FEM-GPU

Computational Flexibility

Interleaving stores

/+ G K contraction: unroll = none «/
for(int b = 0; b < 4; ++b) {
const int n = b«1
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E[b] += G[n*9+alpha=3+beta] * K[alpha+3+beta];
}
}
}

/« Store contraction results =/

elemMat[ Eoffset+idx+0] = E[0];
elemMat[ Eoffset+idx+16] = E[1];
elemMat[ Eoffset+idx+32] = E[2];
elemMat[ Eoffset+idx+48] = E[3];
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GPU Computing FEM-GPU

Computational Flexibility

Interleaving stores

n = 0;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E += G[n+9+alpha*3+beta] = K[alpha«3+beta];
}
}

/= Store contraction result =/
elemMat[ Eoffset+idx+0] = E;
n=1; E=0.0; /+ contract «/
elemMat[ Eoffset+idx+16] = E;
n=2; E=0.0; /+ contract «/
elemMat[ Eoffset+idx+32] = E;
n=3;, E=0.0; /+ contract «/
elemMat[ Eoffset+idx+48] = E;
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GPU Computing FEM-GPU

Code Template

<%namespace name="pb" module="performanceBenchmarks"/>
${pb.globalMod (isGPU)} void kernel (${pb.gridSize (isGPU)} float =output) {
${pb.gridLoopStart (isGPU, load, store)}
${pb.threadLoopStart (isGPU, blockDimX)}
float G[${dim+dim}] = {${’, .join ([ 3.0 ]« (dim=dim))}};
float K[${dim=dim}] = {${’, .join ([ 3.0 ]«(dim=dim))}};
float product = 0.0;
const int Ooffset = gridldx+${numThreads};
// Contract G and K
% for n in range(numLocalElements):
%  for alpha in range(dim):

% for beta in range(dim):
<% gldx = (n=dim + alpha)+dim + beta %
<% kldx = alphaxdim + beta %
product += G[${gldx}] » K[${kldx}];
% endfor
%  endfor
% endfor

output[ Ooffset+idx] = product;
${pb.threadLoopEnd (isGPU)}
${pb.gridLoopEnd (isGPU)}
return;
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GPU Computing FEM-GPU

Rendering a Template

We render code template into strings using a dictionary of inputs.

args = {’'dim’: self.dim,
"numLocalElements ' : 1,
‘numThreads " : self.threadBlockSize}

kernelTemplate = self.getKernelTemplate ()
gpuCode = kernelTemplate.render (isGPU = True, ==xargs)
cpuCode = kernelTemplate.render(isGPU = False, =xargs)
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GPU Computing FEM-GPU

GPU Source Code

__global__ void kernel( float =output) {

const int gridldx = blockldx.x + blockldx.y=gridDim.x;

const int idx = threadldx.x + threadldx.y=«1; // This is (i,]]
float G[9] = {3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0};

float K[9] = {3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0};

float product = 0.0;

const int Ooffset = gridldx«1;

// Contract G and K
product += G[0] =
product += G[1] =
product += G[2] =
product += G[3] =
product += G[4] = K[4];
product += G[5] =
product += G[6] =
product += G[7] = K[7];
product += G[8] = K[8];
output[ Ooffset+idx] = product;
return;
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GPU Computing FEM-GPU

CPU Source Code

void kernel(int numlnvocations, float =output) {
for(int gridldx = 0; gridldx < numlnvocations; ++gridldx) {

for(int i = 0; i < 1; ++i) {
for(int j = 0; j < 1; ++j) {
const int idx =i + j«1; // This is (i,])
float G[9] = {3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0};
float K[9] = {3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0};
float product = 0.0;
const int Ooffset = gridldx «1;

// Contract G and K
product += G[0] = K[O0];
product += G[1] ;
product += G[2]
product += G[3]
product += G[4]
product += G[5]
product += G[6]
product += G[7] K[7];
product += G[8] K[81;
output[ Ooffset+idx] = product;
}
}

R
[6)]
—
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GPU Computing FEM-GPU

Creating a Module

CPU:

