
Building Robust Scientific Codes

Matthew Knepley

Computation Institute
University of Chicago

Scientific Computing in the Americas:
The Challenge of Massive Parallelism

Valparaiso, Chile, January 2011

M. Knepley Robust PASI ’11 1 / 1

Tools and Infrastructure

Outline

M. Knepley Robust PASI ’11 2 / 1

Tools and Infrastructure

What I Need From You

Tell me if you do not understand
Tell me if an example does not work
Suggest better wording or figures
Followup problems at petsc-maint@mcs.anl.gov

M. Knepley Robust PASI ’11 3 / 1

mailto:petsc-maint@mcs.anl.gov

Tools and Infrastructure

Ask Questions!!!

Helps me understand what you are missing

Helps you clarify misunderstandings

Helps others with the same question

M. Knepley Robust PASI ’11 4 / 1

Tools and Infrastructure

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

M. Knepley Robust PASI ’11 5 / 1

mailto:petsc-maint@mcs.anl.gov

Tools and Infrastructure

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

M. Knepley Robust PASI ’11 5 / 1

mailto:petsc-maint@mcs.anl.gov

Tools and Infrastructure

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

M. Knepley Robust PASI ’11 5 / 1

mailto:petsc-maint@mcs.anl.gov

Tools and Infrastructure

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

M. Knepley Robust PASI ’11 5 / 1

mailto:petsc-maint@mcs.anl.gov

Tools and Infrastructure

New Model for Scientific Software

Simplifying Parallelization of Scientific Codes
by a Function-Centric Approach in Python

Jon K. Nilsen, Xing Cai, Bjorn Hoyland, and Hans Petter Langtangen

Python at the application level
numpy for data structures
petsc4py for linear algebra and solvers
PyCUDA for integration (physics) and assembly

M. Knepley Robust PASI ’11 6 / 1

http://arxiv.org/abs/1002.0705
http://arxiv.org/abs/1002.0705

Tools and Infrastructure

New Model for Scientific Software

Application

FFC/SyFi
eqn. definitionsympy symbolics

numpy
da

ta
st

ru
ct

ur
es

petsc4py

so
lve

rs

PyCUDA

integration/assembly

PETSc
CUDA

OpenCL

Figure: Schematic for a generic scientific applicationM. Knepley Robust PASI ’11 7 / 1

Tools and Infrastructure

What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 8 / 1

Tools and Infrastructure

What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 8 / 1

Tools and Infrastructure

What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 8 / 1

Tools and Infrastructure

What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 8 / 1

Tools and Infrastructure

What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 8 / 1

Tools and Infrastructure

What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 8 / 1

Tools and Infrastructure

What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 8 / 1

Tools and Infrastructure

What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 8 / 1

Tools and Infrastructure Version Control

Outline

M. Knepley Robust PASI ’11 9 / 1

Tools and Infrastructure Version Control

Location and Retrieval
“Where’s the Tarball”

Version Control
Mercurial, Git, Subversion

Hosting
BitBucket, GitHub, Launchpad

Community involvement
arXiv, PubMed

M. Knepley Robust PASI ’11 10 / 1

http://mercurial.selenic.com
http://git-scm.com
http://subversion.tigris.org
http://bitbucket.org
http://github.com
https://launchpad.net
http://arXiv.org
http://www.ncbi.nlm.nih.gov/pubmed

Tools and Infrastructure Version Control

Distributed Version Control

CVS/SVN manage a single repository
Versioned data
Local copy for modification and checkin

Mercurial manages many repositories
Identified by URLs
No one Master

Repositories communicate by ChangeSets
Use push and pull to move changesets
Can move arbitrary changes with patch queues

M. Knepley Robust PASI ’11 11 / 1

Tools and Infrastructure Version Control

Project Workflow

User

Figure: Single Repository

M. Knepley Robust PASI ’11 12 / 1

Tools and Infrastructure Version Control

Project Workflow

Master

User A User B

Figure: Master Repository with User Clones

M. Knepley Robust PASI ’11 13 / 1

Tools and Infrastructure Version Control

Project Workflow

Master Release

User Bugfix

Figure: Project with Release and Bugfix Repositories

M. Knepley Robust PASI ’11 14 / 1

Tools and Infrastructure Configuration and Build

Outline

M. Knepley Robust PASI ’11 15 / 1

Tools and Infrastructure Configuration and Build

Configuration and Build
“It won’t run on my iPhone”

Portability
PETSc BuildSystem, autoconf

Dependencies
Does this work with UnsupportedGradStudentAMG?

Configurable build
Build must integrate with the configuration system
CMake, SCons

M. Knepley Robust PASI ’11 16 / 1

http://petsc.cs.iit.edu/petsc/BuildSystem
http://www.gnu.org/software/autoconf
http://www.cmake.org
http://www.scons.org

Tools and Infrastructure Configuration and Build

BuildSystem

Provides tools for Configuration and Build

Dependency tracking and analysis
Package management and hierarchy
Library of standard tests
Standard build rules
Automatic package build and integration

http://petsc.cs.iit.edu/petsc/BuildSystem
http://petsc.cs.iit.edu/petsc/SimpleConfigure

M. Knepley Robust PASI ’11 17 / 1

http://petsc.cs.iit.edu/petsc/BuildSystem
http://petsc.cs.iit.edu/petsc/BuildSystem

Tools and Infrastructure Configuration and Build

Configure
Modules

BuildSystem.config.base configures a specific functionality

Entry points:
setupHelp()
setupDependencies()
configure()

Builtin capabilities:
Preprocessing, compilation, linking, running
Manages languages
Checks for executables

Output types:
Define, typedef, or prototype
Make macro or rule
Substitution (old-style)

M. Knepley Robust PASI ’11 18 / 1

Tools and Infrastructure Configuration and Build

Configure
Framework

BuildSystem.config.framework manages the configure run

Manages configure modules
Dependencies with DAG, require()
Options table
Initialization, run, cleanup

Outputs
Configure headers and log
Make variable and rules
Pickled configure tree

M. Knepley Robust PASI ’11 19 / 1

Tools and Infrastructure Configuration and Build

Configure
Third Party Packages

BuildSystem.config.package manages other packages

BuildSystem/config/packages/* examples (MPI, FIAT, etc.)
Standard location and install hooks
Standard header and library tests
Uniform interface for parameter retrieval
Special support for GNU packages

M. Knepley Robust PASI ’11 20 / 1

Tools and Infrastructure Configuration and Build

Configure
Build Integration

A module can declare a dependency using:

fw = s e l f . framework
s e l f . mpi = fw . requ i re (’ con f i g . packages . MPI ’ , s e l f)

so that MPI is configured before self. Information is retrieved during
configure():

i f s e l f . mpi . found :
inc lude . extend (s e l f . mpi . i nc lude)
l i b s . extend (s e l f . mpi . l i b)

