Software Design for Non-conforming Finite Elements

Matthew Knepley and Tobin Isaac

Computational and Applied Mathematics Rice University

Applied Modeling and Computation Group Seminar Earth Science and Engineering Imperial College, London March 17, 2017

M. Knepley (Rice)

1/48

ICL17

We support structured AMR with an unstructured interface efficiently.

https://arxiv.org/abs/1508.02470

ICI 17

Sample Meshes Interpolated triangular mesh

Sample Meshes

Optimized triangular mesh

イロト イヨト イヨト イヨト

э

Sample Meshes Interpolated quadrilateral mesh

Sample Meshes Optimized guadrilateral mesh

・ロト ・ 日 ・ ・ ヨ ・

Sample Meshes

Interpolated tetrahedral mesh

Mesh Refinement in PETSc

ICL17

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Mesh Refinement in PETSc

ICL17

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The p4est library (Carsten Burstedde and Toby Isaac) provides scalable AMR routines via a forest-of-octrees/quadtrees:

- a unstructured hexahedral mesh ("the forest");
- where each hexahedron contains an arbitrarily refined octree;
- space-filling curve (SFC) orders elements;
- philosophy: as-simple-as-possible coarse mesh describes geometry, refinement captures all detail.
- not a framework: does not have numerical methods
 - Used for parallelism by Deal.II
 - Tight integration with solvers (e.g., multilevel) is still the domain of experts (next slide)

p4est in geophysics

(Rudi et al., 2015), "An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth's mantle," doi:10.1145/2807591.2807675.

p4est in geophysics

(Rudi et al., 2015), "An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth's mantle," doi:10.1145/2807591.2807675.

Outline

2 Plex Enhancement

• • • • • • • • • • • • •

Three FEM axioms allow an element to be computable in our framework, meaning we can form a global nodal basis W for the dual space V_h^* .

- Sparsity
- Matching
- Independence

ICL17

- P Reference approximation (primal) space
- Q Reference measurement (dual) space
- T Reference Cell
- S Reference complex for T
- P_i Primal space on cell T_i
- Q_i Dual space on cell T_i

ICL17

I. Sparsity

For each $\sigma_j \in Q$ there exists a point $p \in S$ such that, if $\psi_k \in P(T)$ is σ_k 's shape function, meaning $\sigma_j(\psi_k) = \delta_{jk}$, then $\operatorname{supp}(\psi_k) = \bigcup \operatorname{star}(p)$.

- Dual basis functions are attached to points in S
- Topological support describes function support
- Allows for compactly supported basis functions

φ_i^* Pullback of T_i onto T, for $H_1 \varphi_i^* f = f \circ \varphi_i$ $\varphi_{*,i}$ Pushforward of T onto T_i , the adjoint of φ_i^* P(X)Trace space of P(T) on $X \subset \overline{T}$

ICL17

II. Matching

If
$$\mathcal{F} := \overline{T_i} \cap \overline{T_j} \neq \emptyset$$
, then
 $\psi \in \mathcal{P}(\varphi_j^{-1}\mathcal{F}) \Rightarrow \varphi_i^* \varphi_j^{-*} \psi \in \mathcal{P}(\varphi_i^{-1}\mathcal{F})$

Traces of primal spaces for adjacent cells "line up"
Can pullback or pushfoward to *F* from either side
For *H*₁, we have

$$arphi_{i}^{*} arphi_{j}^{-*} \psi \in P(arphi_{i}^{-1} \mathcal{F})$$

 $arphi_{j}^{-*} \psi \in P(\mathcal{F})$
 $\psi \in P(arphi_{j}^{-1} \mathcal{F})$

 $\begin{array}{ll} Q^p & \text{Reference functionals associated with } p \in S, \\ & \text{so that } Q = \bigcup_{p \in S} Q^p \\ Q_i^p & \text{Pushforward of functionals to cell } T_i, \, \varphi_{i*} Q^p, \\ & \text{so that } Q_i = \bigcup_{p \in Q} Q_i^p \\ \text{Sym}_N & \text{The symmetric group on } N \text{ elements} \end{array}$

ICL17

If
$$\exists p, q \in S$$
 such that $\varphi_i(p) = \varphi_j(q)$
for adjacent cells T_i and T_j ,
then $\exists M \in \text{Sym}$ such that $Q_i^p = MQ_j^q$.

