
Software Design for PDEs on GPUs

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

Conference on Simulation and Optimization
In Honor of Gisbert Stoyan

Győr, Hungary June 29–July 1, 2011

M. Knepley (UC) PDE on GPU Győr ’11 1 / 43

Collaborators

Chicago Automated Scientific Computing Group:
Prof. Ridgway Scott

Dept. of Computer Science, University of Chicago
Dept. of Mathematics, University of Chicago

Peter Brune, (biological DFT)
Dept. of Computer Science, University of Chicago

Dr. Andy Terrel, (Rheagen)
Dept. of Computer Science and TACC, University of Texas at Austin

M. Knepley (UC) PDE on GPU Győr ’11 2 / 43

http://www.cs.uchicago.edu/~ridg
http://www.cs.uchicago.edu/~brune
http://andy.terrel.us/Professional/index.html

Collaborators

The PetscGPU team:
Dr. Barry Smith

Mathematics and Computer Science Division, ANL

Satish Balay
Mathematics and Computer Science Division, ANL

Victor Minden
Dept. of Mathematics, Tufts University

M. Knepley (UC) PDE on GPU Győr ’11 3 / 43

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/~bsmith
http://www.mcs.anl.gov/~balay
http://www.eecs.tufts.edu/~vminde01/index.html

Collaborators

The PyLith Team:
Dr. Brad Aagaard (PyLith)

United States Geological Survey, Menlo Park, CA

Dr. Charles Williams (PyLith)
GNS Science, Wellington, NZ

M. Knepley (UC) PDE on GPU Győr ’11 4 / 43

http://www.geodynamics.org/cig/software/pylith
http://profile.usgs.gov/baagaard
http://w3.geodynamics.org/cig/Members/willic3

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) PDE on GPU Győr ’11 5 / 43

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) PDE on GPU Győr ’11 5 / 43

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) PDE on GPU Győr ’11 5 / 43

Lessons from Clusters and MPPs

Failure
Parallelizing Compilers
Automatic program decomposition

Success
MPI (Library Approach)
PETSc (Parallel Linear Algebra)
User provides only the mathematical description

M. Knepley (UC) PDE on GPU Győr ’11 6 / 43

Lessons from Clusters and MPPs

Failure
Parallelizing Compilers
Automatic program decomposition

Success
MPI (Library Approach)
PETSc (Parallel Linear Algebra)
User provides only the mathematical description

M. Knepley (UC) PDE on GPU Győr ’11 6 / 43

PETSc-GPU

Outline

1 PETSc-GPU

2 FEM-GPU

M. Knepley (UC) PDE on GPU Győr ’11 7 / 43

PETSc-GPU

Thrust

Thrust is a CUDA library of parallel algorithms

Interface similar to C++ Standard Template Library

Containers (vector) on both host and device

Algorithms: sort, reduce, scan

Freely available, part of PETSc configure (-with-thrust-dir)

Included as part of CUDA 4.0 installation

M. Knepley (UC) PDE on GPU Győr ’11 8 / 43

http://code.google.com/p/thrust/

PETSc-GPU

Cusp

Cusp is a CUDA library for
sparse linear algebra and graph computations

Builds on data structures in Thrust

Provides sparse matrices in several formats (CSR, Hybrid)

Includes some preliminary preconditioners (Jacobi, SA-AMG)

Freely available, part of PETSc configure (-with-cusp-dir)

M. Knepley (UC) PDE on GPU Győr ’11 9 / 43

http://code.google.com/p/cusp-library/

PETSc-GPU

VECCUDA

Strategy: Define a new Vec implementation

Uses Thrust for data storage and operations on GPU

Supports full PETSc Vec interface

Inherits PETSc scalar type

Can be activated at runtime, -vec_type cuda

PETSc provides memory coherence mechanism

M. Knepley (UC) PDE on GPU Győr ’11 10 / 43

http://code.google.com/p/thrust/

PETSc-GPU

Memory Coherence

PETSc Objects now hold a coherence flag

PETSC_CUDA_UNALLOCATED No allocation on the GPU
PETSC_CUDA_GPU Values on GPU are current
PETSC_CUDA_CPU Values on CPU are current
PETSC_CUDA_BOTH Values on both are current

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.