M. Knepley Robust PASI ’11 21 / 1

Tools and Infrastructure Configuration and Build

Configure
Build Integration

A module can declare a dependency using:

fw = s e l f . framework
s e l f . mpi = fw . requ i re (’ con f i g . packages . MPI ’ , s e l f)

so that MPI is configured before self. Information is retrieved during
configure():

i f s e l f . mpi . found :
inc lude . extend (s e l f . mpi . i nc lude)
l i b s . extend (s e l f . mpi . l i b)

M. Knepley Robust PASI ’11 21 / 1

Tools and Infrastructure Configuration and Build

Configure
Build Integration

A build system can acquire the information using:

c lass ConfigReader (s c r i p t . S c r i p t) :
def _ _ i n i t _ _ (s e l f) :

impor t RDict
argDB = RDict . RDict (None , None , 0 , 0)
argDB . saveFilename = os . path . j o i n (’ path ’ , ’ RDict . db ’)
argDB . load ()
s c r i p t . S c r i p t . _ _ i n i t _ _ (s e l f , argDB = argDB)
r e t u r n

def getMPIModule (s e l f) :
s e l f . setup ()
fw = s e l f . loadConf igure ()
mpi = fw . requ i re (’ con f i g . packages . MPI ’ , None)
r e t u r n mpi

M. Knepley Robust PASI ’11 22 / 1

Tools and Infrastructure Configuration and Build

Make

GNU Make automates a package build

Has a single predicate, older-than

Executes shell code for actions

PETSc has support for
configuration integration
automatic compilation

Alternatives
SCons
CMake

M. Knepley Robust PASI ’11 23 / 1

http://www.gnu.org/make
http://www.scons.org
http://www.cmake.org

Tools and Infrastructure Configuration and Build

builder

Simple replacement for GNU make

Excellent configure integration

User-defined predicates

Dependency analysis and tracking

Python actions

Support for test execution

M. Knepley Robust PASI ’11 24 / 1

Tools and Infrastructure Configuration and Build

builder
Two Interfaces

The simple interface handles the entire build:
./config/builder.py

A more flexible front end allows finer control:
./config/builder2.py help [command]
./config/builder2.py clean
./config/builder2.py stubs fortran
./config/builder2.py build [src/snes/interface/snesj.c]
./config/builder2.py check [src/snes/examples/tutorials/ex10.c]

M. Knepley Robust PASI ’11 25 / 1

Tools and Infrastructure Configuration and Build

Testing
“They are identical in the eyeball norm”

Unit tests
cppUnit

Regression tests
buildbot

Benchmarks
Cigma

M. Knepley Robust PASI ’11 26 / 1

http://sourceforge.net/projects/cppunit
http://buildbot.net
http://www.geodynamics.org/cig/software/packages/cs/cigma

Tools and Infrastructure PETSc

Outline

M. Knepley Robust PASI ’11 27 / 1

Tools and Infrastructure PETSc

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

We want to experiment with different
Models
Discretizations
Solvers
Algorithms

which blur these boundaries

M. Knepley Robust PASI ’11 28 / 1

http://amzn.com/0521602866

Tools and Infrastructure PETSc

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
— Barry Smith

M. Knepley Robust PASI ’11 29 / 1

http://www.mcs.anl.gov/~bsmith

Tools and Infrastructure PETSc

Advice from Bill Gropp

You want to think about how you decompose your data
structures, how you think about them globally. [...] If you
were building a house, you’d start with a set of blueprints
that give you a picture of what the whole house looks like.
You wouldn’t start with a bunch of tiles and say. “Well I’ll
put this tile down on the ground, and then I’ll find a tile
to go next to it.” But all too many people try to build their
parallel programs by creating the smallest possible tiles
and then trying to have the structure of their code emerge
from the chaos of all these little pieces. You have to have
an organizing principle if you’re going to survive making
your code parallel.

(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)

M. Knepley Robust PASI ’11 30 / 1

http://www.rce-cast.com/Podcast/rce-28-mpich2.html

Tools and Infrastructure PETSc

What is PETSc?

A freely available and supported research code
for the parallel solution of nonlinear algebraic
equations

Free
Download from http://www.petsc.org
Free for everyone, including industrial users

Supported
Hyperlinked manual, examples, and manual pages for all routines
Hundreds of tutorial-style examples
Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python

M. Knepley Robust PASI ’11 31 / 1

http://www.petsc.org
mailto:petsc-maint@mcs.anl.gov

Tools and Infrastructure PETSc

What is PETSc?

Portable to any parallel system supporting MPI, including:
Tightly coupled systems

Cray XT6, BG/Q, NVIDIA Fermi, K Computer
Loosely coupled systems, such as networks of workstations

IBM, Mac, iPad/iPhone, PCs running Linux or Windows

PETSc History
Begun September 1991
Over 60,000 downloads since 1995 (version 2)
Currently 400 per month

PETSc Funding and Support
Department of Energy

ECP, PSAAPIII, AMR, BES, SciDAC, MICS
National Science Foundation

CSSI, SI2, CIG, CISE

Intel Parallel Computing Center

M. Knepley Robust PASI ’11 32 / 1

Tools and Infrastructure PETSc

Timeline (Old People)

1991 1995 2000 2005 2010 2015

PETSc-1

MPI-1
MPI-2

PETSc-2 PETSc-3
Barry

Bill
Lois

Satish
Dinesh

Hong
Kris
Matt

Victor
Dmitry

M. Knepley Robust PASI ’11 33 / 1

Tools and Infrastructure PETSc

Timeline (Young People)

2000 2005 2010 2015

PETSc-3
Lisandro

Jed
Shri

Peter
Jason
Mark

Patrick
Michael

Toby
Karl

Stefano
Dave

M. Knepley Robust PASI ’11 34 / 1

Tools and Infrastructure PETSc

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley Robust PASI ’11 35 / 1

https://hpgmg.org/

Tools and Infrastructure PETSc

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley Robust PASI ’11 35 / 1

https://hpgmg.org/

Tools and Infrastructure PETSc

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley Robust PASI ’11 35 / 1

https://hpgmg.org/

Tools and Infrastructure numpy

Outline

M. Knepley Robust PASI ’11 36 / 1

Tools and Infrastructure numpy

numpy

numpy is ideal for building Python data structures

Supports multidimensional arrays
Easily interfaces with C/C++ and Fortran
High performance BLAS/LAPACK and functional operations
Python 2 and 3 compatible
Used by petsc4py to talk to PETSc

M. Knepley Robust PASI ’11 37 / 1

http://numpy.scipy.org

Tools and Infrastructure sympy

Outline

M. Knepley Robust PASI ’11 38 / 1

Tools and Infrastructure sympy

sympy

sympy is useful for symbolic manipulation

Interacts with numpy
Derivatives and integrals
Series expansions
Equation simplification
Small and open source

