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Lessons from Clusters and MPPs

Failure
e Parallelizing Compilers
e Automatic program decomposition
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Lessons from Clusters and MPPs

Failure
e Parallelizing Compilers
e Automatic program decomposition

Success
e MPI (Library Approach)
e PETSc (Parallel Linear Algebra)
e User provides only the mathematical description
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PETSc-GPU

Outline

@ PETSc-GPU

M. Knepley (UC) PDE on GPU Gybr '11 7/43



PETSc-GPU
Thrust

Thrust is a CUDA library of parallel algorithms

@ Interface similar to C++ Standard Template Library

@ Containers (vector) on both host and device

@ Algorithms: sort, reduce, scan

@ Freely available, part of PETSc configure (-with-thrust-dir)

@ Included as part of CUDA 4.0 installation
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http://code.google.com/p/thrust/

PETSc-GPU
Cusp

Cusp is a CUDA library for
sparse linear algebra and graph computations

@ Builds on data structures in Thrust
@ Provides sparse matrices in several formats (CSR, Hybrid)
@ Includes some preliminary preconditioners (Jacobi, SA-AMG)

@ Freely available, part of PETSc configure (-with-cusp—-dir)
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http://code.google.com/p/cusp-library/

VECCUDA

Strategy: Define a new Vec implementation

@ Uses Thrust for data storage and operations on GPU
@ Supports full PETSc Vec interface

@ Inherits PETSc scalar type

@ Can be activated at runtime, —vec_type cuda

@ PETSc provides memory coherence mechanism
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http://code.google.com/p/thrust/

PETSc-GPU

Memory Coherence

PETSc Objects now hold a coherence flag

PETSC_CUDA_UNALLOCATED
PETSC_CUDA_GPU
PETSC_CUDA_CPU
PETSC_CUDA_BOTH

No allocation on the GPU

Values on GPU are current
Values on CPU are current
Values on both are current

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.

M. Knepley (UC) PDE on GPU

Gyo6r 11

11/43



MATAIJCUDA

Also define new Mat implementations

@ Uses Cusp for data storage and operations on GPU
@ Supports full PETSc Mat interface, some ops on CPU
@ Can be activated at runtime, -mat_type aijcuda

@ Notice that parallel matvec necessitates off-GPU data transfer
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http://code.google.com/p/cusp-library/

PETSc-GPU
Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,
Minden, Smith, Knepley, 2010

@ All linear algebra types work with solvers
@ Entire solve can take place on the GPU
e Only communicate scalars back to CPU
@ GPU communication cost could be amortized over several solves

@ Preconditioners are a problem
@ Cusp has a promising AMG
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http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf

PETSc-GPU

Installation

PETSc only needs

# Turn on CUDA

--with-cuda

# Specify the CUDA compiler
—-with-cudac='nvcc,_,—m64’

# Indicate the location of packages

# ——download-+ will also work soon
——with-thrust-dir=/PETSc3/multicore/thrust
--with-cusp-dir=/PETSc3/multicore/cusp

# Can also use double precision
--with-precision=single
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PETSc-GPU

Example

Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
—-da_mat_type aijcusp -mat_no_inode
-da_grid_x 100 -da_grid_y 100
—-pc_type none -pc_mg_levels 1
-preload off -cuda_synchronize
-log_summary

Setup types
Set grid size
Setup solver
Setup run
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PETSc-GPU

Example

PFLOTRAN

Flow Solver
32 x 32 x 32 grid

Routine | Time (s) | MFlops | MFlops/s

CPU
KSPSolve | 8.3167 4370 526
MatMult 1.5031 769 512
GPU
KSPSolve | 1.6382 4500 2745
MatMult 0.3554 830 2337

M. Knepley (UC) PDE on GPU
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FEM-GPU
Outline

@ FEM-GPU
@ Analytic Flexibility
@ Computational Flexibility
@ Efficiency
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FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

http://www.bitbucket.org/aterrel/flamefem
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FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility
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FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility
e Computational Flexibility

e Efficiency

http://www.bitbucket.org/aterrel/flamefem
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FEM-GPU Analytic Flexibility

Outline

© FEM-GPU
@ Analytic Flexibility
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FEM-GPU Analytic Flexibility

Analytic Flexibility

Laplacian

/T Vi(X) - Vey(x)dx (1)
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FEM-GPU Analytic Flexibility

Analytic Flexibility

Laplacian

/T Vi(X) - Vey(x)dx (1)

element = FiniteElement(’Lagrange’, tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction (element)
a = inner(grad(v), grad(u))=dx
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FEM-GPU Analytic Flexibility

Analytic Flexibility

Linear Elasticity

: | (930 +9T600) : (Vi + Vi) ax @
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FEM-GPU Analytic Flexibility

