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Algorithmics

Abstract System

Out prototypical nonlinear equation is:

F(x) = b

and we define the residual as

r(x) = F(x)− b
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Algorithmics

Linear Left Preconditioning

The modified equation becomes

P−1 (Ax − b) = 0 (1)
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Algorithmics

Linear Left Preconditioning

The modified defect correction equation becomes

P−1 (Axi − b) = xi+1 − xi (2)
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Algorithmics

Nonlinear Additions

Unlike the linear case, we must define
the solution x⃗
AND
the residual r⃗

in both the inner and outer solvers.
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Algorithmics

Additive Combination

The linear iteration

xi+1 = xi − (αP−1 + βQ−1)(Axi − b) (3)

becomes the nonlinear iteration

xi+1 = xi +α(N (F,xi ,b)−xi)+β(M(F,xi ,b)−xi) (5)
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Algorithmics

Nonlinear Left Preconditioning

From the additive combination, we have

P−1r =⇒ xi −N (F,xi ,b) (6)

so we define the preconditioning operation as

rL ≡ x −N (F,x,b) (7)
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Algorithmics

Multiplicative Combination

The linear iteration

xi+1 = xi − (P−1 + Q−1 − Q−1AP−1)ri (8)

becomes the nonlinear iteration

xi+1 = M(F, N (F,xi ,b), b) (11)
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Algorithmics

Multiplicative Combination

The linear iteration

xi+1/2 = xi − P−1ri (9)

xi = xi+1/2 − Q−1ri+1/2 (10)

becomes the nonlinear iteration

xi+1 = M(F, N (F,xi ,b), b) (11)
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Algorithmics

Nonlinear Right Preconditioning

For the linear case, we have

AP−1y = b (12)

x = P−1y (13)

so we define the preconditioning operation as

y = M(F(N (F , ·,b)), xi ,b) (14)
x = N (F,y,b) (15)
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Algorithmics

Nonlinear Preconditioning

Type Sym Statement Abbreviation
Additive + x + α(M(F,x,b)− x) M+N

+ β(N (F,x,b)− x)
Multiplicative ∗ M(F,N (F,x,b),b) M∗N
Left Prec. −L M(x −N (F,x,b),x,b) M−L N
Right Prec. −R M(F(N (F,x,b)),x,b) M−R N
Inner Lin. Inv. \ y = J(x)−1r(x) = K(J(x),y0,b) N\K

Composing Scalable Nonlinear Algebraic Solvers (Brune et al. 2015)
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Algorithmics

Nonlinear Richardson

1: procedure NRICH(F,xi ,b)
2:d = −r(xi)
3: xi+1 = xi + λd ▷ λ determined by line search
4: end procedure
5: return xi+1

L Adds line search to N
R Uses N to improve search direction
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Algorithmics

Line Search

Equivalent to NRICH −L N :

NRICH −L N

NRICH(x −N (F,x,b),x,b)
xi+1 = xi − λrL

xi+1 = xi + λ(N (F,xi ,b)− xi)

Let R1 be Richardson iteration with a unit step scaling (no damping).
Then we have

M−L R1 = M R1 −L M = M (16)

so that R1 is the identity operation for left preconditioning, whereas for
right preconditioning this is just the identity map.
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Algorithmics

PETSc Line Search

BT Standard cubic back-tracking
Defaults to full step when Wolfe conditions satisfied
No more work than necessary
May stagnate
Can be badly scaled apart from N

L2 Secant minimization of residual
Optimal damping in the residual direction
Minimize ||⃗r(x⃗ + λδx⃗)||2

CP Secant minimization of energy
Appropriate when F is the gradient of an energy function
Looks for roots of δx⃗TF(x⃗ + λδx⃗)
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Algorithmics

Nonlinear GMRES

1: procedure NGMRES(F ,xi · · · xi−m+1,b )
2: di = −r(xi)
3: xM

i = xi + λdi
4: FM

i = r(xM
i )

5: minimize ∥r((1 −∑i−1
k=i−m αi)xM

i +
i−1∑

k=i−m

αkxk )∥2 over

{αi−m · · ·αi−1}

6: xA
i = (1 −∑i−1

k=i−m αi)xM +
i−1∑

k=i−m

αkxk

7: xi+1 = xA
i or xM

i if xA
i is insufficient.