M. Knepley Robust PASI ’11 39 / 1

http://sympy.scipy.org

Tools and Infrastructure sympy

sympy
Example of Series Transform

Create the shifted polynomial

order∑
i=0

ci

i!
(x − a)i

def cons t ruc tSh i f t edPo lynomia l (order) :
from sympy impor t Symbol , c o l l e c t , d i f f , l i m i t
from sympy impor t f a c t o r i a l as f
c = [Symbol (’ c ’+ s t r (i)) f o r i i n range (order)]
g = sum ([c [i] * (x−a) * * i / f (i) f o r i i n range (order)])
Convert to a monomial
g = c o l l e c t (g . expand () , x)
r e t u r n c , g

M. Knepley Robust PASI ’11 40 / 1

Tools and Infrastructure sympy

sympy
Example of Series Transform

Here is the shifted polynomial for order 5:
c0 - a*c1 + c2*a**2/2 - c3*a**3/6 + c4*a**4/24
+ x*(c1 - a*c2 + c3*a**2/2 - c4*a**3/6)
+ x**2*(c2/2 - a*c3/2 + c4*a**2/4)
+ x**3*(c3/6 - a*c4/6)
+ c4*x**4/24

M. Knepley Robust PASI ’11 41 / 1

Tools and Infrastructure sympy

sympy
Example of Series Transform

Construct matrix transform from

order∑
i=0

ci

i!
(x − a)i to

order∑
i=0

ci

i!
x i

def cons t ruc tTrans fo rmMat r i x (order = 5) :
from sympy impor t d i f f , l i m i t
c , g = cons t ruc tSh i f t edPo lynomia l (order , debug)
M = []
f o r o i n range (order) :

exp = g . d i f f (x , o) . l i m i t (x , 0)
M. append ([exp . d i f f (c [p]) f o r p i n range (order)])

r e t u r n M

M. Knepley Robust PASI ’11 42 / 1

Tools and Infrastructure sympy

sympy
Example of Series Transform

Here is the transform matrix M:
1 −a a2

2 −a3

6
a4

24
0 1 −a a2

2 −a3

6
0 0 1 −a a2

2
0 0 0 1 −a
0 0 0 0 1



M. Knepley Robust PASI ’11 43 / 1

Tools and Infrastructure petsc4py

Outline

M. Knepley Robust PASI ’11 44 / 1

Tools and Infrastructure petsc4py

petsc4py

petcs4py provides Python bindings for PETSc

Provides ALL PETSc functionality in a Pythonic way
Logging using the Python with statement

Can use Python callback functions
SNESSetFunction(), SNESSetJacobian()

Manages all memory (creation/destruction)

Visualization with matplotlib

M. Knepley Robust PASI ’11 45 / 1

http://code.google.com/p/petsc4py/
http://matplotlib.sourceforge.net

Tools and Infrastructure petsc4py

petsc4py Installation

Automatic
pip install -install-options=-user petscp4y
Uses $PETSC_DIR and $PETSC_ARCH
Installed into $HOME/.local
No additions to PYTHONPATH

From Source
virtualenv python-env
source ./python-env/bin/activate
Now everything installs into your proxy Python environment
hg clone https://petsc4py.googlecode.com/hg
petsc4py-dev
ARCHFLAGS="-arch x86_64" python setup.py sdist
ARCHFLAGS="-arch x86_64" pip install
dist/petsc4py-1.1.2.tar.gz
ARCHFLAGS only necessary on Mac OSX

M. Knepley Robust PASI ’11 46 / 1

Tools and Infrastructure petsc4py

petsc4py Examples

externalpackages/petsc4py-1.1/demo/bratu2d/bratu2d.py

Solves Bratu equation (SNES ex5) in 2D

Visualizes solution with matplotlib

src/ts/examples/tutorials/ex8.py

Solves a 1D ODE for a diffusive process

Visualize solution using -vec_view_draw

Control timesteps with -ts_max_steps

M. Knepley Robust PASI ’11 47 / 1

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-current/src/snes/examples/tutorials/ex5.c.html

Tools and Infrastructure PyCUDA

Outline

M. Knepley Robust PASI ’11 48 / 1

Tools and Infrastructure PyCUDA

PyCUDA and PyOpenCL

Python packages by Andreas Klöckner
for embedded GPU programming

Handles unimportant details automatically
CUDA compile and caching of objects
Device initialization
Loading modules onto card

Excellent Documentation & Tutorial

Excellent platform for Metaprogramming
Only way to get portable performance
Road to FLAME-type reasoning about algorithms

M. Knepley Robust PASI ’11 49 / 1

http://mathema.tician.de/aboutme
http://documen.tician.de/pycuda
http://arxiv.org/abs/0911.3456

Tools and Infrastructure PyCUDA

Code Template
<%namespace name=" pb " module=" performanceBenchmarks " / >
$ { pb . globalMod (isGPU) } vo id kerne l ($ { pb . g r i dS ize (isGPU) } f l o a t * output) {

$ { pb . g r idLoopSta r t (isGPU , load , s to re) }
$ { pb . threadLoopStar t (isGPU , blockDimX) }
f l o a t G[$ { dim * dim }] = { $ { ’ , ’ . j o i n ([’ 3.0 ’] * (dim * dim)) } } ;
f l o a t K [$ { dim * dim }] = { $ { ’ , ’ . j o i n ([’ 3.0 ’] * (dim * dim)) } } ;
f l o a t product = 0 . 0 ;
const i n t Oof fse t = g r i d I d x *$ { numThreads } ;

/ / Cont ract G and K
% f o r n i n range (numLocalElements) :
% f o r alpha i n range (dim) :
% f o r beta i n range (dim) :
<% gIdx = (n* dim + alpha) * dim + beta %>
<% kIdx = alpha * dim + beta %>

product += G[$ { gIdx }] * K [$ { k Idx }] ;
% endfor
% endfor
% endfor

output [Oof fse t+ idx] = product ;
$ { pb . threadLoopEnd (isGPU) }
$ { pb . gridLoopEnd (isGPU) }
r e t u r n ;

}
M. Knepley Robust PASI ’11 50 / 1

Tools and Infrastructure PyCUDA

Rendering a Template

We render code template into strings using a dictionary of inputs.

args = { ’ dim ’ : s e l f . dim ,
’ numLocalElements ’ : 1 ,
’ numThreads ’ : s e l f . threadBlockSize }

kernelTemplate = s e l f . getKernelTemplate ()
gpuCode = kernelTemplate . render (isGPU = True , * * args)
cpuCode = kernelTemplate . render (isGPU = False , * * args)

M. Knepley Robust PASI ’11 51 / 1

Tools and Infrastructure PyCUDA

GPU Source Code

__global__ vo id kerne l (f l o a t * output) {
const i n t g r i d I d x = b lock Idx . x + b lock Idx . y * gridDim . x ;
const i n t i dx = th read Idx . x + th read Idx . y * 1 ; / / This i s (i , j)
f l o a t G[9] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t K [9] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t product = 0 . 0 ;
const i n t Oof fse t = g r i d I d x * 1 ;