M. Knepley (UC) PDE on GPU Győr ’11 11 / 43

PETSc-GPU

MATAIJCUDA

Also define new Mat implementations

Uses Cusp for data storage and operations on GPU

Supports full PETSc Mat interface, some ops on CPU

Can be activated at runtime, -mat_type aijcuda

Notice that parallel matvec necessitates off-GPU data transfer

M. Knepley (UC) PDE on GPU Győr ’11 12 / 43

http://code.google.com/p/cusp-library/

PETSc-GPU

Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,

Minden, Smith, Knepley, 2010

All linear algebra types work with solvers

Entire solve can take place on the GPU
Only communicate scalars back to CPU

GPU communication cost could be amortized over several solves

Preconditioners are a problem
Cusp has a promising AMG

M. Knepley (UC) PDE on GPU Győr ’11 13 / 43

http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf

PETSc-GPU

Installation

PETSc only needs
Turn on CUDA
--with-cuda
Specify the CUDA compiler
--with-cudac=’nvcc -m64’
Indicate the location of packages
--download-* will also work soon
--with-thrust-dir=/PETSc3/multicore/thrust
--with-cusp-dir=/PETSc3/multicore/cusp
Can also use double precision
--with-precision=single

M. Knepley (UC) PDE on GPU Győr ’11 14 / 43

PETSc-GPU

Example
Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
-da_mat_type aijcusp -mat_no_inode # Setup types
-da_grid_x 100 -da_grid_y 100 # Set grid size
-pc_type none -pc_mg_levels 1 # Setup solver
-preload off -cuda_synchronize # Setup run
-log_summary

M. Knepley (UC) PDE on GPU Győr ’11 15 / 43

PETSc-GPU

Example
PFLOTRAN

Flow Solver
32 × 32 × 32 grid

Routine Time (s) MFlops MFlops/s
CPU
KSPSolve 8.3167 4370 526
MatMult 1.5031 769 512
GPU
KSPSolve 1.6382 4500 2745
MatMult 0.3554 830 2337

P. Lichtner, G. Hammond,
R. Mills, B. Phillip

M. Knepley (UC) PDE on GPU Győr ’11 16 / 43

FEM-GPU

Outline

1 PETSc-GPU

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency

M. Knepley (UC) PDE on GPU Győr ’11 17 / 43

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU Győr ’11 18 / 43

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU Győr ’11 18 / 43

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU Győr ’11 18 / 43

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU Győr ’11 18 / 43

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU Analytic Flexibility

Outline

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency

M. Knepley (UC) PDE on GPU Győr ’11 19 / 43

FEM-GPU Analytic Flexibility

Analytic Flexibility
Laplacian

∫
T
∇ϕi(x) · ∇ϕj(x)dx (1)

element = F in i teE lement (’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
a = inner (grad (v) , grad (u)) * dx

M. Knepley (UC) PDE on GPU Győr ’11 20 / 43

FEM-GPU Analytic Flexibility

Analytic Flexibility
Laplacian

∫
T
∇ϕi(x) · ∇ϕj(x)dx (1)

element = F in i teE lement (’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
a = inner (grad (v) , grad (u)) * dx

M. Knepley (UC) PDE on GPU Győr ’11 20 / 43

FEM-GPU Analytic Flexibility

Analytic Flexibility
Linear Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
:
(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (2)

element = VectorElement (’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
a = inner (sym(grad (v)) , sym(grad (u))) * dx

M. Knepley (UC) PDE on GPU Győr ’11 21 / 43

FEM-GPU Analytic Flexibility

Analytic Flexibility
Linear Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
:
(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (2)

element = VectorElement (’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
a = inner (sym(grad (v)) , sym(grad (u))) * dx

M. Knepley (UC) PDE on GPU Győr ’11 21 / 43

FEM-GPU Analytic Flexibility

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement (’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement (’ Lagrange ’ , te t rahedron , 1 ,

