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Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.
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Lessons from Clusters and MPPs

Failure
Parallelizing Compilers
Automatic program decomposition

Success
MPI (Library Approach)
PETSc (Parallel Linear Algebra)
User provides only the mathematical description
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PETSc-GPU

Outline

1 PETSc-GPU

2 FEM-GPU
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PETSc-GPU

Thrust

Thrust is a CUDA library of parallel algorithms

Interface similar to C++ Standard Template Library

Containers (vector) on both host and device

Algorithms: sort, reduce, scan

Freely available, part of PETSc configure (-with-thrust-dir)

Included as part of CUDA 4.0 installation
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PETSc-GPU

Cusp

Cusp is a CUDA library for
sparse linear algebra and graph computations

Builds on data structures in Thrust

Provides sparse matrices in several formats (CSR, Hybrid)

Includes some preliminary preconditioners (Jacobi, SA-AMG)

Freely available, part of PETSc configure (-with-cusp-dir)
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PETSc-GPU

VECCUDA

Strategy: Define a new Vec implementation

Uses Thrust for data storage and operations on GPU

Supports full PETSc Vec interface

Inherits PETSc scalar type

Can be activated at runtime, -vec_type cuda

PETSc provides memory coherence mechanism
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PETSc-GPU

Memory Coherence

PETSc Objects now hold a coherence flag

PETSC_CUDA_UNALLOCATED No allocation on the GPU
PETSC_CUDA_GPU Values on GPU are current
PETSC_CUDA_CPU Values on CPU are current
PETSC_CUDA_BOTH Values on both are current

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.
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PETSc-GPU

MATAIJCUDA

Also define new Mat implementations

Uses Cusp for data storage and operations on GPU

Supports full PETSc Mat interface, some ops on CPU

Can be activated at runtime, -mat_type aijcuda

Notice that parallel matvec necessitates off-GPU data transfer
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PETSc-GPU

Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,

Minden, Smith, Knepley, 2010

All linear algebra types work with solvers

Entire solve can take place on the GPU
Only communicate scalars back to CPU

GPU communication cost could be amortized over several solves

Preconditioners are a problem
Cusp has a promising AMG
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http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf


PETSc-GPU

Installation

PETSc only needs
# Turn on CUDA
--with-cuda
# Specify the CUDA compiler
--with-cudac=’nvcc -m64’
# Indicate the location of packages
# --download-* will also work soon
--with-thrust-dir=/PETSc3/multicore/thrust
--with-cusp-dir=/PETSc3/multicore/cusp
# Can also use double precision
--with-precision=single
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PETSc-GPU

Example
Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
-da_mat_type aijcusp -mat_no_inode # Setup types
-da_grid_x 100 -da_grid_y 100 # Set grid size
-pc_type none -pc_mg_levels 1 # Setup solver
-preload off -cuda_synchronize # Setup run
-log_summary
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PETSc-GPU

Example
PFLOTRAN

Flow Solver
32 × 32 × 32 grid

Routine Time (s) MFlops MFlops/s
CPU
KSPSolve 8.3167 4370 526
MatMult 1.5031 769 512
GPU
KSPSolve 1.6382 4500 2745
MatMult 0.3554 830 2337

P. Lichtner, G. Hammond,
R. Mills, B. Phillip
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FEM-GPU

Outline

1 PETSc-GPU

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency
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FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem
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http://www.bitbucket.org/aterrel/flamefem


FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU Győr ’11 18 / 43
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FEM-GPU Analytic Flexibility

Outline

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency
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FEM-GPU Analytic Flexibility

Analytic Flexibility
Laplacian

∫
T
∇ϕi(x) · ∇ϕj(x)dx (1)

element = F in i teE lement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner ( grad ( v ) , grad ( u ) ) * dx
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FEM-GPU Analytic Flexibility

Analytic Flexibility
Linear Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
:
(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (2)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner (sym( grad ( v ) ) , sym( grad ( u ) ) ) * dx
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FEM-GPU Analytic Flexibility

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement ( ’ Lagrange ’ , te t rahedron , 1 ,

( dim , dim , dim , dim ) )
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
C = C o e f f i c i e n t ( cElement )
i , j , k , l = i nd i ces ( 4 )
a = sym( grad ( v ) ) [ i , j ] *C[ i , j , k , l ] * sym( grad ( u ) ) [ k , l ] * dx