/ / Cont ract G and K
product += G[0] * K [0] ;
product += G[1] * K [1] ;
product += G[2] * K [2] ;
product += G[3] * K [3] ;
product += G[4] * K [4] ;
product += G[5] * K [5] ;
product += G[6] * K [6] ;
product += G[7] * K [7] ;
product += G[8] * K [8] ;
ou tput [Oof fse t+ idx] = product ;
r e t u r n ;

}

M. Knepley Robust PASI ’11 52 / 1

Tools and Infrastructure PyCUDA

CPU Source Code
vo id kerne l (i n t numInvocations , f l o a t * output) {

f o r (i n t g r i d I d x = 0; g r i d I d x < numInvocations ; ++ g r i d I d x) {
f o r (i n t i = 0 ; i < 1 ; ++ i) {

f o r (i n t j = 0 ; j < 1 ; ++ j) {
const i n t i dx = i + j * 1 ; / / This i s (i , j)

f l o a t G[9] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t K [9] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t product = 0 . 0 ;
const i n t Oof fse t = g r i d I d x * 1 ;

/ / Cont ract G and K
product += G[0] * K [0] ;
product += G[1] * K [1] ;
product += G[2] * K [2] ;
product += G[3] * K [3] ;
product += G[4] * K [4] ;
product += G[5] * K [5] ;
product += G[6] * K [6] ;
product += G[7] * K [7] ;
product += G[8] * K [8] ;
ou tput [Oof fse t+ idx] = product ;

}
}

}
r e t u r n ;

}

M. Knepley Robust PASI ’11 53 / 1

Tools and Infrastructure PyCUDA

Creating a Module

CPU:

Output kerne l and C support code
s e l f . outputKernelC (cpuCode)
s e l f . w r i t e M a k e f i l e ()
out , er r , s ta tus = s e l f . executeShellCommand (’make ’)
\ end { minted }

\ b i gsk ip

GPU:
\ begin { minted } { python }
from pycuda . compi ler impor t SourceModule

mod = SourceModule (gpuCode)
s e l f . ke rne l = mod. ge t_ func t i on (’ ke rne l ’)
s e l f . kerne lRepor t (s e l f . kernel , ’ ke rne l ’)

M. Knepley Robust PASI ’11 54 / 1

Tools and Infrastructure PyCUDA

Executing a Module

impor t pycuda . d r i v e r as cuda
impor t pycuda . a u t o i n i t

blockDim = (s e l f . dim , s e l f . dim , 1)
s t a r t = cuda . Event ()
end = cuda . Event ()
g r i d = s e l f . c a l c u l a t e G r i d (N, numLocalElements)
s t a r t . record ()
f o r i i n range (i t e r s) :

s e l f . ke rne l (cuda . Out (output) ,
b lock = blockDim , g r i d = g r i d)

end . record ()
end . synchronize ()
gpuTimes . append (s t a r t . t i m e _ t i l l (end) *1 e−3/ i t e r s)

M. Knepley Robust PASI ’11 55 / 1

Tools and Infrastructure FEniCS

Outline

M. Knepley Robust PASI ’11 56 / 1

Tools and Infrastructure FEniCS

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://www.fenics.org/fiat

FIAT understands
Reference element shapes (line, triangle, tetrahedron)
Quadrature rules
Polynomial spaces
Functionals over polynomials (dual spaces)
Derivatives

User can build arbitrary elements specifying the Ciarlet triple (K ,P,P ′)

FIAT is part of the FEniCS project, as is the PETSc Sieve module

M. Knepley Robust PASI ’11 57 / 1

http://www.fenics.org/fiat

Tools and Infrastructure FEniCS

FFC

FFC is a compiler for variational forms by Anders Logg.

Here is a mixed-form Poisson equation:

a((τ,w), (σ, u)) = L((τ,w)) ∀(τ,w) ∈ V

where

a((τ,w), (σ, u)) =

∫
Ω
τσ −∇ · τu + w∇ · u dx

L((τ,w)) =

∫
Ω

wf dx

M. Knepley Robust PASI ’11 58 / 1

Tools and Infrastructure FEniCS

FFC
Mixed Poisson

shape = " t r i a n g l e "

BDM1 = Fin i teE lement (" Brezzi −Douglas−Mar in i " , shape , 1)
DG0 = Fin i teE lement (" Discont inuous Lagrange " , shape , 0)

element = BDM1 + DG0
(tau , w) = TestFunct ions (element)
(sigma , u) = T r i a l F u n c t i o n s (element)

a = (dot (tau , sigma) − d iv (tau) * u + w* d iv (sigma)) * dx

f = Funct ion (DG0)
L = w* f * dx

M. Knepley Robust PASI ’11 59 / 1

Tools and Infrastructure FEniCS

FFC

Here is a discontinuous Galerkin formulation of the Poisson equation:

a(v ,u) = L(v) ∀v ∈ V

where

a(v ,u) =

∫
Ω
∇u · ∇v dx

+
∑

S

∫
S
− < ∇v > ·[[u]]n − [[v]]n· < ∇u > −(α/h)vu dS

+

∫
∂Ω

−∇v · [[u]]n − [[v]]n · ∇u − (γ/h)vu ds

L(v) =

∫
Ω

vf dx

M. Knepley Robust PASI ’11 60 / 1

Tools and Infrastructure FEniCS

FFC
DG Poisson

DG1 = Fin i teE lement (" Discont inuous Lagrange " , shape , 1)
v = TestFunct ions (DG1)
u = T r i a l F u n c t i o n s (DG1)
f = Funct ion (DG1)
g = Funct ion (DG1)
n = FacetNormal (" t r i a n g l e ")
h = MeshSize (" t r i a n g l e ")
a = dot (grad (v) , grad (u)) * dx

− dot (avg (grad (v)) , jump (u , n)) * dS
− dot (jump (v , n) , avg (grad (u))) * dS
+ alpha / h* dot (jump (v , n) + jump (u , n)) * dS
− dot (grad (v) , jump (u , n)) * ds
− dot (jump (v , n) , grad (u)) * ds
+ gamma/ h* v *u* ds

L = v * f * dx + v *g* ds

M. Knepley Robust PASI ’11 61 / 1

Tools and Infrastructure FEniCS

Big Picture

Usability is paramount
Need community by-in
Need complete workflow

Leverage existing systems
Adoption is much easier with the familiar
arXiv, package managers

M. Knepley Robust PASI ’11 62 / 1

http://arXiv.org

GPU Computing

Outline

M. Knepley Robust PASI ’11 63 / 1

GPU Computing

Collaborators

Dr. Andy Terrel (FEniCS)
Dept. of Computer Science, University of Texas
Texas Advanced Computing Center, University of Texas

Prof. Andreas Klöckner (PyCUDA)
Courant Institute of Mathematical Sciences, New York University

Dr. Brad Aagaard (PyLith)
United States Geological Survey, Menlo Park, CA

Dr. Charles Williams (PyLith)
GNS Science, Wellington, NZ

M. Knepley Robust PASI ’11 64 / 1

http://andy.terrel.us/Professional/
http://mathema.tician.de/aboutme/
http://profile.usgs.gov/baagaard
http://w3.geodynamics.org/cig/Members/willic3

