Software Design for PDEs on GPUs

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

Conference on Simulation and Optimization
In Honor of Gisbert Stoyan
Gyor, Hungary June 29—-July 1, 2011

47\ RUSH UNIVERSITY
\Is MEDICAL CENTER

M. Knepley (UC) PDE on GPU Gybr '11 1/43

Collaborators

Chicago Automated Scientific Computing Group:

@ Prof. Ridgway Scott

o Dept. of Computer Science, University of Chicago
o Dept. of Mathematics, University of Chicago

@ Peter Brune, (biological DFT)
o Dept. of Computer Science, University of Chicago

@ Dr. Andy Terrel, (Rheagen)
o Dept. of Computer Science and TACC, University of Texas at Austin

M. Knepley (UC) PDE on GPU Gybr '11 2/43

http://www.cs.uchicago.edu/~ridg
http://www.cs.uchicago.edu/~brune
http://andy.terrel.us/Professional/index.html

Collaborators

The PetscGPU team:

@ Dr. Barry Smith
e Mathematics and Computer Science Division, ANL

@ Satish Balay
o Mathematics and Computer Science Division, ANL

@ Victor Minden
o Dept. of Mathematics, Tufts University

M. Knepley (UC) PDE on GPU Gybr '11 3/43

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/~bsmith
http://www.mcs.anl.gov/~balay
http://www.eecs.tufts.edu/~vminde01/index.html

Collaborators

The PyLith Team:

@ Dr. Brad Aagaard (PyLith)
e United States Geological Survey, Menlo Park, CA

@ Dr. Charles Williams (PyLith)
o GNS Science, Wellington, NZ

M. Knepley (UC) PDE on GPU Gybr '11 4/43

http://www.geodynamics.org/cig/software/pylith
http://profile.usgs.gov/baagaard
http://w3.geodynamics.org/cig/Members/willic3

To be widely accepted,

PDE on GPU

To be widely accepted,

GPU computing must be
transparent to the user,

PDE on GPU

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
Infrastructure.

PDE on GPU

Lessons from Clusters and MPPs

Failure
e Parallelizing Compilers
e Automatic program decomposition

M. Knepley (UC) PDE on GPU Gybr '11 6/43

Lessons from Clusters and MPPs

Failure
e Parallelizing Compilers
e Automatic program decomposition

Success
e MPI (Library Approach)
e PETSc (Parallel Linear Algebra)
e User provides only the mathematical description

M. Knepley (UC) PDE on GPU Gyor '11

6/43

PETSc-GPU

Outline

@ PETSc-GPU

M. Knepley (UC) PDE on GPU Gybr '11 7/43

PETSc-GPU
Thrust

Thrust is a CUDA library of parallel algorithms

@ Interface similar to C++ Standard Template Library

@ Containers (vector) on both host and device

@ Algorithms: sort, reduce, scan

@ Freely available, part of PETSc configure (-with-thrust-dir)

@ Included as part of CUDA 4.0 installation

M. Knepley (UC) PDE on GPU Gybr '11 8/43

http://code.google.com/p/thrust/

PETSc-GPU
Cusp

Cusp is a CUDA library for
sparse linear algebra and graph computations

@ Builds on data structures in Thrust
@ Provides sparse matrices in several formats (CSR, Hybrid)
@ Includes some preliminary preconditioners (Jacobi, SA-AMG)

@ Freely available, part of PETSc configure (-with-cusp—-dir)

M. Knepley (UC) PDE on GPU Gybr '11 9/43

http://code.google.com/p/cusp-library/

VECCUDA

Strategy: Define a new Vec implementation

@ Uses Thrust for data storage and operations on GPU
@ Supports full PETSc Vec interface

@ Inherits PETSc scalar type

@ Can be activated at runtime, —vec_type cuda

@ PETSc provides memory coherence mechanism

M. Knepley (UC) PDE on GPU Gybr '11 10/43

http://code.google.com/p/thrust/

PETSc-GPU

Memory Coherence

PETSc Objects now hold a coherence flag

PETSC_CUDA_UNALLOCATED
PETSC_CUDA_GPU
PETSC_CUDA_CPU
PETSC_CUDA_BOTH

No allocation on the GPU

Values on GPU are current
Values on CPU are current
Values on both are current

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.