8: end procedure
9: return xi+1

Can emulate Anderson mixing and DIIS
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Algorithmics

Newton-Krylov

1: procedure N\K(F,xi ,b)
2: d = J(xi)

−1r(xi ,b) ▷ solve by Krylov method
3: xi+1 = xi + λd ▷ λ determined by line search
4: end procedure
5: return xi+1
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Algorithmics

Left Preconditioned Newton-Krylov

1: procedure N\K(x −M(F,x,b),xi ,0)

2: d = ∂(xi−M(F,xi ,b))
∂xi

−1
(xi −M(F,xi ,b))

3: xi+1 = xi + λd
4: end procedure
5: return xi+1
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Algorithmics

Jacobian Computation

Impractical!

∂(x −M(F,xi ,b))
xi

= I − ∂M(F,xi ,b)
∂xi

,

Direct differencing would require
one inner nonlinear iteration

per Krylov iteration.
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Algorithmics

Jacobian Computation
Approximation for NASM

∂(x −M(F,x,b))
∂x

=
∂(x − (x −∑

b Jb(xb)
−1Fb(xb)))

∂x
≈

∑
b

Jb(xb∗)
−1J(x)

This would require
one inner nonlinear iteration
small number of block solves

per outer nonlinear iteration.

Nonlinearly preconditioned inexact Newton algorithms (X.-C. Cai and Keyes 2002)
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Algorithmics

Right Preconditioned Newton-Krylov

1: procedure NK(F(M(F, ·,b)),yi ,b)
2: xi = M(F,yi ,b)
3: d = J(x)−1r(xi)
4: xi+1 = xi + λd ▷ λ determined by line search
5: end procedure
6: return xi+1
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Algorithmics

Jacobian Computation
First-Order Approximation

Only the action of the original Jacobian is needed at first order:

yi+1 = yi − λ
∂M(F,yi)

∂yi

−1

J(M(F,yi))
−1F(M(F,yi))

M(F,yi+1) = M(F,yi − λ
∂M(F,yi)

∂yi

−1

J(M(F,yi))
−1F(M(F,yi)))

≈ M(F,yi)

− λ
∂M(F,yi)

∂yi

∂M(F,yi)

∂yi

−1

J(M(F,yi))
−1F(M(F,yi)))

= M(F,yi)− λJ(M(F,yi))
−1F(M(F,yi))

xi+1 = xi − λJ(xi)
−1F(xi)

N\K −R M⃗ is equivalent to N\K ∗ M⃗ at first order
A parallel adaptive nonlinear elimination preconditioned inexact Newton method for transonic full

potential equation (Hwang, Su, and Xiao-Chuan Cai 2015)M. Knepley (UC) NPC UH ’14 22 / 37

http://www.sciencedirect.com/science/article/pii/S004579301400142X
http://www.sciencedirect.com/science/article/pii/S004579301400142X
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Algorithmics

Jacobian Computation
Direct Approximation

F(M(F,yi ,b)) = J(M(F,yi ,b))
∂M(F,yi ,b)

∂yi
(yi+1 − yi)

≈ J(M(F,yi ,b))(M(F,yi + d,b)− xi)

Solve for d
Requires inner nonlinear solve for each Krylov iterate
Needs FGMRES

On nonlinear preconditioners in Newton-Krylov methods for unsteady flows (Birken and
Jameson 2010)
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Algorithmics

Full Approximation Scheme (FAS)
Nonlinear Multigrid

1: procedure FAS(F⃗ ,xi ,b)
2: xs = Ms(F ,xi ,b)
3: xc = R̂xs
4: bc = Fc(xc)− R[F(xs)− b]
5: xs = xs + P[FAS(F⃗c ,xc ,bc)− xc]
6: xi+1 = Ms(F ,xs,b)
7: end procedure
8: return xi+1
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Algorithmics