# Output kernel and C support code
self.outputKernelC (cpuCode)

self.writeMakefile ()

out, err, status = self.executeShellCommand( make’)
\end{minted}

\bigskip

GPU:
\begin{minted}{python}
from pycuda.compiler import SourceModule

mod = SourceModule (gpuCode)
self.kernel = mod.get_function(’kernel )
self.kernelReport(self.kernel, ’'kernel’)
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GPU Computing FEM-GPU

Executing a Module

import pycuda.driver as cuda
import pycuda.autoinit

blockDim = (self.dim, self.dim, 1)

start = cuda.Event()

end = cuda.Event()

grid = self.calculateGrid (N, numLocalElements)
start.record ()

for i in range(iters):

self.kernel (cuda.Out(output),
block = blockDim, grid = grid)
end.record ()
end.synchronize ()
gpuTimes.append(start.time_till (end)x1e-3/iters)
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GPU Computing FEM-GPU

Element Matrix Formation

@ Element matrix K is now made up of small tensors
@ Contract all tensor elements with each the geometry tensor G(7)

3 0 0 -1 1 1 -4 -4 0 4 0 0
0 0 0 O 0 0 0 O 0 0 0 0
0 O 0 0 0 0 0 0 0 0 0 O
-1 0 0 3 1 1 0 0 4 0 -4 -4
1 0 0o 1 3 3 -4 0 0 0 0 -4
1 0 0 1 3 3 -4 0 0 O 0 -4
-4 0 0 O -4 -4 8 4 0 -4 0 4
-4 0 0 0 0 O 4 8 -4 -8 4 0
0 0 0 4 0 0 0 -4 8 4 -8 -4
4 0 0 O 0 O -4 -8 4 8 -4 0
0 0 0 -4 0 O 0 4 -8 -4 8 4
0 O 0 -4 -4 -4 4 0 -4 0 4 8
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GPU Computing FEM-GPU

Mapping G*’K?, to the GPU

Problem Division

For N elements, map blocks of N, elements to each Thread Block (TB)

@ Launch grid mustbe gx x g, = N/n,
@ TB grid will depend on the specific algorithm
@ Output is size Npasis X Niasis X N

We can split a TB to work on multiple, Ng, elements at a time
@ Note that each TB always gets N, elements, so Ng must divide N,
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GPU Computing FEM-GPU

Mapping G*’K?, to the GPU

Kernel Arguments

__global__

void integrateJacobian(float =elemMat,
float ~geometry,
float +~analytic)

@ geometry: Array of G tensors for each element
@ analytic: K tensor

@ elemMat: Array of E = G : K tensors for each element
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GPU Computing FEM-GPU

Mapping G*’K?, to the GPU

Memory Movement

We can interleave stores with computation, or wait until the end
@ Waiting could improve coalescing of writes

@ Interleaving could allow overlap of writes with computation
Also need to

@ Coalesce accesses between global and local/shared memory
(use moveArray ())

@ Limit use of shared and local memory

M. Knepley Robust PASI ’11 93/1



GPU Computing

Memory Bandwidth

FEM-GPU

Superior GPU memory bandwidth is due to both

bus width and clock speed.

CPU | GPU
Bus Width (bits) 64 | 512
Bus Clock Speed (MHz) 400 | 1600
Memory Bandwidth (GB/s) 3| 102
Latency (cycles) 240 | 600

Tesla always accesses blocks of 64 or 128 bytes
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GPU Computing FEM-GPU

Mapping G*’K?, to the GPU

Reduction

Choose strategies to minimize reductions

@ Only reductions occur in summation for contractions
@ Similar to the reduction in a quadrature loop

@ Strategy #1: Each thread uses all of K

@ Strategy #2: Do each contraction in a separate thread
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GPU Computing FEM-GPU

Strategy #1

TB Division

Each thread computes an entire element matrix, so that
blockDim = (N./Ng, 1, 1)

We will see that there is little opportunity to overlap computation and
memory access
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GPU Computing FEM-GPU

Strategy #1

Analytic Part

Read K into shared memory (need to synchronize before access)

__shared__ float K[${dim+dim+numBasisFuncs*numBasisFuncs}];

${fm.moveArray ('K’, ’analytic’,
dim«dim+numBasisFuncs*numBasisFuncs, ’’, numThreads)}

__syncthreads ();
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GPU Computing FEM-GPU

Strategy #1

Geometry

@ Each thread handles Ng elements

@ Read G into local memory (not coalesced)