- Traces of dual spaces for adjacent cells "line up"
- Mappings push functionals forward into each other
- *M* encodes symmetries of polytopes in *S*

Outline

Plex Enhancement

- Short Review of Plex
- Parent-Child and Support Additions
- Dual Basis Calculation

3 Examples

4 A N

- E - N

ICL17

Outline

Plex Enhancement

- Short Review of Plex
- Parent-Child and Support Additions
- Dual Basis Calculation

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sample Meshes

Interpolated triangular mesh

æ

Sample Meshes

Optimized triangular mesh

イロト イヨト イヨト イヨト

æ

Sample Meshes

Interpolated quadrilateral mesh

M. Knepley (Rice)

Sample Meshes

Optimized quadrilateral mesh

э

・ロト ・回ト ・ヨト

Sample Meshes

Interpolated tetrahedral mesh

Basic Operations

Cone

Basic Operations Support

Basic Operations

イロト イヨト イヨト イヨト

3

Basic Operations Star

Basic Operations

Meet

Basic Operations

Outline

Plex Enhancement

- Short Review of Plex
- Parent-Child and Support Additions
- Dual Basis Calculation

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ICL17

Nonconforming Doublet

How to encode in Plex?

Nonconforming Doublet

Choice 2: Break cone-support duality

Outline

Plex Enhancement

- Short Review of Plex
- Parent-Child and Support Additions
- Dual Basis Calculation

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ICL17

Dual Bases

In general, the union of all cell functionals

$$W^u = igcup_{i=1}^{N_T}igcup_{p\in S} Q^p_i$$

will contain linear dependencies. Instead, we use

$$W^{c} = \bigcup_{i=1}^{N_{T}} \bigcup_{\{p \in S: \operatorname{parent}(\varphi_{i}(p)) = \emptyset\}} Q_{i}^{p}.$$

and we must have a linear relation

$$W^{u} = I^{u}_{c}W^{c}$$

ICL17

If we have a child point *p* such that

•
$$p, q \in S$$

• $\varphi_i(p) \subset \varphi_j(q)$
• $\varphi_j^{-1} \circ \varphi_i : p \to q$ is affine

then we can expand Q_i^p in terms of Q_i .

ICL17

For $\sigma_r \in Q^p$, by Axiom II,

$$\begin{split} (\varphi_{*,i}\sigma_r)(\mathbf{v}) &= (\varphi_{*,i}\sigma_r)(\varphi_j^{-*}\varphi_j^*\mathbf{v}) \\ &= (\varphi_{*,j}^{-1}\varphi_{*,i}\sigma_r)(\varphi_j^*\mathbf{v}) \\ &= \sum_{\sigma_s \in \mathbf{Q}} (\varphi_{*,j}^{-1}\varphi_{*,i}\sigma_r)(\psi_s)\sigma_s(\varphi_j^*\mathbf{v}) \\ &= \sum_{\sigma_s \in \mathbf{Q}_j} (\varphi_{*,j}^{-1}\varphi_{*,i}\sigma_r)(\psi_s)\sigma_s(\mathbf{v}) \\ &= \sum_{\sigma_s \in \cup_{t \in \text{clos}(\text{parent}(p))}\mathbf{Q}^t} (\varphi_{*,j}^{-1}\varphi_{*,i}\sigma_r)(\psi_s)\sigma_s(\mathbf{v}) \end{split}$$

where we use Axiom I in the last line.

M. Knepley (Rice)

•

Two Key Points:

- Sparsity of *I^u_c* We find *anchor points*, the points in clos of the transitive closure of parent(*p*) that are in *W^c*.
- Entries in I_c^u

The matrix interpolates Q_i^p from its anchor point functionals. The entries have the form $(\varphi_{*,j}^{-1}\varphi_{*,i}\sigma_r)(\psi_s)$ for $\sigma_r \in Q$ and shape function $\psi_s \in P(K)$.

ICL17

Also, refinement usually follows a predictable pattern,

so we can evaluate the transfer functionals for the refined reference cell,

using a *reference tree* stored as a Plex,

and then map to an actual cell.