Other Nonlinear Solvers

NASM Nonlinear Additive Schwarz

NGS Nonlinear Gauss-Siedel

NCG Nonlinear Conjugate Gradients

QN Quasi-Newton methods
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Experiments Composition

SNES ex16
3D Large Deformation Elasticity

∫
Ω

F · S : ∇v dΩ+

∫
Ω
loading ey · v dΩ = 0 (17)

F Deformation gradient
S Second Piola-Kirchhoff tensor

Saint Venant-Kirchhoff model of hyperelasticity
Ω -arc angle subsection of a cylindrical shell

-height thickness
-rad inner radius
-width width
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Experiments Composition

Large Deformation Elasticity

Unstressed and stressed configurations for the elasticity test problem.
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Experiments Composition

Large Deformation Elasticity

Coloration indicates vertical displacement in meters.
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Experiments Composition

Large Deformation Elasticity

P. Wriggers, Nonlinear Finite Element Methods, Springer, 2008.
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Experiments Composition

Large Deformation Elasticity
Running

SNES example 16:

cd src/snes/examples/tutorials
make ex16
./ex16 -da_grid_x 401 -da_grid_y 9 -da_grid_z 9

-height 3 -width 3
-rad 100 -young 100 -poisson 0.2
-loading -1 -ploading 0
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Experiments Composition

Plain SNES Convergence

(N\K − MG) and NCG
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Experiments Composition

Plain SNES Convergence

Solver T N. It L. It Func Jac PC NPC
NCG 53.05 4495 0 8991 – – –
(N\K − MG) 23.43 27 1556 91 27 1618 –
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Experiments Composition

Composed SNES Convergence

NCG(10) + (N\K − MG) and NCG(10) ∗ (N\K − MG)
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Experiments Composition

Composed SNES Convergence

Solver T N. It L. It Func Jac PC NPC
NCG 53.05 4495 0 8991 – – –
(N\K − MG) 23.43 27 1556 91 27 1618 –
NCG(10) 14.92 9 459 218 9 479 –
+(N\K − MG)
NCG(10) 16.34 11 458 251 11 477 –
∗(N\K − MG)
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Experiments Composition

Peconditioned SNES Convergence

NGMRES −R (N\K − MG) and NCG −L (N\K − MG)
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Experiments Composition

Peconditioned SNES Convergence

Solver T N. It L. It Func Jac PC NPC
NCG 53.05 4495 0 8991 – – –
(N\K − MG) 23.43 27 1556 91 27 1618 –
NCG(10) 14.92 9 459 218 9 479 –
+(N\K − MG)
NCG(10) 16.34 11 458 251 11 477 –
∗(N\K − MG)
NGMRES 9.65 13 523 53 13 548 13
−R(N\K − MG)
NCG 9.84 13 529 53 13 554 13
−L(N\K − MG)
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Experiments Multilevel

Outline

2 Experiments
Composition
Multilevel
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Experiments Multilevel

SNES ex19
Driven Cavity Flow

−∆+̂∇× Ω = 0

−∆Ω+∇ · (̂˙)− GR∇xT = 0

−∆T + PR∇ · (T̂) = 0
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Experiments Multilevel

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e2
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view

−∆U − ∂yΩ = 0

−∆V + ∂xΩ = 0

−∆Ω+∇ · ([UΩ,VΩ])− Gr ∂x T = 0

−∆T + Pr ∇ · ([UT ,VT ]) = 0

M. Knepley (UC) NPC UH ’14 36 / 37
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Experiments Multilevel

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e2
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view

lid velocity = 100, prandtl # = 1, grashof # = 100
0 SNES Function norm 768.116
1 SNES Function norm 658.288
2 SNES Function norm 529.404
3 SNES Function norm 377.51
4 SNES Function norm 304.723
5 SNES Function norm 2.59998
6 SNES Function norm 0.00942733
7 SNES Function norm 5.20667e-08