@ Interleaving means writing after each thread does a single
element matrix calculation

float G[${dim+dim+numBlockElements }];

if (interleaved) {
const int Goffset = (gridldx+${numLocalElements} + idx)*${dim«dim};
for n in range(numBlockElements):
${fm.moveArray (’'G’, ’'geometry’, dim«dim, ’Goffset’,
blockNumber = nxnumLocalElements/numBlockElements,
localBlockNumber = n, isCoalesced = False)}
endfor
} else {
const int Goffset = (gridldx*${numLocalElements/numBlockElements} + idx)
+${dim+dim+numBlockElements };
${fm.moveArray('G’, ’'geometry’, dim=dim~numBlockElements, ’Goffset’,
isCoalesced = False)}
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GPU Computing FEM-GPU

Strategy #1

Output

We write element matrices out contiguously by TB

const int matSize
const int Eoffset

numBasisFuncs ~numBasisFuncs;
gridldx ~matSize»numLocalElements;

if (interleaved) {

const int elemOff = idx=matSize;

__shared__ float E[matSize~numLocalElements/numBlockElements];
} else {

const int elemOff = idx~matSize»numBlockElements;

__shared__ float E[matSize~numLocalElements];

}
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GPU Computing FEM-GPU

Strategy #1

Contraction

matSize = numBasisFuncs*numBasisFuncs
if interleaveStores:
for b in range(numBlockElements):
# Do 1 contraction for each thread
__syncthreads ();
fm.moveArray('E’, ’'elemMat’,
matSize numLocalElements/numBlockElements,
"Eoffset’, numThreads, blockNumber = n, isLoad = 0)

else:
# Do numBlockElements contractions for each thread
__syncthreads ();
fm.moveArray(’E’, ’elemMat’,

matSize numLocalElements
"Eoffset’, numThreads, isLoad = 0)
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GPU Computing FEM-GPU

Strategy #2

TB Division

Each thread computes a single element of an element matrix, so that
blockDim = (Nba8157 NbasiSa NB)

This allows us to overlap computation of another element in the TB
with writes for the first.
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GPU Computing FEM-GPU

Strategy #2

Analytic Part

@ Assign an (i, ) block of K to local memory
@ Nj threads will simultaneously calculate a contraction

threadldx.x + threadldx.y=${numBasisFuncs}; // This is
const int idx Kidx + threadldx.z+«${numBasisFuncs+«numBasisFuncs};
const int Koffset Kidx+=${dim+dim};

float K[${dim«dim}];

const int Kidx

% for alpha in range(dim):
%  for beta in range(dim):

<% kldx = alphaxdim + beta %
K[${kldx}] = analytic[Koffset+${kldx }];
%  endfor

% endfor
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GPU Computing FEM-GPU

Strategy #2

Geometry

@ Store N, G tensors into shared memory
@ Interleaving means writing after each thread does a single
element calculation

const int Goffset = gridldx«${dim«dim=numLocalElements};
__shared__ float G[${dim+dim+numLocalElements}];

${fm.moveArray('G’, ’'geometry’, dim=dimsnumLocalElements,
"Goffset’, numThreads)}
__syncthreads ();
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GPU Computing FEM-GPU

Strategy #2

Output

@ We write element matrices out contiguously by TB
@ If interleaving stores, only need a single product
@ Otherwise, need N./ng, one per element processed by a thread

numBasisFuncs*numBasisFuncs;
gridldx *matSize~numLocalElements;

const int matSize
const int Eoffset

if (interleaved) {

float product = 0.0;
const int elemOff = idx»matSize;
} else {
float product[numLocalElements/numBlockElements];
const int elemOff = idx~matSize»numBlockElements;
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GPU Computing FEM-GPU

Strategy #2

Contraction

if interleaveStores:
for n in range(numLocalElements/numBlockElements):
# Do 1 contraction for each thread
__syncthreads ()
# Do coalesced write of element matrix
elemMat[ Eoffset+idx + n«numThreads] = product
else:
# Do numLocalElements/numBlockElements contractions
# save results in product[]
for n in range(numLocalElements/numBlockElements):
elemMat[ Eoffset+idx + nsnumThreads] = product[n]
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