M. Knepley (UC) PDE on GPU

Gyo6r 11

11/43

MATAIJCUDA

Also define new Mat implementations

@ Uses Cusp for data storage and operations on GPU
@ Supports full PETSc Mat interface, some ops on CPU
@ Can be activated at runtime, -mat_type aijcuda

@ Notice that parallel matvec necessitates off-GPU data transfer

M. Knepley (UC) PDE on GPU Gybr '11 12/43

http://code.google.com/p/cusp-library/

PETSc-GPU
Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,
Minden, Smith, Knepley, 2010

@ All linear algebra types work with solvers
@ Entire solve can take place on the GPU
e Only communicate scalars back to CPU
@ GPU communication cost could be amortized over several solves

@ Preconditioners are a problem
@ Cusp has a promising AMG

M. Knepley (UC) PDE on GPU Gybr '11 13/43

http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf

PETSc-GPU

Installation

PETSc only needs

Turn on CUDA

--with-cuda

Specify the CUDA compiler
—-with-cudac='nvcc,_,—m64’

Indicate the location of packages

——download-+ will also work soon
——with-thrust-dir=/PETSc3/multicore/thrust
--with-cusp-dir=/PETSc3/multicore/cusp

Can also use double precision
--with-precision=single

M. Knepley (UC) PDE on GPU Gyo6r 11 14/43

PETSc-GPU

Example

Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
—-da_mat_type aijcusp -mat_no_inode
-da_grid_x 100 -da_grid_y 100
—-pc_type none -pc_mg_levels 1
-preload off -cuda_synchronize
-log_summary

Setup types
Set grid size
Setup solver
Setup run

M. Knepley (UC) PDE on GPU Gybr '11 15/43

PETSc-GPU

Example

PFLOTRAN

Flow Solver
32 x 32 x 32 grid

Routine | Time (s) | MFlops | MFlops/s

CPU
KSPSolve | 8.3167 4370 526
MatMult 1.5031 769 512
GPU
KSPSolve | 1.6382 4500 2745
MatMult 0.3554 830 2337

M. Knepley (UC) PDE on GPU

Time: October

Pressure [Pal: 10000 50000 90000 130000 170000 210000

P. Lichtner, G. Hammond,
R. Mills, B. Phillip

Gyo6r 11 16/43

FEM-GPU
Outline

@ FEM-GPU
@ Analytic Flexibility
@ Computational Flexibility
@ Efficiency

M. Knepley (UC) PDE on GPU Gybr '11 17/43

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU Gybr '11 18/43

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU Gybr '11 18/43

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility

e Computational Flexibility

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU Gybr '11 18/43

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility
e Computational Flexibility

e Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU Gybr '11 18/43

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU Analytic Flexibility

Outline

© FEM-GPU
@ Analytic Flexibility

M. Knepley (UC) PDE on GPU Gybr '11 19/43

FEM-GPU Analytic Flexibility

Analytic Flexibility

Laplacian

/T Vi(X) - Vey(x)dx (1)

M. Knepley (UC) PDE on GPU Gybr '11 20/43

FEM-GPU Analytic Flexibility

Analytic Flexibility

Laplacian

/T Vi(X) - Vey(x)dx (1)

element = FiniteElement(’Lagrange’, tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction (element)
a = inner(grad(v), grad(u))=dx

M. Knepley (UC) PDE on GPU Gybr '11 20/43

FEM-GPU Analytic Flexibility

Analytic Flexibility

Linear Elasticity

: | (930 +9T600) : (Vi + Vi) ax @

M. Knepley (UC) PDE on GPU Gybr '11 21/43

FEM-GPU Analytic Flexibility

Analytic Flexibility

Linear Elasticity

: | (930 +9T600) : (Vi + Vi) ax @

element = VectorElement(’Lagrange’, tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction (element)
a = inner(sym(grad(v)), sym(grad(u)))=dx