(dim , dim , dim , dim))
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
C = C o e f f i c i e n t (cElement)
i , j , k , l = i nd i ces (4)
a = sym(grad (v)) [i , j] *C[i , j , k , l] * sym(grad (u)) [k , l] * dx

Currently broken in FEniCS release

M. Knepley (UC) PDE on GPU Győr ’11 22 / 43

FEM-GPU Analytic Flexibility

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement (’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement (’ Lagrange ’ , te t rahedron , 1 ,

(dim , dim , dim , dim))
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
C = C o e f f i c i e n t (cElement)
i , j , k , l = i nd i ces (4)
a = sym(grad (v)) [i , j] *C[i , j , k , l] * sym(grad (u)) [k , l] * dx

Currently broken in FEniCS release

M. Knepley (UC) PDE on GPU Győr ’11 22 / 43

FEM-GPU Analytic Flexibility

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement (’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement (’ Lagrange ’ , te t rahedron , 1 ,

(dim , dim , dim , dim))
v = TestFunct ion (element)
u = T r i a l F u n c t i o n (element)
C = C o e f f i c i e n t (cElement)
i , j , k , l = i nd i ces (4)
a = sym(grad (v)) [i , j] *C[i , j , k , l] * sym(grad (u)) [k , l] * dx

Currently broken in FEniCS release

M. Knepley (UC) PDE on GPU Győr ’11 22 / 43

FEM-GPU Computational Flexibility

Outline

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency

M. Knepley (UC) PDE on GPU Győr ’11 23 / 43

FEM-GPU Computational Flexibility

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇ϕi(x) · ∇ϕj(x)dx (4)

=
∫
T

∂ϕi (x)
∂xα

∂ϕj (x)
∂xα dx (5)

=
∫
Tref

∂ξβ
∂xα

∂ϕi (ξ)
∂ξβ

∂ξγ
∂xα

∂ϕj (ξ)
∂ξγ

|J|dx (6)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂ϕi (ξ)
∂ξβ

∂ϕj (ξ)
∂ξγ

dx (7)

= Gβγ(T)K ij
βγ (8)

Coefficients are also put into the geometric part.

M. Knepley (UC) PDE on GPU Győr ’11 24 / 43

FEM-GPU Computational Flexibility

Form Decomposition

Additional fields give rise to multilinear forms.

∫
T ϕi(x) ·

(
ϕk (x)∇ϕj(x)

)
dA (9)

=
∫
T ϕβ

i (x)
(
ϕα

k (x)
∂ϕβ

j (x)
∂xα

)
dA (10)

=
∫
Tref

ϕβ
i (ξ)ϕ

α
k (ξ)

∂ξγ
∂xα

∂ϕβ
j (ξ)

∂ξγ
|J|dA (11)

=
∂ξγ
∂xα |J|

∫
Tref

ϕβ
i (ξ)ϕ

α
k (ξ)

∂ϕβ
j (ξ)

∂ξγ
dA (12)

= Gαγ(T)K ijk
αγ (13)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.

M. Knepley (UC) PDE on GPU Győr ’11 25 / 43

http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

FEM-GPU Computational Flexibility

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

∫
T ∇ϕi(x) · ∇ϕj(x)dA (14)

=
∫
T

∂ϕi (x)
∂xα

∂ϕj (x)
∂xα dA (15)

=
∫
Tref

∂ξβ
∂xα

∂ϕi (ξ)
∂ξβ

∂ξγ
∂xα

∂ϕj (ξ)
∂ξγ

|J|dA (16)

= |J|
∫
Tref

ϕkJβα
k

∂ϕi (ξ)
∂ξβ

ϕlJ
γα
l

∂ϕj (ξ)
∂ξγ

dA (17)

= Jβα
k Jγα

l |J|
∫
Tref

ϕk
∂ϕi (ξ)
∂ξβ

ϕl
∂ϕj (ξ)
∂ξγ

dA (18)

= Gβγ
kl (T)K ijkl

βγ (19)