GPU Computing

Code Generation

Big Idea: Code Generation

Compile time examples
Dense linear algebra
Digital Signal Processing
FEM Accumulation/Assembly
Model coupling

Runtime support
Inspector-Executor
PGAS
Libraries, if written correctly, can be oblivious

M. Knepley Robust PASI ’11 65 / 1

GPU Computing

Code Generation

Big Idea: Code Generation

Compile time examples
Dense linear algebra
Digital Signal Processing
FEM Accumulation/Assembly
Model coupling

Runtime support
Inspector-Executor
PGAS
Libraries, if written correctly, can be oblivious

M. Knepley Robust PASI ’11 65 / 1

GPU Computing

Code Generation

Big Idea: Code Generation

Compile time examples
Dense linear algebra
Digital Signal Processing
FEM Accumulation/Assembly
Model coupling

Runtime support
Inspector-Executor
PGAS
Libraries, if written correctly, can be oblivious

M. Knepley Robust PASI ’11 65 / 1

GPU Computing

Other Software

High Order, Discontinuous Galerkin FEM
Hedge, Andreas Klöckner

Cartesian, Finite Difference Multigrid
OpenCurrent, Jon Cohen

Fast Multipole Method
PetFMM, Lorena Barba, Felipe Cruz, Matthew Knepley

Parallel Linear Algebra and Solvers
PETSc, Barry Smith, et.al.
Cusp, Nathan Bell, et.al.
CUSPARSE, NVIDIA

M. Knepley Robust PASI ’11 66 / 1

http://mathema.tician.de/software/hedge
http://code.google.com/p/opencurrent/wiki/OpenCurrent
http://www.bitbucket.org/petfmm/petfmm-dev
http://www.mcs.anl.gov/petsc
http://code.google.com/p/cusp-library/
http://www.nvidia.com/content/GTC-2010/pdfs/2070_GTC2010.pdf

GPU Computing FEM-GPU

Outline

M. Knepley Robust PASI ’11 67 / 1

GPU Computing FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley Robust PASI ’11 68 / 1

http://www.bitbucket.org/aterrel/flamefem

GPU Computing FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley Robust PASI ’11 68 / 1

http://www.bitbucket.org/aterrel/flamefem

GPU Computing FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley Robust PASI ’11 68 / 1

http://www.bitbucket.org/aterrel/flamefem

GPU Computing FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley Robust PASI ’11 68 / 1

http://www.bitbucket.org/aterrel/flamefem

GPU Computing FEM-GPU

Analytic Flexibility
Laplacian

∫
T
∇ϕi(x) · ∇ϕj(x)dx (1)

element = F in i teE lement (’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
a = inner (grad (v) , grad (u)) * dx

M. Knepley Robust PASI ’11 69 / 1

GPU Computing FEM-GPU

Analytic Flexibility
Laplacian

∫
T
∇ϕi(x) · ∇ϕj(x)dx (1)

element = F in i teE lement (’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
a = inner (grad (v) , grad (u)) * dx

M. Knepley Robust PASI ’11 69 / 1

GPU Computing FEM-GPU

Analytic Flexibility
Linear Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
:
(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (2)

element = VectorElement (’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
a = inner (sym(grad (v)) , sym(grad (u))) * dx

M. Knepley Robust PASI ’11 70 / 1

GPU Computing FEM-GPU

Analytic Flexibility
Linear Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
:
(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (2)

element = VectorElement (’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
a = inner (sym(grad (v)) , sym(grad (u))) * dx

M. Knepley Robust PASI ’11 70 / 1

GPU Computing FEM-GPU

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement (’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement (’ Lagrange ’ , te t rahedron , 1 ,

(dim , dim , dim , dim))
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
C = C o e f f i c i e n t (cElement)
i , j , k , l = i nd i ces (4)
a = sym(grad (v)) [i , j] *C[i , j , k , l] * sym(grad (u)) [k , l] * dx

Currently broken in FEniCS release

M. Knepley Robust PASI ’11 71 / 1

GPU Computing FEM-GPU

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement (’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement (’ Lagrange ’ , te t rahedron , 1 ,

(dim , dim , dim , dim))
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
C = C o e f f i c i e n t (cElement)
i , j , k , l = i nd i ces (4)
a = sym(grad (v)) [i , j] *C[i , j , k , l] * sym(grad (u)) [k , l] * dx

Currently broken in FEniCS release

M. Knepley Robust PASI ’11 71 / 1

GPU Computing FEM-GPU

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement (’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement (’ Lagrange ’ , te t rahedron , 1 ,

(dim , dim , dim , dim))
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
C = C o e f f i c i e n t (cElement)
i , j , k , l = i nd i ces (4)
a = sym(grad (v)) [i , j] *C[i , j , k , l] * sym(grad (u)) [k , l] * dx

Currently broken in FEniCS release

M. Knepley Robust PASI ’11 71 / 1

GPU Computing FEM-GPU

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇ϕi(x) · ∇ϕj(x)dx (4)

=
∫
T

∂ϕi (x)
∂xα

∂ϕj (x)
∂xα dx (5)

=
∫
Tref

∂ξβ
∂xα

∂ϕi (ξ)
∂ξβ

∂ξγ
∂xα

∂ϕj (ξ)
∂ξγ

|J|dx (6)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂ϕi (ξ)
∂ξβ

∂ϕj (ξ)
∂ξγ

dx (7)

= Gβγ(T)K ij
βγ (8)

Coefficients are also put into the geometric part.

M. Knepley Robust PASI ’11 72 / 1

GPU Computing FEM-GPU

Form Decomposition

Additional fields give rise to multilinear forms.

∫
T ϕi(x) ·

(
ϕk (x)∇ϕj(x)

)
dA (9)

=
∫
T ϕβ

i (x)
(
ϕα

k (x)
∂ϕβ

j (x)
∂xα

)
dA (10)

=
∫
Tref

ϕβ
i (ξ)ϕ

α
k (ξ)

∂ξγ
∂xα

∂ϕβ
j (ξ)

∂ξγ
|J|dA (11)

=
∂ξγ
∂xα |J|

∫
Tref

ϕβ
i (ξ)ϕ

α
k (ξ)

∂ϕβ
j (ξ)

∂ξγ
dA (12)

= Gαγ(T)K ijk
αγ (13)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.