ICI 17

Creating I^u_c

	/* Concatenate functionals of ${oldsymbol Q}$ as pointsRef and weights	*/
1	EvaluateBasis(bspace,fSize,nPoints,sizes,pointsRef,weights,work,Amat);	
	/* Amat(i,j) evaluates basis i at dual basis functional j	*/
2	MatLUFactor(Amat,NULL,NULL);	
	/* loop over cells	*/
3	for $(c = cStart; c < cEnd; c++)$ {	
4	DMPlexGetTreeParent(dm,c,&parent,NULL);	
5	if (parent == c) continue;	
6	/* Ref. tree mappings are affine, corner (v0) and Jacobian (J)	*/
7	DMPlexComputeCellGeometryFEM(dm,c,NULL,v0,J,NULL,&detJ);	
8	DMPlexComputeCellGeome-	
	tryFEM(dm,parent,NULL,v0parent,Jparent,invJparent,&detJpar);	
9	for (i = 0; i < nPoints; i++) {	
10	/* spdim is the spatial dimension	*/
11	<pre>/* push coordinates of functionals forward from child</pre>	*/
12	CoordinatesRefToReal(spdim,spdim,v0,J,&pointsRef[i*spdim],vtmp);	
13	<pre>/* pull coordinates of functionals back to parent</pre>	*/
14	CoordinatesRealToRef(spdim,spdim,v0parent,invJparent,vtmp,&pointsReal[i*spdim]);	
15	}	
16	EvaluateBasis(bspace,fSize,nPoints,sizes,pointsReal,weights,work,Bmat);	
17	/* Bmat(i,j) evaluates basis i at transfered functional j	*/
18	MatMatSolve(Amat,Bmat,Xmat);	
19	/* partition the columns of Xmat between the points in clos((e) nac
	M. Knepley (Rice) AMR ICL17	42/48

If σ_r is associated with $p \in clos(c)$, column *r* of *X* constrains σ_r to the dual basis of root cell parent(*c*),

 X_{sr} is only nonzero if functional σ_s is associated to a point in clos(parent(p)).

ICL17

Outline

2 Plex Enhancement

イロト イポト イヨト イヨ

Examples

Poisson with Finite Elements

A Poisson problem discretized with Q₂ elements

Examples

Poisson with Finite Elements

A Poisson problem discretized with Q_2 elements reproduced using SNES ex12:

./ex12 -run_type test -simplex 0 -interpolate 1 -petscspace_order 2 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_initial_refinement 2 -dm_forest_minimum_refinement 0 -dm_forest_maximum_refinement 6 -dm_p4est_refine_pattern hash -dm_view vtk:amr.vtu:vtk_vtu -vec_view vtk:amr.vtu:vtk_vtu:append

ICI 17

Euler with Finite Volumes

A shock impinging on an oblique density contrast modeled using the Euler equation discretized with a TVD FV method

ICL17

Euler with Finite Volumes

A shock impinging on an oblique density contrast modeled using the Euler equation discretized with a TVD FV method reproduced using TS ex11:

./ex11 -ufv_vtk_interval 1 -monitor density,energy -f -grid_size 2,1 -grid_bounds -1,1.,0.,1 -bc_wall 1,2,3,4

-dm_type p4est -dm_forest_partition_overlap 1 -dm_forest_maximum_refinement 6 -dm_forest_minimum_refinement 2 -dm_forest_initial_refinement 2 -ufv_use_amr -refine_vec_tagger_box 0.5,inf -coarsen_vec_tagger_box 0,1.e-2

-refine_tag_view -coarsen_tag_view

-physics euler -eu_type iv_shock -ufv_cfl 10 -eu_alpha 60. -grid_skew_60 -eu_gamma 1.4

-eu_amach 2.02 -eu_rho2 3.

-petscfv_type leastsquares -petsclimiter_type minmod -petscfv_compute_gradients 0 -ts_final_time 1 -ts_ssp_type rks2 -ts_ssp_nstages 10

46/48

< 日 > < 同 > < 回 > < 回 > < □ > <

ICL17

Why is this good?

- Can do unstructured refinement as well
- Can do arbitrary refinements (not just 2:1)
- Can do arbitrary shapes (not just quads)
- Integrates seamlessly with solvers

ICI 17

Thank You!

http://www.caam.rice.edu/~mk51