M. Knepley (UC) PDE on GPU Gybr '11 21/43

FEM-GPU Analytic Flexibility

Analytic Flexibility

Full Elasticity

2 /7- <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (3)

M. Knepley (UC) PDE on GPU Gybr '11 22/43

FEM-GPU Analytic Flexibility

Analytic Flexibility

Full Elasticity

1/7_ <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (3)

element = VectorElement(’Lagrange’, tetrahedron, 1)
cElement = TensorElement(’Lagrange’, tetrahedron, 1,
(dim, dim, dim, dim))

TestFunction (element)

TrialFunction (element)

Coefficient (cElement)

, J, k, I = indices(4)

= sym(grad(v))[i,j]+C[i,j,k,I]+=sym(grad(u))[k,|]+dx

v
u
C
i
a

M. Knepley (UC) PDE on GPU Gybr '11 22/43

FEM-GPU Analytic Flexibility

Analytic Flexibility

Full Elasticity

1/7_ <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (3)

element = VectorElement(’Lagrange’, tetrahedron, 1)
cElement = TensorElement(’Lagrange’, tetrahedron, 1,
(dim, dim, dim, dim))

TestFunction (element)

TrialFunction (element)

Coefficient (cElement)

, J, k, I = indices(4)

= sym(grad(v))[i,j]+C[i,j,k,I]+=sym(grad(u))[k,|]+dx

v
u
C
i
a

Currently broken in FEnIiCS release

M. Knepley (UC) PDE on GPU Gybr '11 22/43

FEM-GPU Computational Flexibility

Outline

© FEM-GPU

@ Computational Flexibility

M. Knepley (UC) PDE on GPU Gybr '11 23/43

FEM-GPU Computational Flexibility

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

J7 Véi(x) - Vj(x)dx (4)
= - 32;(*) dg;j(x)dx (5)
= JnatBa ‘93; |J|dx 6)
= et [, 20 7O gy @
= G&Y(T)K& (8)

Coefficients are also put into the geometric part.

M. Knepley (UC) PDE on GPU Gybr '11 24/43

FEM-GPU Computational Flexibility

Form Decomposition

Additional fields give rise to multilinear forms.

J7 9i(%) - (6k(X)Vg;(x)) dA 9)
B8
= ol (60075) oA (10
— 60392 250 yja (1)
B
= S| [y, 00(€)07(6) e oA (12)
= G (T)KE (13)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.

M. Knepley (UC) PDE on GPU Gybr '11 25/43

http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

FEM-GPU Computational Flexibility

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

J7 Véi(x) - Voj(x)dA (14)
= 7 e e dA (15)
= oo 5 83@&“|J|dA (16)
= I fr, o 2L W“‘%f (17)
= BN S, k25 0 20 (18)
= G (T)K (19)

A different space could also be used for Jacobians

M. Knepley (UC) PDE on GPU Gybr '11 26/43

FEM-GPU Computational Flexibility

Weak Form Processing

from ffc.analysis import analyze_forms
from ffc.compiler import compute_ir

parameters = ffc.default_parameters()
parameters[' representation’] = ’tensor’
analysis = analyze_forms([a,L], {}, parameters)
ir = compute_ir(analysis, parameters)

a_K ir[2][0]['AK’][0][0]
a G ir[2][0]['AK"][0][1]
= a_K.AO0.astype (numpy. float32)

=aG

O X

M. Knepley (UC) PDE on GPU Gybr '11 27/43

FEM-GPU Computational Flexibility

Computational Flexibility

We generate different computations on the fly,

and can change
e Element Batch Size

o Number of Concurrent Elements
e Loop unrolling
e Interleaving stores with computation