A different space could also be used for Jacobians

M. Knepley (UC) PDE on GPU Győr ’11 26 / 43

FEM-GPU Computational Flexibility

Weak Form Processing

from f f c . ana l ys i s impor t analyze_forms
from f f c . compi ler impor t compute_ir

parameters = f f c . defau l t_parameters ()
parameters [’ r ep resen ta t i on ’] = ’ tensor ’
ana l ys i s = analyze_forms ([a , L] , { } , parameters)
i r = compute_ir (ana lys is , parameters)

a_K = i r [2] [0] [’AK ’] [0] [0]
a_G = i r [2] [0] [’AK ’] [0] [1]

K = a_K . A0 . astype (numpy . f l o a t 3 2)
G = a_G

M. Knepley (UC) PDE on GPU Győr ’11 27 / 43

FEM-GPU Computational Flexibility

Computational Flexibility

We generate different computations on the fly,

and can change
Element Batch Size

Number of Concurrent Elements

Loop unrolling

Interleaving stores with computation

M. Knepley (UC) PDE on GPU Győr ’11 28 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley (UC) PDE on GPU Győr ’11 29 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K
thread 0

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley (UC) PDE on GPU Győr ’11 29 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K
thread 0

thread 5

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley (UC) PDE on GPU Győr ’11 29 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K
thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley (UC) PDE on GPU Győr ’11 29 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K
thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley (UC) PDE on GPU Győr ’11 30 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K

thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley (UC) PDE on GPU Győr ’11 30 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K

th
re

ad
0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley (UC) PDE on GPU Győr ’11 30 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K

th
re

ad
0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T)K ij
βγ

M. Knepley (UC) PDE on GPU Győr ’11 30 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K
thread 0

thread 5

thread 15

thread 16

thread 21

th
re

ad
31

Figure: Tensor Contraction Gβγ(T)K ij
βγM. Knepley (UC) PDE on GPU Győr ’11 31 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K

thread 0

thread 5

thread 15

thread 16
thread 21

th
re

ad
31

Figure: Tensor Contraction Gβγ(T)K ij
βγM. Knepley (UC) PDE on GPU Győr ’11 31 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K
th

re
ad

0

thread 5

thread 15

thread 16
thread 21

thread 31

Figure: Tensor Contraction Gβγ(T)K ij
βγM. Knepley (UC) PDE on GPU Győr ’11 31 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K
th

re
ad

0

thread 5

thread 15

thread 16
thread 21

thread 31

Figure: Tensor Contraction Gβγ(T)K ij
βγM. Knepley (UC) PDE on GPU Győr ’11 31 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Loop Unrolling

/ * G K c o n t r a c t i o n : u n r o l l = f u l l * /
E [0] += G[0] * K [0] ;
E [0] += G[1] * K [1] ;
E [0] += G[2] * K [2] ;
E [0] += G[3] * K [3] ;
E [0] += G[4] * K [4] ;
E [0] += G[5] * K [5] ;
E [0] += G[6] * K [6] ;
E [0] += G[7] * K [7] ;
E [0] += G[8] * K [8] ;

M. Knepley (UC) PDE on GPU Győr ’11 32 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Loop Unrolling

/ * G K c o n t r a c t i o n : u n r o l l = none * /
f o r (i n t b = 0; b < 1; ++b) {

const i n t n = b * 1 ;
f o r (i n t alpha = 0; alpha < 3; ++alpha) {

f o r (i n t beta = 0; beta < 3; ++beta) {
E [b] += G[n*9+ alpha *3+ beta] * K [alpha *3+ beta] ;

}
}

}

M. Knepley (UC) PDE on GPU Győr ’11 33 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Interleaving stores

/ * G K c o n t r a c t i o n : u n r o l l = none * /
f o r (i n t b = 0; b < 4; ++b) {

const i n t n = b * 1 ;
f o r (i n t alpha = 0; alpha < 3; ++alpha) {

f o r (i n t beta = 0; beta < 3; ++beta) {
E [b] += G[n*9+ alpha *3+ beta] * K [alpha *3+ beta] ;