M. Knepley Robust PASI ’11 73 / 1

http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

GPU Computing FEM-GPU

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

∫
T ∇ϕi(x) · ∇ϕj(x)dA (14)

=
∫
T

∂ϕi (x)
∂xα

∂ϕj (x)
∂xα dA (15)

=
∫
Tref

∂ξβ
∂xα

∂ϕi (ξ)
∂ξβ

∂ξγ
∂xα

∂ϕj (ξ)
∂ξγ

|J|dA (16)

= |J|
∫
Tref

ϕkJβα
k

∂ϕi (ξ)
∂ξβ

ϕlJ
γα
l

∂ϕj (ξ)
∂ξγ

dA (17)

= Jβα
k Jγα

l |J|
∫
Tref

ϕk
∂ϕi (ξ)
∂ξβ

ϕl
∂ϕj (ξ)
∂ξγ

dA (18)

= Gβγ
kl (T)K ijkl

βγ (19)

A different space could also be used for Jacobians

M. Knepley Robust PASI ’11 74 / 1

GPU Computing FEM-GPU

Weak Form Processing

from f f c . ana l ys i s impor t analyze_forms
from f f c . compi ler impor t compute_ir

parameters = f f c . defau l t_parameters ()
parameters [’ r ep resen ta t i on ’] = ’ tensor ’
ana l ys i s = analyze_forms ([a , L] , { } , parameters)
i r = compute_ir (ana lys is , parameters)

a_K = i r [2] [0] [’AK ’] [0] [0]
a_G = i r [2] [0] [’AK ’] [0] [1]

K = a_K . A0 . astype (numpy . f l o a t 3 2)
G = a_G

M. Knepley Robust PASI ’11 75 / 1

GPU Computing FEM-GPU

Computational Flexibility

We generate different computations on the fly,

and can change
Element Batch Size

Number of Concurrent Elements

Loop unrolling

Interleaving stores with computation

M. Knepley Robust PASI ’11 76 / 1

GPU Computing FEM-GPU

Computational Flexibility
Basic Contraction

G K

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley Robust PASI ’11 77 / 1

GPU Computing FEM-GPU

Computational Flexibility
Basic Contraction

G K
thread 0

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley Robust PASI ’11 77 / 1

GPU Computing FEM-GPU

Computational Flexibility
Basic Contraction

G K
thread 0

thread 5

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley Robust PASI ’11 77 / 1

GPU Computing FEM-GPU

Computational Flexibility
Basic Contraction

G K
thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley Robust PASI ’11 77 / 1

GPU Computing FEM-GPU

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K
thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley Robust PASI ’11 78 / 1

GPU Computing FEM-GPU

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K

thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley Robust PASI ’11 78 / 1

GPU Computing FEM-GPU

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K

th
re

ad
0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley Robust PASI ’11 78 / 1

GPU Computing FEM-GPU

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K

th
re

ad
0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley Robust PASI ’11 78 / 1

GPU Computing FEM-GPU

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K
thread 0

thread 5

thread 15

thread 16

thread 21

th
re

ad
31

Figure: Tensor Contraction Gβγ(T)K ij
βγM. Knepley Robust PASI ’11 79 / 1

GPU Computing FEM-GPU

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K

thread 0

thread 5

thread 15

thread 16
thread 21

th
re

ad
31

Figure: Tensor Contraction Gβγ(T)K ij
βγM. Knepley Robust PASI ’11 79 / 1

GPU Computing FEM-GPU

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K
th

re
ad

0

thread 5

thread 15

thread 16
thread 21

thread 31

Figure: Tensor Contraction Gβγ(T)K ij
βγM. Knepley Robust PASI ’11 79 / 1

GPU Computing FEM-GPU

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K
th

re
ad

0

thread 5

thread 15

thread 16
thread 21

thread 31

Figure: Tensor Contraction Gβγ(T)K ij
βγM. Knepley Robust PASI ’11 79 / 1

GPU Computing FEM-GPU

Computational Flexibility
Loop Unrolling

/ * G K c o n t r a c t i o n : u n r o l l = f u l l * /
E [0] += G[0] * K [0] ;
E [0] += G[1] * K [1] ;
E [0] += G[2] * K [2] ;
E [0] += G[3] * K [3] ;
E [0] += G[4] * K [4] ;
E [0] += G[5] * K [5] ;
E [0] += G[6] * K [6] ;
E [0] += G[7] * K [7] ;
E [0] += G[8] * K [8] ;

M. Knepley Robust PASI ’11 80 / 1

GPU Computing FEM-GPU

Computational Flexibility
Loop Unrolling

/ * G K c o n t r a c t i o n : u n r o l l = none * /
f o r (i n t b = 0; b < 1; ++b) {

const i n t n = b * 1 ;
f o r (i n t alpha = 0; alpha < 3; ++alpha) {

f o r (i n t beta = 0; beta < 3; ++beta) {
E [b] += G[n*9+ alpha *3+ beta] * K [alpha *3+ beta] ;

}
}

}

M. Knepley Robust PASI ’11 81 / 1

GPU Computing FEM-GPU

Computational Flexibility
Interleaving stores

/ * G K c o n t r a c t i o n : u n r o l l = none * /
f o r (i n t b = 0; b < 4; ++b) {

const i n t n = b * 1 ;
f o r (i n t alpha = 0; alpha < 3; ++alpha) {

f o r (i n t beta = 0; beta < 3; ++beta) {
E [b] += G[n*9+ alpha *3+ beta] * K [alpha *3+ beta] ;

}
}

}
/ * Store c o n t r a c t i o n r e s u l t s * /
elemMat [Eo f f se t + idx +0] = E [0] ;
elemMat [Eo f f se t + idx +16] = E [1] ;
elemMat [Eo f f se t + idx +32] = E [2] ;
elemMat [Eo f f se t + idx +48] = E [3] ;

M. Knepley Robust PASI ’11 82 / 1

GPU Computing FEM-GPU

Computational Flexibility
Interleaving stores

n = 0;
f o r (i n t alpha = 0; alpha < 3; ++alpha) {

f o r (i n t beta = 0; beta < 3; ++beta) {
E += G[n*9+ alpha *3+ beta] * K [alpha *3+ beta] ;

}
}
/ * Store c o n t r a c t i o n r e s u l t * /
elemMat [Eo f f se t + idx +0] = E;
n = 1; E = 0 . 0 ; / * con t rac t * /
elemMat [Eo f f se t + idx +16] = E;
n = 2; E = 0 . 0 ; / * con t rac t * /
elemMat [Eo f f se t + idx +32] = E;
n = 3; E = 0 . 0 ; / * con t rac t * /
elemMat [Eo f f se t + idx +48] = E;

M. Knepley Robust PASI ’11 83 / 1

GPU Computing FEM-GPU

Code Template
<%namespace name=" pb " module=" performanceBenchmarks " / >
$ { pb . globalMod (isGPU) } vo id kerne l ($ { pb . g r i dS ize (isGPU) } f l o a t * output) {

$ { pb . g r idLoopSta r t (isGPU , load , s to re) }
$ { pb . threadLoopStar t (isGPU , blockDimX) }
f l o a t G[$ { dim * dim }] = { $ { ’ , ’ . j o i n ([’ 3.0 ’] * (dim * dim)) } } ;
f l o a t K [$ { dim * dim }] = { $ { ’ , ’ . j o i n ([’ 3.0 ’] * (dim * dim)) } } ;
f l o a t product = 0 . 0 ;
const i n t Oof fse t = g r i d I d x *$ { numThreads } ;

