How to Choose an Algorithm

Matthew Knepley

Computer Science and Engineering
University at Buffalo

Applied and Computational Mathematics
Virtual Seminar, University of Edinburgh
Edinburgh, UK November 11, 2020

A Gh

Argonne University at Buffalo

LLLLLLLLLL

RELACS People

How do we choose an algorithm?

How do we choose an algorithm?

We choose the fastest one. . .

Timing is tricky. It’s sensitive to

Timing is tricky. It’s sensitive to

machine characteristics

Timing is tricky. It’s sensitive to
machine characteristics

problem details

Proxy measures can simplify design:

Proxy measures can simplify design:

Computation (HPL)

Proxy measures can simplify design:

Computation (HPL)
Bandwidth ~ (Roofline)

Proxy measures can simplify design:

Computation (HPL)
Bandwidth ~ (Roofline)
Latency (LogP)

Proxy measures can simplify design:

Computation (HPL)
Bandwidth ~ (Roofline)
Latency (LogP)

Concurrency

These models can answer. . .

These models can answer. . .

Does this implementation
scale weakly?

These models can answer. . .

Does this implementation
scale weakly? strongly?

These models can answer. . .

Is one implementation more
efficient than another on
this machine?

What about questions like...

What about questions like...

Should I discretize this
problem with CG or DG?

What about questions like...

Should I solve using the
Picard or Newton Method?

The key notion we are missing 1s

The key notion we are missing 1s

accuracy

The key notion we are missing 1s

accuracy

It distinguishes algorithms with

different convergence behavior
(ChangFabienKnepleyMills2018)

Accuracy rate . Static-scaling

Mesh-convergence

Accuracy rate . Static-scaling

Problem

Mesh-convergence

Machine

Accuracy rate . Static-scaling

Problem

Mesh-convergence

Accuracy rate

Algorithm

Machine

Mesh-convergence

Static-scaling

Problem

Mesh Convergence Diagram

—e— CG1
61|—+ CG2
—=— DGl
54{|—e— DG2

Mesh Convergence Diagram

—e— CG1
61|—+ CG2
—=— DG1
54|—— DG2
<):4
a
3 /
5 ./
1_
0
0 1 2 3 4 5 6 7

1/error vs. size

Mesh Convergence Diagram

—e— CG1
61|—+ CG2
—=— DG1
54|—— DG2

Does my Algorithm solve
this Problem?

DoF/s

Static Scaling Diagram

106

—e— CG1
—e— CG2
—a— DGI1
m T
105 //4——0*.\.\‘

104
107! 10° 10! 102
Time (s)

DoF/s

Static Scaling Diagram

106

—e— CG1
—e— CG2
—a— DGI1
m T
105 //4—4—0\.\.\‘

104
107! 10° 10! 102
Time (s)

size/time vs. time

Static Scaling Diagram

GPU vs CPU VecAXPY performance

108
L 105
5 4
10° | 105
T T e 2
§ 10 5 ; F10% §
@ / o
o 1 wi
2 : g
S 1074 ' L@
= ! —— 42 CPU cores VecAXPY =
--- 42 CPU cores VecCopy
107 4 6 GPUs copy to GPU | 102
—— 6 GPUs VecAXPY
--- 6 GPUs VecCopy
10! § F 10t
107¢ 107° 107* 1073 1072 107!

Execution time (seconds)

size/time vs. time

DoF/s

Static Scaling Diagram

106

—e— CG1
—e— CG2
—a— DGI1
m T
105 //4—4—0\.\.\‘

104
107! 10° 10! 102
Time (s)

size/time vs. time

DoF/s

Static Scaling Diagram

—e— CG1
—<+ CG2
—=— DG1

m T

10° //4—4—0\._.\‘

106

104
1071 10° 10t 102

Time (s)

Is my Algorithm efficient on
this Machine?

How should we measure accuracy?

How should we measure accuracy?

accuracy rate =

How should we measure accuracy?
e
accuracy rate =

Marginal accuracy rate falls off
steeply with problem size

Consider an optimal PDE solver:

Consider an optimal PDE solver:

T = Wh % and e = Ch®

Consider an optimal PDE solver:

T = Wh @ and e = Ch"
The error-time has a simple form

—log(e - T)
= — log (Ch*Wh™)
=(d —) log(h) — log(CW)

Efficacy Diagram

6
—e— CG1

5 —+ CG2
—=— DG1
—e— DG2

4

«

3 :

2 H—-\H\-‘-\-

1

0 ; ; ;

1071t 10° 10! 102

Time (s)

Efficacy Diagram

—e— CG1
5 —— CG2
—=— DG1
—o— DG2
4
-«
s
03 ' Q‘_—‘
2 H—-\H\-‘-\-
1
0 T - .
107! 10° 10t 102
Time (s)

1/error-time vs. time

Efficacy Diagram

—e— CG1
—+ CG2
—=— DG1
—e— DG2

«

I ‘i:'
D3

2 H—.\H\-\-\-

o1 100 101 102
Time (s)

1 /error _ size/time _ 1/(error-time)

size time time

Efficacy Diagram

—e— CG1
—+ CG2
—=— DG1
—— DG2

«—

's

D3 !Q‘—‘
2 H—-\H\N\-

o1 100 101 102
Time (s)

Does my Algorithm solve this
Problem efficiently on this Machine?

Efficacy vs. Static Scaling

3 k=1 .
‘ k=2 /
-e- k=3
—— k=4 ’
2 —+— k=5) 'y
1
0
104 10° 106 107
DoF

(a) DoE vs DoF

DoF/s

100
—— k=1
k=2
-e- k=3 .
k=4
a —+—k=5
10° k
10*
10* 10° 109 107
DoF

(b) DoF/s vs DoF

Figure 17: Time-accuracy performance analysis for the nearly incompressible problem ()\:106).

(Fabien2019)

What else could we analyze?

What else could we analyze?

Communication-Avoiding (CA)
algorithms have exciting
lower bounds

(BallardDemmelHoltzSchwartz2011)

What else could we analyze?

CA TSQR 1s a great success

(DemmelGrigoriHoemmenLangou2(1

What else could we analyze?

CA Krylov not a success

What else could we analyze?

CA Krylov not a success

Accuracy depends on coarse grid

communication in preconditioner

Future Questions:

Future Questions:

Is there a variational
characterization of
optimal algorithms?

Future Questions:

Can we think of error-time
as an Algorithmic Action?

References 1