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 7

M. Knepley (UC) NPC UH ’14 36 / 37

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html


Experiments Multilevel

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e4
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view
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Experiments Multilevel

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e4
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view

lid velocity = 100, prandtl # = 1, grashof # = 10000
0 SNES Function norm 785.404
1 SNES Function norm 663.055
2 SNES Function norm 519.583
3 SNES Function norm 360.87
4 SNES Function norm 245.893
5 SNES Function norm 1.8117
6 SNES Function norm 0.00468828
7 SNES Function norm 4.417e-08

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 7
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Experiments Multilevel

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e5
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view
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Experiments Multilevel

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e5
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view

lid velocity = 100, prandtl # = 1, grashof # = 100000
0 SNES Function norm 1809.96

Nonlinear solve did not converge due to DIVERGED_LINEAR_SOLVE iterations 0

M. Knepley (UC) NPC UH ’14 36 / 37

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html


Experiments Multilevel

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e5
-da_grid_x 16 -da_grid_y 16 -da_refine 2 -pc_type lu
-snes_monitor_short -snes_converged_reason -snes_view

lid velocity = 100, prandtl # = 1, grashof # = 100000
0 SNES Function norm 1809.96
1 SNES Function norm 1678.37
2 SNES Function norm 1643.76
3 SNES Function norm 1559.34
4 SNES Function norm 1557.6
5 SNES Function norm 1510.71
6 SNES Function norm 1500.47
7 SNES Function norm 1498.93
8 SNES Function norm 1498.44
9 SNES Function norm 1498.27
10 SNES Function norm 1498.18
11 SNES Function norm 1498.12
12 SNES Function norm 1498.11
13 SNES Function norm 1498.11
14 SNES Function norm 1498.11
...
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Experiments Multilevel

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type newtonls -snes_converged_reason
-pc_type lu

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 1132.29
2 SNES Function norm 1026.17
3 SNES Function norm 925.717
4 SNES Function norm 924.778
5 SNES Function norm 836.867
...
21 SNES Function norm 585.143
22 SNES Function norm 585.142
23 SNES Function norm 585.142
24 SNES Function norm 585.142
...
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Experiments Multilevel

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type fas -snes_converged_reason
-fas_levels_snes_type gs -fas_levels_snes_max_it 6

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 574.793
2 SNES Function norm 513.02
3 SNES Function norm 216.721
4 SNES Function norm 85.949

Nonlinear solve did not converge due to DIVERGED_INNER iterations 4
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Experiments Multilevel

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type fas -snes_converged_reason
-fas_levels_snes_type gs -fas_levels_snes_max_it 6
-fas_coarse_snes_converged_reason

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 12

1 SNES Function norm 574.793
Nonlinear solve did not converge due to DIVERGED_MAX_IT its 50

2 SNES Function norm 513.02
Nonlinear solve did not converge due to DIVERGED_MAX_IT its 50

3 SNES Function norm 216.721
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 22

4 SNES Function norm 85.949
Nonlinear solve did not converge due to DIVERGED_LINE_SEARCH its 42

Nonlinear solve did not converge due to DIVERGED_INNER iterations 4
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Experiments Multilevel

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type fas -snes_converged_reason
-fas_levels_snes_type gs -fas_levels_snes_max_it 6
-fas_coarse_snes_linesearch_type basic
-fas_coarse_snes_converged_reason

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6

...
47 SNES Function norm 78.8401

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 5
48 SNES Function norm 73.1185

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6
49 SNES Function norm 78.834

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 5
50 SNES Function norm 73.1176

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6
...
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Experiments Multilevel

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type nrichardson -npc_snes_max_it 1 -snes_converged_reason
-npc_snes_type fas -npc_fas_coarse_snes_converged_reason
-npc_fas_levels_snes_type gs -npc_fas_levels_snes_max_it 6
-npc_fas_coarse_snes_linesearch_type basic

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6

1 SNES Function norm 552.271
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 27

2 SNES Function norm 173.45
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 45

...
43 SNES Function norm 3.45407e-05

Nonlinear solve converged due to CONVERGED_SNORM_RELATIVE its 2
44 SNES Function norm 1.6141e-05