Currently broken in FEniCS release
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FEM-GPU Computational Flexibility

Outline

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency
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FEM-GPU Computational Flexibility

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇ϕi(x) · ∇ϕj(x)dx (4)

=
∫
T

∂ϕi (x)
∂xα

∂ϕj (x)
∂xα dx (5)

=
∫
Tref

∂ξβ
∂xα

∂ϕi (ξ)
∂ξβ

∂ξγ
∂xα

∂ϕj (ξ)
∂ξγ

|J|dx (6)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂ϕi (ξ)
∂ξβ

∂ϕj (ξ)
∂ξγ

dx (7)

= Gβγ(T )K ij
βγ (8)

Coefficients are also put into the geometric part.
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FEM-GPU Computational Flexibility

Form Decomposition

Additional fields give rise to multilinear forms.

∫
T ϕi(x) ·

(
ϕk (x)∇ϕj(x)

)
dA (9)

=
∫
T ϕβ

i (x)
(
ϕα

k (x)
∂ϕβ

j (x)
∂xα

)
dA (10)

=
∫
Tref

ϕβ
i (ξ)ϕ

α
k (ξ)

∂ξγ
∂xα

∂ϕβ
j (ξ)

∂ξγ
|J|dA (11)

=
∂ξγ
∂xα |J|

∫
Tref

ϕβ
i (ξ)ϕ

α
k (ξ)

∂ϕβ
j (ξ)

∂ξγ
dA (12)

= Gαγ(T )K ijk
αγ (13)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.
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FEM-GPU Computational Flexibility

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

∫
T ∇ϕi(x) · ∇ϕj(x)dA (14)

=
∫
T

∂ϕi (x)
∂xα

∂ϕj (x)
∂xα dA (15)

=
∫
Tref

∂ξβ
∂xα

∂ϕi (ξ)
∂ξβ

∂ξγ
∂xα

∂ϕj (ξ)
∂ξγ

|J|dA (16)

= |J|
∫
Tref

ϕkJβα
k

∂ϕi (ξ)
∂ξβ

ϕlJ
γα
l

∂ϕj (ξ)
∂ξγ

dA (17)

= Jβα
k Jγα

l |J|
∫
Tref

ϕk
∂ϕi (ξ)
∂ξβ

ϕl
∂ϕj (ξ)
∂ξγ

dA (18)

= Gβγ
kl (T )K ijkl

βγ (19)

A different space could also be used for Jacobians
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FEM-GPU Computational Flexibility

Weak Form Processing

from f f c . ana l ys i s impor t analyze_forms
from f f c . compi ler impor t compute_ir

parameters = f f c . defau l t_parameters ( )
parameters [ ’ r ep resen ta t i on ’ ] = ’ tensor ’
ana l ys i s = analyze_forms ( [ a , L ] , { } , parameters )
i r = compute_ir ( ana lys is , parameters )

a_K = i r [ 2 ] [ 0 ] [ ’AK ’ ] [ 0 ] [ 0 ]
a_G = i r [ 2 ] [ 0 ] [ ’AK ’ ] [ 0 ] [ 1 ]

K = a_K . A0 . astype (numpy . f l o a t 3 2 )
G = a_G
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FEM-GPU Computational Flexibility

Computational Flexibility

We generate different computations on the fly,

and can change
Element Batch Size

Number of Concurrent Elements

Loop unrolling

Interleaving stores with computation
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FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K

Figure: Tensor Contraction Gβγ(T )K ij
βγ
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FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K
thread 0

Figure: Tensor Contraction Gβγ(T )K ij
βγ
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FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K
thread 0

thread 5
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FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K
thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T )K ij
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FEM-GPU Computational Flexibility

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K
thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T )K ij
βγ
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FEM-GPU Computational Flexibility

Computational Flexibility
Concurrent Elements
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FEM-GPU Computational Flexibility