M. Knepley (UC) PDE on GPU Gybr '11 28/43

FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) PDE on GPU Gyér 11 29/43

FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

G K

. thread 0

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) PDE on GPU Gyér 11 29/43

FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

G K

thread 0

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) PDE on GPU Gyér 11 29/43

FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

G K

thread 0
I~
{ ~
Dt
‘70 75

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) PDE on GPU Gyér 11 29/43

FEM-GPU Computational Flexibility

Computational Flexibility

Element Batch Size

thread 0

Go
G‘I . | l/,‘;\

75

G3. >

Figure: Tensor Contraction G*(T)K,

M. Knepley (UC) PDE on GPU Gyér 11 30/43

FEM-GPU Computational Flexibility

Computational Flexibility

Element Batch Size

Figure: Tensor Contraction G*(T)K,

M. Knepley (UC) PDE on GPU Gyér 11 30/43

FEM-GPU

Computational Flexibility

Element Batch Size

G
G1 . a&@@é

\\\34
Go

G: B

Figure: Tensor Contraction G*(T)K,

M. Knepley (UC)

Computational Flexibility

thy

PDE on GPU

Gybr 11

30/43

FEM-GPU Computational Flexibility

Computational Flexibility

Element Batch Size

Figure: Tensor Contraction G*(T)K,

M. Knepley (UC) PDE on GPU Gyér 11 30/43

FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

thread

)

M. Knepley (UC) PDE on GPU Gyér 11 31/43

FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

Al
GO .ﬁreadS » thredd 2T 61
1 1

M. Knepley (UC) PDE on GPU Gyér 11 31/43

FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

M. Knepley (UC) PDE on GPU Gyér 11 31/43

FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

GO ihréad 15 Wiftead G1

M. Knepley (UC) PDE on GPU Gyér 11 31/43

FEM-GPU Computational Flexibility

Computational Flexibility

Loop Unrolling

/+ G K contraction: unroll = full =/
E[0] += G[0] « K[O];
E[0] += G[1] = K[1];
E[0] += G[2] « K[2];
E[0] += G[3] = K[3];
E[0] += G[4] « K[4];
E[0] += G[5] « K[5];
E[0] += G[6] « K[6];
E[0] += G[7] « K[7];
E[0] += G[8] « K[8];

M. Knepley (UC) PDE on GPU Gybr '11 32/43

FEM-GPU Computational Flexibility

Computational Flexibility

Loop Unrolling

/= G K contraction: unroll = none «/
for(int b = 0; b < 1; ++b) {
const int n = b+1;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E[b] += G[n+«9+alpha+3+beta] = K[alpha*3+beta];

M. Knepley (UC) PDE on GPU Gybr '11 33/43

FEM-GPU Computational Flexibility

Computational Flexibility

Interleaving stores

/= G K contraction: unroll = none «/
for(int b = 0; b < 4; ++b) {
const int n = bx1;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E[b] += G[n*9+alpha=3+beta] * K[alpha+3+beta];
}
}
}

/+ Store contraction results «/

elemMat[Eoffset+idx+0] = E[0];
elemMat[Eoffset+idx+16] = E[1];
elemMat[Eoffset+idx+32] = E[2];
elemMat[Eoffset+idx+48] = E[3];

M. Knepley (UC) PDE on GPU Gybr '11 34/43

FEM-GPU Computational Flexibility

Computational Flexibility

Interleaving stores

n = 0;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E += G[n+9+alpha*3+beta] = K[alpha«3+beta];
}
}

/= Store contraction result =/
elemMat[Eoffset+idx+0] = E;
n=1; E=0.0; /+ contract «/
elemMat[Eoffset+idx+16] = E;
n=2; E=0.0; /+ contract «/
elemMat[Eoffset+idx+32] = E;
n=3;, E=0.0; /+ contract «/
elemMat[Eoffset+idx+48] = E;

M. Knepley (UC) PDE on GPU

Gyo6r 11

35/43

FEM-GPU Efficiency

Outline

© FEM-GPU

@ Efficiency

M. Knepley (UC) PDE on GPU Gybr '11 36/43

FEM-GPU Efficiency

Performance

Peak Performance

GPU Flop Rate for

3D P, Lagrange Laplacian and 2D P, Lagrange Elasticity
120000 . : .