/ / Cont ract G and K
% f o r n i n range (numLocalElements) :
% f o r alpha i n range (dim) :
% f o r beta i n range (dim) :
<% gIdx = (n* dim + alpha) * dim + beta %>
<% kIdx = alpha * dim + beta %>

product += G[$ { gIdx }] * K [$ { k Idx }] ;
% endfor
% endfor
% endfor

output [Oof fse t+ idx] = product ;
$ { pb . threadLoopEnd (isGPU) }
$ { pb . gridLoopEnd (isGPU) }
r e t u r n ;

}
M. Knepley Robust PASI ’11 84 / 1

GPU Computing FEM-GPU

Rendering a Template

We render code template into strings using a dictionary of inputs.

args = { ’ dim ’ : s e l f . dim ,
’ numLocalElements ’ : 1 ,
’ numThreads ’ : s e l f . threadBlockSize }

kernelTemplate = s e l f . getKernelTemplate ()
gpuCode = kernelTemplate . render (isGPU = True , * * args)
cpuCode = kernelTemplate . render (isGPU = False , * * args)

M. Knepley Robust PASI ’11 85 / 1

GPU Computing FEM-GPU

GPU Source Code

__global__ vo id kerne l (f l o a t * output) {
const i n t g r i d I d x = b lock Idx . x + b lock Idx . y * gridDim . x ;
const i n t i dx = th read Idx . x + th read Idx . y * 1 ; / / This i s (i , j)
f l o a t G[9] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t K [9] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t product = 0 . 0 ;
const i n t Oof fse t = g r i d I d x * 1 ;

/ / Cont ract G and K
product += G[0] * K [0] ;
product += G[1] * K [1] ;
product += G[2] * K [2] ;
product += G[3] * K [3] ;
product += G[4] * K [4] ;
product += G[5] * K [5] ;
product += G[6] * K [6] ;
product += G[7] * K [7] ;
product += G[8] * K [8] ;
ou tput [Oof fse t+ idx] = product ;
r e t u r n ;

}

M. Knepley Robust PASI ’11 86 / 1

GPU Computing FEM-GPU

CPU Source Code
vo id kerne l (i n t numInvocations , f l o a t * output) {

f o r (i n t g r i d I d x = 0; g r i d I d x < numInvocations ; ++ g r i d I d x) {
f o r (i n t i = 0 ; i < 1 ; ++ i) {

f o r (i n t j = 0 ; j < 1 ; ++ j) {
const i n t i dx = i + j * 1 ; / / This i s (i , j)

f l o a t G[9] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t K [9] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t product = 0 . 0 ;
const i n t Oof fse t = g r i d I d x * 1 ;

/ / Cont ract G and K
product += G[0] * K [0] ;
product += G[1] * K [1] ;
product += G[2] * K [2] ;
product += G[3] * K [3] ;
product += G[4] * K [4] ;
product += G[5] * K [5] ;
product += G[6] * K [6] ;
product += G[7] * K [7] ;
product += G[8] * K [8] ;
ou tput [Oof fse t+ idx] = product ;

}
}

}
r e t u r n ;

}

M. Knepley Robust PASI ’11 87 / 1

GPU Computing FEM-GPU

Creating a Module

CPU:

Output kerne l and C support code
s e l f . outputKernelC (cpuCode)
s e l f . w r i t e M a k e f i l e ()
out , er r , s ta tus = s e l f . executeShellCommand (’make ’)
\ end { minted }

\ b i gsk ip

GPU:
\ begin { minted } { python }
from pycuda . compi ler impor t SourceModule

mod = SourceModule (gpuCode)
s e l f . ke rne l = mod. ge t_ func t i on (’ ke rne l ’)
s e l f . kerne lRepor t (s e l f . kernel , ’ ke rne l ’)

M. Knepley Robust PASI ’11 88 / 1

GPU Computing FEM-GPU

Executing a Module

impor t pycuda . d r i v e r as cuda
impor t pycuda . a u t o i n i t

blockDim = (s e l f . dim , s e l f . dim , 1)
s t a r t = cuda . Event ()
end = cuda . Event ()
g r i d = s e l f . c a l c u l a t e G r i d (N, numLocalElements)
s t a r t . record ()
f o r i i n range (i t e r s) :

s e l f . ke rne l (cuda . Out (output) ,
b lock = blockDim , g r i d = g r i d)

end . record ()
end . synchronize ()
gpuTimes . append (s t a r t . t i m e _ t i l l (end) *1 e−3/ i t e r s)

M. Knepley Robust PASI ’11 89 / 1

GPU Computing FEM-GPU

Element Matrix Formation

Element matrix K is now made up of small tensors
Contract all tensor elements with each the geometry tensor G(T)

3 0
0 0

0 -1
0 0

1 1
0 0

-4 -4
0 0

0 4
0 0

0 0
0 0

0 0
-1 0

0 0
0 3

0 0
1 1

0 0
0 0

0 0
4 0

0 0
-4 -4

1 0
1 0

0 1
0 1

3 3
3 3

-4 0
-4 0

0 0
0 0

0 -4
0 -4

-4 0
-4 0

0 0
0 0

-4 -4
0 0

8 4
4 8

0 -4
-4 -8

0 4
4 0

0 0
4 0

0 4
0 0

0 0
0 0

0 -4
-4 -8

8 4
4 8

-8 -4
-4 0

0 0
0 0

0 -4
0 -4

0 0
-4 -4

0 4
4 0

-8 -4
-4 0

8 4
4 8

M. Knepley Robust PASI ’11 90 / 1

GPU Computing FEM-GPU

Mapping GαβK ij
αβ to the GPU

Problem Division

For N elements, map blocks of NL elements to each Thread Block (TB)
Launch grid must be gx × gy = N/NL

TB grid will depend on the specific algorithm
Output is size Nbasis × Nbasis × NL

We can split a TB to work on multiple, NB, elements at a time
Note that each TB always gets NL elements, so NB must divide NL

M. Knepley Robust PASI ’11 91 / 1

GPU Computing FEM-GPU

Mapping GαβK ij
αβ to the GPU

Kernel Arguments

__global__
vo id in teg ra teJacob ian (f l o a t * elemMat ,

f l o a t * geometry ,
f l o a t * a n a l y t i c)

geometry: Array of G tensors for each element

analytic: K tensor

elemMat: Array of E = G : K tensors for each element

M. Knepley Robust PASI ’11 92 / 1

GPU Computing FEM-GPU

Mapping GαβK ij
αβ to the GPU

Memory Movement

We can interleave stores with computation, or wait until the end
Waiting could improve coalescing of writes

Interleaving could allow overlap of writes with computation

Also need to
Coalesce accesses between global and local/shared memory
(use moveArray())

Limit use of shared and local memory

M. Knepley Robust PASI ’11 93 / 1

GPU Computing FEM-GPU

Memory Bandwidth

Superior GPU memory bandwidth is due to both

bus width and clock speed.

