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How do we choose an algorithm?



How do we choose an algorithm?

We choose the fastest one. . .
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Computation (HPL)
Bandwidth ~ (Roofline)
Latency (LogP)

Concurrency
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Does this implementation
scale weakly?



These models can answer. . .

Does this implementation
scale weakly? strongly?



These models can answer. . .

Is one implementation more
efficient than another on
this machine?



What about questions like...



What about questions like...

Should I discretize this
problem with CG or DG?



What about questions like...

Should I solve using the
Picard or Newton Method?



The key notion we are missing 1s
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accuracy



The key notion we are missing 1s

accuracy

It distinguishes algorithms with

different convergence behavior
(ChangFabienKnepleyMills2018)
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Mesh Convergence Diagram
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Does my Algorithm solve
this Problem?
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Static Scaling Diagram

GPU vs CPU VecAXPY performance
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Static Scaling Diagram
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Is my Algorithm efficient on
this Machine?
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How should we measure accuracy?
e
accuracy rate =

Marginal accuracy rate falls off
steeply with problem size
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Consider an optimal PDE solver:

T = Wh % and e = Ch®



Consider an optimal PDE solver:

T = Wh @ and e = Ch"
The error-time has a simple form

—log(e - T)
= — log (Ch*Wh™)
=(d — ) log(h) — log(CW)
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Efficacy vs. Static Scaling
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Figure 17: Time-accuracy performance analysis for the nearly incompressible problem ()\:106).

(Fabien2019)
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What else could we analyze?

Communication-Avoiding (CA)
algorithms have exciting
lower bounds

(BallardDemmelHoltzSchwartz2011)



What else could we analyze?

CA TSQR 1s a great success

(DemmelGrigoriHoemmenLangou2(1



What else could we analyze?

CA Krylov not a success



What else could we analyze?

CA Krylov not a success

Accuracy depends on coarse grid

communication in preconditioner



Future Questions:



Future Questions:

Is there a variational
characterization of
optimal algorithms?



Future Questions:

Can we think of error-time
as an Algorithmic Action?
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