Analytic Flexibility

Linear Elasticity

: | (930 +9T600) : (Vi + Vi) ax @

element = VectorElement(’Lagrange’, tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction (element)
a = inner(sym(grad(v)), sym(grad(u)))=dx
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FEM-GPU Analytic Flexibility

Analytic Flexibility

Full Elasticity

2 /7- <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (3)
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FEM-GPU Analytic Flexibility

Analytic Flexibility

Full Elasticity

1/7_ <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (3)

element = VectorElement(’Lagrange’, tetrahedron, 1)
cElement = TensorElement(’Lagrange’, tetrahedron, 1,
(dim, dim, dim, dim))

TestFunction (element)

TrialFunction (element)

Coefficient (cElement)

, J, k, I = indices(4)

= sym(grad(v))[i,j]+C[i,j,k,I]+=sym(grad(u))[k,|]+dx

v
u
C
i
a
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FEM-GPU Analytic Flexibility

Analytic Flexibility

Full Elasticity

1/7_ <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (3)

element = VectorElement(’Lagrange’, tetrahedron, 1)
cElement = TensorElement(’Lagrange’, tetrahedron, 1,
(dim, dim, dim, dim))

TestFunction (element)

TrialFunction (element)

Coefficient (cElement)

, J, k, I = indices(4)

= sym(grad(v))[i,j]+C[i,j,k,I]+=sym(grad(u))[k,|]+dx

v
u
C
i
a

Currently broken in FEnIiCS release
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FEM-GPU Computational Flexibility

Outline

© FEM-GPU

@ Computational Flexibility
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FEM-GPU Computational Flexibility

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

J7 Véi(x) - Vj(x)dx (4)
= - 32;(*) dg;j(x )dx (5)
= JnatBa ‘93; |J|dx 6)
= et [, 20 7O gy @
= G&Y(T)K& (8)

Coefficients are also put into the geometric part.
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FEM-GPU Computational Flexibility

Form Decomposition

Additional fields give rise to multilinear forms.

J7 9i(%) - (6k(X)Vg;(x)) dA 9)
B8
= ol (60075 ) oA (10
— 60392 250 yja (1)
B
= S| [y, 00(€)07(6) e oA (12)
= G (T)KE (13)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.
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http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

FEM-GPU Computational Flexibility

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

J7 Véi(x) - Voj(x)dA (14)
= 7 e e dA (15)
= oo 5 83@&“|J|dA (16)
= I fr, o 2L W“‘%f (17)
= BN S, k25 0 20 (18)
= G (T)K (19)

A different space could also be used for Jacobians
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FEM-GPU Computational Flexibility

Weak Form Processing

from ffc.analysis import analyze_forms
from ffc.compiler import compute_ir

parameters = ffc.default_parameters()
parameters[ ' representation’] = ’tensor’
analysis = analyze_forms([a,L], {}, parameters)
ir = compute_ir(analysis, parameters)

a_K ir[2][0][ 'AK’][0][0]
a G ir[2][0][ 'AK" ][0][1]
= a_K.AO0.astype (numpy. float32)

=aG

O X
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FEM-GPU Computational Flexibility

Computational Flexibility

We generate different computations on the fly,

and can change
e Element Batch Size

o Number of Concurrent Elements
e Loop unrolling
e Interleaving stores with computation

M. Knepley (UC) PDE on GPU Gybr '11 28/43



FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) PDE on GPU Gyér 11 29/43



FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

G K

. thread 0

Figure: Tensor Contraction G*(T)K?,
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Computational Flexibility

Basic Contraction
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thread 0

Figure: Tensor Contraction G*(T)K?,
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FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

G K

thread 0
I~
{ ~
Dt
‘70 75

Figure: Tensor Contraction G*(T)K?,
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FEM-GPU Computational Flexibility

Computational Flexibility

Element Batch Size

thread 0

Go
G‘I . | l/,‘;\

75

G3. >

Figure: Tensor Contraction G*(T)K,
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FEM-GPU Computational Flexibility

Computational Flexibility

Element Batch Size

Figure: Tensor Contraction G*(T)K,
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FEM-GPU

Computational Flexibility

Element Batch Size
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Figure: Tensor Contraction G*(T)K,
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FEM-GPU Computational Flexibility

Computational Flexibility

Element Batch Size

Figure: Tensor Contraction G*(T)K,
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FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

thread

)
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FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

Al
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FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements
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FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

GO ihréad 15 Wiftead G1
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FEM-GPU Computational Flexibility

Computational Flexibility

Loop Unrolling

/+ G K contraction: unroll = full =/
E[0] += G[0] « K[O];
E[0] += G[1] = K[1];
E[0] += G[2] « K[2];
E[0] += G[3] = K[3];
E[0] += G[4] « K[4];
E[0] += G[5] « K[5];
E[0] += G[6] « K[6];
E[0] += G[7] « K[7];
E[0] += G[8] « K[8];
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FEM-GPU Computational Flexibility