CPU GPU
Bus Width (bits) 64 512
Bus Clock Speed (MHz) 400 1600
Memory Bandwidth (GB/s) 3 102
Latency (cycles) 240 600

Tesla always accesses blocks of 64 or 128 bytes

M. Knepley Robust PASI ’11 94 / 1

GPU Computing FEM-GPU

Mapping GαβK ij
αβ to the GPU

Reduction

Choose strategies to minimize reductions

Only reductions occur in summation for contractions
Similar to the reduction in a quadrature loop

Strategy #1: Each thread uses all of K

Strategy #2: Do each contraction in a separate thread

M. Knepley Robust PASI ’11 95 / 1

GPU Computing FEM-GPU

Strategy #1
TB Division

Each thread computes an entire element matrix, so that

blockDim = (NL/NB,1,1)

We will see that there is little opportunity to overlap computation and
memory access

M. Knepley Robust PASI ’11 96 / 1

GPU Computing FEM-GPU

Strategy #1
Analytic Part

Read K into shared memory (need to synchronize before access)

__shared__ f l o a t K [$ { dim * dim * numBasisFuncs * numBasisFuncs }] ;

$ { fm . moveArray (’K ’ , ’ a n a l y t i c ’ ,
dim * dim * numBasisFuncs * numBasisFuncs , ’ ’ , numThreads) }

__syncthreads () ;

M. Knepley Robust PASI ’11 97 / 1

GPU Computing FEM-GPU

Strategy #1
Geometry

Each thread handles NB elements
Read G into local memory (not coalesced)
Interleaving means writing after each thread does a single
element matrix calculation

f l o a t G[$ { dim * dim * numBlockElements }] ;

i f (i n t e r l e a v e d) {
const i n t Gof fse t = (g r i d I d x *$ { numLocalElements } + idx) * $ { dim * dim } ;
f o r n i n range (numBlockElements) :

$ { fm . moveArray (’G ’ , ’ geometry ’ , dim * dim , ’ Gof fse t ’ ,
blockNumber = n* numLocalElements / numBlockElements ,
localBlockNumber = n , isCoalesced = False) }

endfor
} e lse {

const i n t Gof fse t = (g r i d I d x *$ { numLocalElements / numBlockElements } + idx)
*$ { dim * dim * numBlockElements } ;

$ { fm . moveArray (’G ’ , ’ geometry ’ , dim * dim * numBlockElements , ’ Gof fse t ’ ,
isCoalesced = False) }

}

M. Knepley Robust PASI ’11 98 / 1

GPU Computing FEM-GPU

Strategy #1
Output

We write element matrices out contiguously by TB

const i n t matSize = numBasisFuncs * numBasisFuncs ;
const i n t Eo f f se t = g r i d I d x * matSize * numLocalElements ;

i f (i n t e r l e a v e d) {
const i n t elemOff = idx * matSize ;
__shared__ f l o a t E [matSize * numLocalElements / numBlockElements] ;

} e lse {
const i n t elemOff = idx * matSize * numBlockElements ;
__shared__ f l o a t E [matSize * numLocalElements] ;

}

M. Knepley Robust PASI ’11 99 / 1

GPU Computing FEM-GPU

Strategy #1
Contraction

matSize = numBasisFuncs * numBasisFuncs
i f i n t e r l ea v eS t o re s :

f o r b i n range (numBlockElements) :
Do 1 c o n t r a c t i o n f o r each thread
__syncthreads () ;
fm . moveArray (’E ’ , ’ elemMat ’ ,

matSize * numLocalElements / numBlockElements ,
’ Eo f f se t ’ , numThreads , blockNumber = n , isLoad = 0)

e lse :
Do numBlockElements co n t r ac t i ons f o r each thread
__syncthreads () ;
fm . moveArray (’E ’ , ’ elemMat ’ ,

matSize * numLocalElements ,
’ Eo f f se t ’ , numThreads , isLoad = 0)

M. Knepley Robust PASI ’11 100 / 1

GPU Computing FEM-GPU

Strategy #2
TB Division

Each thread computes a single element of an element matrix, so that

blockDim = (Nbasis,Nbasis,NB)

This allows us to overlap computation of another element in the TB
with writes for the first.

M. Knepley Robust PASI ’11 101 / 1

GPU Computing FEM-GPU

Strategy #2
Analytic Part

Assign an (i , j) block of K to local memory
NB threads will simultaneously calculate a contraction

const i n t Kidx = th read Idx . x + th read Idx . y *$ { numBasisFuncs } ; / / This i s (i , j)
const i n t i dx = Kidx + th read Idx . z *$ { numBasisFuncs * numBasisFuncs } ;
const i n t Ko f f se t = Kidx *$ { dim * dim } ;
f l o a t K [$ { dim * dim }] ;

% f o r alpha i n range (dim) :
% f o r beta i n range (dim) :
<% kIdx = alpha * dim + beta %>
K[$ { k Idx }] = a n a l y t i c [Ko f f se t +$ { k Idx }] ;
% endfor
% endfor

M. Knepley Robust PASI ’11 102 / 1

GPU Computing FEM-GPU

Strategy #2
Geometry

Store NL G tensors into shared memory
Interleaving means writing after each thread does a single
element calculation

const i n t Gof fse t = g r i d I d x *$ { dim * dim * numLocalElements } ;
__shared__ f l o a t G[$ { dim * dim * numLocalElements }] ;

$ { fm . moveArray (’G ’ , ’ geometry ’ , dim * dim * numLocalElements ,
’ Gof fse t ’ , numThreads) }

__syncthreads () ;

M. Knepley Robust PASI ’11 103 / 1

GPU Computing FEM-GPU

Strategy #2
Output

We write element matrices out contiguously by TB
If interleaving stores, only need a single product
Otherwise, need NL/NB, one per element processed by a thread

const i n t matSize = numBasisFuncs * numBasisFuncs ;
const i n t Eo f f se t = g r i d I d x * matSize * numLocalElements ;

i f (i n t e r l e a v e d) {
f l o a t product = 0 . 0 ;
const i n t elemOff = idx * matSize ;

} e lse {
f l o a t product [numLocalElements / numBlockElements] ;
const i n t elemOff = idx * matSize * numBlockElements ;

}

M. Knepley Robust PASI ’11 104 / 1

GPU Computing FEM-GPU

Strategy #2
Contraction

i f i n t e r l ea v eS t o re s :
f o r n i n range (numLocalElements / numBlockElements) :

Do 1 c o n t r a c t i o n f o r each thread
__syncthreads ()
Do coalesced w r i t e o f element mat r i x
elemMat [Eo f f se t + idx + n* numThreads] = product

e lse :
Do numLocalElements / numBlockElements c on t r ac t i ons
save r e s u l t s i n product []
f o r n i n range (numLocalElements / numBlockElements) :

elemMat [Eo f f se t + idx + n* numThreads] = product [n]

M. Knepley Robust PASI ’11 105 / 1