}
}

}
/ * Store c o n t r a c t i o n r e s u l t s * /
elemMat [Eo f f se t + idx +0] = E [0] ;
elemMat [Eo f f se t + idx +16] = E [1] ;
elemMat [Eo f f se t + idx +32] = E [2] ;
elemMat [Eo f f se t + idx +48] = E [3] ;

M. Knepley (UC) PDE on GPU Győr ’11 34 / 43

FEM-GPU Computational Flexibility

Computational Flexibility
Interleaving stores

n = 0;
f o r (i n t alpha = 0; alpha < 3; ++alpha) {

f o r (i n t beta = 0; beta < 3; ++beta) {
E += G[n*9+ alpha *3+ beta] * K [alpha *3+ beta] ;

}
}
/ * Store c o n t r a c t i o n r e s u l t * /
elemMat [Eo f f se t + idx +0] = E;
n = 1; E = 0 . 0 ; / * con t rac t * /
elemMat [Eo f f se t + idx +16] = E;
n = 2; E = 0 . 0 ; / * con t rac t * /
elemMat [Eo f f se t + idx +32] = E;
n = 3; E = 0 . 0 ; / * con t rac t * /
elemMat [Eo f f se t + idx +48] = E;

M. Knepley (UC) PDE on GPU Győr ’11 35 / 43

FEM-GPU Efficiency

Outline

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency

M. Knepley (UC) PDE on GPU Győr ’11 36 / 43

FEM-GPU Efficiency

Performance
Peak Performance

M. Knepley (UC) PDE on GPU Győr ’11 37 / 43

FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P1 Laplacian Integration

Model Price ($) GF/s MF/s$
GTX285 390 90 231
Core 2 Duo 300 2 6.6

∗ Jed Brown Optimization Engine

M. Knepley (UC) PDE on GPU Győr ’11 38 / 43

FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P1 Laplacian Integration

Model Price ($) GF/s MF/s$
GTX285 390 90 231
Core 2 Duo 300 12∗ 40

∗ Jed Brown Optimization Engine

M. Knepley (UC) PDE on GPU Győr ’11 38 / 43

FEM-GPU Efficiency

Performance
Influence of Element Batch Sizes

M. Knepley (UC) PDE on GPU Győr ’11 39 / 43

FEM-GPU Efficiency

Performance
Influence of Code Structure

M. Knepley (UC) PDE on GPU Győr ’11 40 / 43

FEM-GPU Efficiency

Explaining performance

Increase shared memory and work/thread until you top out
Occupancies go down or level out as performance goes up

Does not work without interleaved stores
Scheduler can switch to kernels who are computing
Larger number of smaller computations makes better fit

Should I worry about detailed explanations for performance?
Sensible decompositions, coupled with exploration
FLAME methodology

M. Knepley (UC) PDE on GPU Győr ’11 41 / 43

FEM-GPU Efficiency

Automated Tuning System

Components of our performance evaluation system:

Generate set of kernels using:
Loop slicing, store reordering, etc.
Loop invariants ala FLAME
High level constructs ala Rheagen and FEniCS

Store results and metadata in HDF5 using PyTables
Thousands of tests for this talk

Interrogate and plot with Matplotlib

Eventually couple to build system
FFTW, Spiral, FLAME

M. Knepley (UC) PDE on GPU Győr ’11 42 / 43

http://flame.utexas.edu
http://www.pytables.org
http://www.matplotlib.org

Conclusion

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

and reconcile user physics
with system traversals.

M. Knepley (UC) PDE on GPU Győr ’11 43 / 43

Conclusion

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

and reconcile user physics
with system traversals.

M. Knepley (UC) PDE on GPU Győr ’11 43 / 43

Conclusion

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

and reconcile user physics
with system traversals.

M. Knepley (UC) PDE on GPU Győr ’11 43 / 43

	PETSc-GPU
	FEM-GPU
	Analytic Flexibility
	Computational Flexibility
	Efficiency

	Conclusion