Computational Flexibility

Loop Unrolling

/= G K contraction: unroll = none «/
for(int b = 0; b < 1; ++b) {
const int n = b+1;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E[b] += G[n+«9+alpha+3+beta] = K[alpha*3+beta];
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FEM-GPU Computational Flexibility

Computational Flexibility

Interleaving stores

/= G K contraction: unroll = none «/
for(int b = 0; b < 4; ++b) {
const int n = bx1;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E[b] += G[n*9+alpha=3+beta] * K[alpha+3+beta];
}
}
}

/+ Store contraction results «/

elemMat[ Eoffset+idx+0] = E[0];
elemMat[ Eoffset+idx+16] = E[1];
elemMat[ Eoffset+idx+32] = E[2];
elemMat[ Eoffset+idx+48] = E[3];
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FEM-GPU Computational Flexibility

Computational Flexibility

Interleaving stores

n = 0;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E += G[n+9+alpha*3+beta] = K[alpha«3+beta];
}
}

/= Store contraction result =/
elemMat[ Eoffset+idx+0] = E;
n=1; E=0.0; /+ contract «/
elemMat[ Eoffset+idx+16] = E;
n=2; E=0.0; /+ contract «/
elemMat[ Eoffset+idx+32] = E;
n=3;, E=0.0; /+ contract «/
elemMat[ Eoffset+idx+48] = E;
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FEM-GPU Efficiency

Outline

© FEM-GPU

@ Efficiency
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FEM-GPU Efficiency

Performance

Peak Performance

GPU Flop Rate for

3D P, Lagrange Laplacian and 2D P, Lagrange Elasticity
120000 . : .

100000

80000 -

60000 -

MFlops/s

40000

20000

— Laplacian bs128 ce2 is
—— Elasticity bs256 ce2 is

o} 50000 100000 150000 200000
Number of Elements
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FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P; Laplacian Integration

Model Price ($) | GF/s | MF/s$
GTX285 390 90 231
Core 2 Duo 300 2 6.6
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FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P; Laplacian Integration

Model Price ($) | GF/s | MF/s$
GTX285 390 90 231
Core 2 Duo 300 12* 40

* Jed Brown Optimization Engine
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FEM-GPU Efficiency

Performance

Influence of Element Batch Sizes

CPU vs. GPU Flop Rate for 2D P, Lagrange ['Elasticity']

120000
Interleave Stores = 1
100000 Loop Unrolling = full
80000
K
7
& 60000
5
NVIDIA bs64 cel is unroll
40000 — NVIDIA bs64 ce2 is unroll ||
— NVIDIA bs64 ce4 is unroll
— NVIDIA bs128 cel is unroll
— NVIDIA bs128 ce2 is unroll
20000 NVIDIA bs128 ce4 is unroll [|
— NVIDIA bs256 cel is unroll
— NVIDIA bs256 ce2 is unroll
Y — NVIDIA bs256 ce4 is unroll
0 50000 100000 150000 200000

Number of Elements
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Performance

Influence of Code Structure

FEM-GPU Efficiency

CPU vs. GPU Flop Rate for 3D P, Lagrange Laplacian

90000
80000 Element Blgcksize = 128
Concurrefit Elem =2
70000
60000
£ 50000
2
K]
£ 40000
30000
20000
10000 =—= NVIDIA bs128 ce2 is
+—4 NVIDIA bs128 ce2
50000 100000 150000 200000
Number of Elements
CPU vs. GPU Flop Rate for 3D P, Lagrange Laplacian
90000
80000 Element Blocksize = 128
Concurrent Elem =2
70000
60000
£ 50000
3
K3
£ 40000
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FEM-GPU Efficiency

Explaining performance

@ Increase shared memory and work/thread until you top out
@ Occupancies go down or level out as performance goes up

@ Does not work without interleaved stores
@ Scheduler can switch to kernels who are computing
o Larger number of smaller computations makes better fit

@ Should | worry about detailed explanations for performance?

e Sensible decompositions, coupled with exploration
e FLAME methodology
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FEM-GPU Efficiency

Automated Tuning System

Components of our performance evaluation system:

@ Generate set of kernels using:
o Loop slicing, store reordering, etc.
e Loop invariants ala FLAME
e High level constructs ala Rheagen and FEniCS

@ Store results and metadata in HDF5 using PyTables
e Thousands of tests for this talk

@ Interrogate and plot with Matplotlib

@ Eventually couple to build system
e FFTW, Spiral, FLAME
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http://www.pytables.org
http://www.matplotlib.org
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Why Should You Try This?

Structured code generation,
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Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

and reconcile user physics
with system traversals.

PDE on GPU
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