100000

80000 -

60000 -

MFlops/s

40000

20000

— Laplacian bs128 ce2 is
—— Elasticity bs256 ce2 is

o} 50000 100000 150000 200000
Number of Elements

M. Knepley (UC) PDE on GPU Gybr '11 37/43

FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P; Laplacian Integration

Model Price ($) | GF/s | MF/s$
GTX285 390 90 231
Core 2 Duo 300 2 6.6

M. Knepley (UC) PDE on GPU Gybr '11 38/43

FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P; Laplacian Integration

Model Price ($) | GF/s | MF/s$
GTX285 390 90 231
Core 2 Duo 300 12* 40

* Jed Brown Optimization Engine

M. Knepley (UC) PDE on GPU Gybr '11 38/43

FEM-GPU Efficiency

Performance

Influence of Element Batch Sizes

CPU vs. GPU Flop Rate for 2D P, Lagrange ['Elasticity']

120000
Interleave Stores = 1
100000 Loop Unrolling = full
80000
K
7
& 60000
5
NVIDIA bs64 cel is unroll
40000 — NVIDIA bs64 ce2 is unroll ||
— NVIDIA bs64 ce4 is unroll
— NVIDIA bs128 cel is unroll
— NVIDIA bs128 ce2 is unroll
20000 NVIDIA bs128 ce4 is unroll [|
— NVIDIA bs256 cel is unroll
— NVIDIA bs256 ce2 is unroll
Y — NVIDIA bs256 ce4 is unroll
0 50000 100000 150000 200000

Number of Elements

M. Knepley (UC) PDE on GPU Gyor

39/43

Performance

Influence of Code Structure

FEM-GPU Efficiency

CPU vs. GPU Flop Rate for 3D P, Lagrange Laplacian

90000
80000 Element Blgcksize = 128
Concurrefit Elem =2
70000
60000
£ 50000
2
K]
£ 40000
30000
20000
10000 =—= NVIDIA bs128 ce2 is
+—4 NVIDIA bs128 ce2
50000 100000 150000 200000
Number of Elements
CPU vs. GPU Flop Rate for 3D P, Lagrange Laplacian
90000
80000 Element Blocksize = 128
Concurrent Elem =2
70000
60000
£ 50000
3
K3
£ 40000

M. Knepley (UC)

PDE on GPU

Gyo6r 11

FEM-GPU Efficiency

Explaining performance

@ Increase shared memory and work/thread until you top out
@ Occupancies go down or level out as performance goes up

@ Does not work without interleaved stores
@ Scheduler can switch to kernels who are computing
o Larger number of smaller computations makes better fit

@ Should | worry about detailed explanations for performance?

e Sensible decompositions, coupled with exploration
e FLAME methodology

M. Knepley (UC) PDE on GPU Gybr '11 41/43

FEM-GPU Efficiency

Automated Tuning System

Components of our performance evaluation system:

@ Generate set of kernels using:
o Loop slicing, store reordering, etc.
e Loop invariants ala FLAME
e High level constructs ala Rheagen and FEniCS

@ Store results and metadata in HDF5 using PyTables
e Thousands of tests for this talk

@ Interrogate and plot with Matplotlib

@ Eventually couple to build system
e FFTW, Spiral, FLAME

M. Knepley (UC) PDE on GPU Gybr '11 42/43

http://flame.utexas.edu
http://www.pytables.org
http://www.matplotlib.org

Conclusion

Why Should You Try This?

Structured code generation,

PDE on GPU

I B

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

PDE on GPU

I B

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

and reconcile user physics
with system traversals.

PDE on GPU

	PETSc-GPU
	FEM-GPU
	Analytic Flexibility
	Computational Flexibility
	Efficiency

	Conclusion