Nonlinear solve converged due to CONVERGED_SNORM_RELATIVE its 2
45 SNES Function norm 9.13386e-06
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 45
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Experiments Multilevel

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type ngmres -npc_snes_max_it 1 -snes_converged_reason
-npc_snes_type fas -npc_fas_coarse_snes_converged_reason
-npc_fas_levels_snes_type gs -npc_fas_levels_snes_max_it 6
-npc_fas_coarse_snes_linesearch_type basic

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6

1 SNES Function norm 538.605
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 13

2 SNES Function norm 178.005
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 24

...
27 SNES Function norm 0.000102487

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 2
28 SNES Function norm 4.2744e-05

Nonlinear solve converged due to CONVERGED_SNORM_RELATIVE its 2
29 SNES Function norm 1.01621e-05
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 29
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Experiments Multilevel

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type ngmres -npc_snes_max_it 1 -snes_converged_reason
-npc_snes_type fas -npc_fas_coarse_snes_converged_reason
-npc_fas_levels_snes_type newtonls -npc_fas_levels_snes_max_it 6
-npc_fas_levels_snes_linesearch_type basic
-npc_fas_levels_snes_max_linear_solve_fail 30
-npc_fas_levels_ksp_max_it 20 -npc_fas_levels_snes_converged_reason
-npc_fas_coarse_snes_linesearch_type basic

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
Nonlinear solve did not converge due to DIVERGED_MAX_IT its 6
...

Nonlinear solve converged due to CONVERGED_SNORM_RELATIVE its 1
...

1 SNES Function norm 0.1935
2 SNES Function norm 0.0179938
3 SNES Function norm 0.00223698
4 SNES Function norm 0.000190461
5 SNES Function norm 1.6946e-06

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 5
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Experiments Multilevel

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type composite -snes_composite_type additiveoptimal
-snes_composite_sneses fas,newtonls -snes_converged_reason
-sub_0_fas_levels_snes_type gs -sub_0_fas_levels_snes_max_it 6

-sub_0_fas_coarse_snes_linesearch_type basic
-sub_1_snes_linesearch_type basic -sub_1_pc_type mg

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 541.462
2 SNES Function norm 162.92
3 SNES Function norm 48.8138
4 SNES Function norm 11.1822
5 SNES Function norm 0.181469
6 SNES Function norm 0.00170909
7 SNES Function norm 3.24991e-08

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 7
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Experiments Multilevel

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type composite -snes_composite_type multiplicative
-snes_composite_sneses fas,newtonls -snes_converged_reason
-sub_0_fas_levels_snes_type gs -sub_0_fas_levels_snes_max_it 6

-sub_0_fas_coarse_snes_linesearch_type basic
-sub_1_snes_linesearch_type basic -sub_1_pc_type mg

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 544.404
2 SNES Function norm 18.2513
3 SNES Function norm 0.488689
4 SNES Function norm 0.000108712
5 SNES Function norm 5.68497e-08

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 5
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Experiments Multilevel

Nonlinear Preconditioning
Solver T N. It L. It Func Jac PC NPC
(N\K − MG) 9.83 17 352 34 85 370 –
NGMRES −R 7.48 10 220 21 50 231 10
(N\K − MG)
FAS 6.23 162 0 2382 377 754 –
FAS + (N\K − MG) 8.07 10 197 232 90 288 –
FAS ∗ (N\K − MG) 4.01 5 80 103 45 125 –
NRICH −L FAS 3.20 50 0 1180 192 384 50
NGMRES −R FAS 1.91 24 0 447 83 166 24
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Experiments Multilevel

Nonlinear Preconditioning

See discussion in:

Composing Scalable Nonlinear Algebraic Solvers,
Peter Brune, Matthew Knepley, Barry Smith, and Xuemin Tu,

SIAM Review, 57(4), 535–565, 2015.

http://www.mcs.anl.gov/uploads/cels/papers/P2010-0112.pdf
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