Computational Flexibility
Loop Unrolling

/ * G K c o n t r a c t i o n : u n r o l l = f u l l * /
E [ 0 ] += G[ 0 ] * K [ 0 ] ;
E [ 0 ] += G[ 1 ] * K [ 1 ] ;
E [ 0 ] += G[ 2 ] * K [ 2 ] ;
E [ 0 ] += G[ 3 ] * K [ 3 ] ;
E [ 0 ] += G[ 4 ] * K [ 4 ] ;
E [ 0 ] += G[ 5 ] * K [ 5 ] ;
E [ 0 ] += G[ 6 ] * K [ 6 ] ;
E [ 0 ] += G[ 7 ] * K [ 7 ] ;
E [ 0 ] += G[ 8 ] * K [ 8 ] ;
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FEM-GPU Computational Flexibility

Computational Flexibility
Loop Unrolling

/ * G K c o n t r a c t i o n : u n r o l l = none * /
f o r ( i n t b = 0; b < 1; ++b ) {

const i n t n = b * 1 ;
f o r ( i n t alpha = 0; alpha < 3; ++alpha ) {

f o r ( i n t beta = 0; beta < 3; ++beta ) {
E [ b ] += G[ n*9+ alpha *3+ beta ] * K [ alpha *3+ beta ] ;

}
}

}
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FEM-GPU Computational Flexibility

Computational Flexibility
Interleaving stores

/ * G K c o n t r a c t i o n : u n r o l l = none * /
f o r ( i n t b = 0; b < 4; ++b ) {

const i n t n = b * 1 ;
f o r ( i n t alpha = 0; alpha < 3; ++alpha ) {

f o r ( i n t beta = 0; beta < 3; ++beta ) {
E [ b ] += G[ n*9+ alpha *3+ beta ] * K [ alpha *3+ beta ] ;

}
}

}
/ * Store c o n t r a c t i o n r e s u l t s * /
elemMat [ Eo f f se t + idx +0] = E [ 0 ] ;
elemMat [ Eo f f se t + idx +16] = E [ 1 ] ;
elemMat [ Eo f f se t + idx +32] = E [ 2 ] ;
elemMat [ Eo f f se t + idx +48] = E [ 3 ] ;
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FEM-GPU Computational Flexibility

Computational Flexibility
Interleaving stores

n = 0;
f o r ( i n t alpha = 0; alpha < 3; ++alpha ) {

f o r ( i n t beta = 0; beta < 3; ++beta ) {
E += G[ n*9+ alpha *3+ beta ] * K [ alpha *3+ beta ] ;

}
}
/ * Store c o n t r a c t i o n r e s u l t * /
elemMat [ Eo f f se t + idx +0] = E;
n = 1; E = 0 . 0 ; / * con t rac t * /
elemMat [ Eo f f se t + idx +16] = E;
n = 2; E = 0 . 0 ; / * con t rac t * /
elemMat [ Eo f f se t + idx +32] = E;
n = 3; E = 0 . 0 ; / * con t rac t * /
elemMat [ Eo f f se t + idx +48] = E;
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FEM-GPU Efficiency

Outline

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency
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FEM-GPU Efficiency

Performance
Peak Performance
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FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P1 Laplacian Integration

Model Price ($) GF/s MF/s$
GTX285 390 90 231
Core 2 Duo 300 2 6.6

∗ Jed Brown Optimization Engine
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FEM-GPU Efficiency

Performance
Influence of Element Batch Sizes
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FEM-GPU Efficiency

Performance
Influence of Code Structure
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FEM-GPU Efficiency

Explaining performance

Increase shared memory and work/thread until you top out
Occupancies go down or level out as performance goes up

Does not work without interleaved stores
Scheduler can switch to kernels who are computing
Larger number of smaller computations makes better fit

Should I worry about detailed explanations for performance?
Sensible decompositions, coupled with exploration
FLAME methodology
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FEM-GPU Efficiency

Automated Tuning System

Components of our performance evaluation system:

Generate set of kernels using:
Loop slicing, store reordering, etc.
Loop invariants ala FLAME
High level constructs ala Rheagen and FEniCS

Store results and metadata in HDF5 using PyTables
Thousands of tests for this talk

Interrogate and plot with Matplotlib

Eventually couple to build system
FFTW, Spiral, FLAME
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http://flame.utexas.edu
http://www.pytables.org
http://www.matplotlib.org


Conclusion

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

and reconcile user physics
with system traversals.
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	PETSc-GPU
	FEM-GPU
	Analytic Flexibility
	Computational Flexibility
	Efficiency

	Conclusion

