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We support structured AMR
with an unstructured interface
efficiently.

https://arxiv.org/abs/1508.02470
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Sample Meshes

Interpolated triangular mesh

Vertices 2 3 4 5 Depth 0

Edges W Depth 1

Cells . . Depth 2

Y G AMR ICL17 4/48



Sample Meshes

Optimized triangular mesh
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Sample Meshes

Interpolated quadrilateral mesh
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Sample Meshes

Optimized quadrilateral mesh

Vertices 2 3 4 5 6 7 Depth 0

Cells . ‘ Depth 1
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Sample Meshes

Interpolated tetrahedral mesh
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Mesh Refinement in PETSc
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Mesh Refinement in PETSc
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p4est overview

The p4est library (Carsten Burstedde and Toby Isaac) provides
scalable AMR routines via a forest-of-octrees/quadirees:

@ a unstructured hexahedral mesh (“the forest”);
@ where each hexahedron contains an arbitrarily refined octree;
@ space-filling curve (SFC) orders elements;

@ philosophy: as-simple-as-possible coarse mesh describes
geometry, refinement captures all detail.
@ not a framework: does not have numerical methods
o Used for parallelism by Deal.ll

o Tight integration with solvers (e.g., multilevel) is still the domain of
experts (next slide)
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p4est in geophysics

(Rudi et al., 2015), “An extreme-scale implicit solver for complex PDEs: highly
heterogeneous flow in earth’s mantle,” doi:10.1145/2807591.2807675.
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Three FEM Axioms

Outline

@ Three FEM Axioms
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Three FEM Axioms
FEM Axioms

Three FEM axioms allow an element to be
computable in our framework,

meaning we can form
a global nodal basis W for the dual space V.

e Sparsity
e Matching
e Independence
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Three FEM Axioms
Notation

Reference approximation (primal) space
Reference measurement (dual) space
Reference Cell

Reference complex for T

Primal space on cell T;

;  Dual space on cell T;

OQTVMHO T
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Three FEM Axioms
|. Sparsity

For each o; € Q there exists a point p € S such that,
if v € P(T) is ox’s shape function,
meaning Jj(@/Jk) = 5]/(5
then supp(vx) = | star(p).

e Dual basis functions are attached to points in S
e Topological support describes function support
e Allows for compactly supported basis functions
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Three FEM Axioms
Notation

©F Pullback of T; onto T, for Hy ¢if = f o y;
¢.;  Pushforward of T onto T;, the adjoint of ¢}

P(X) Trace space of P(T)on X Cc T
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Three FEM Axioms
ll. Matching

If 7 := TinT; # 0, then
v € P(g; ' F) = vje; ¢ € Py F)
e Traces of primal spaces for adjacent cells “line up”

e Can pullback or pushfoward to F from either side
For H,, we have

i € P(p; ' F)
p; "V € P(F)
) € P(p; ' F)
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Three FEM Axioms
Notation

QP Reference functionals associated with p € S,
so that Q = [J,cs Q°

Q’ Pushforward of functionals to cell T;, ¢ QP,
so that Q = Upeq @F

Sym, The symmetric group on N elements
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Three FEM Axioms
lll. Independence

If 3p, g € S such that ¢;(p) = ¢;(q)
for adjacent cells T; and T,
then 3M € Sym such that Of = MQ/.

e Traces of dual spaces for adjacent cells “line up”
e Mappings push functionals forward into each other
e M encodes symmetries of polytopes in S
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Plex Enhancement
Outline

9 Plex Enhancement
@ Short Review of Plex
@ Parent-Child and Support Additions
@ Dual Basis Calculation
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Plex Enhancement Short Review of Plex

Outline

e Plex Enhancement
@ Short Review of Plex
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Plex Enhancement Short Review of Plex

Sample Meshes

Interpolated triangular mesh

Vertices 2 3 4 5 Depth 0

Edges . . Depth 1

Cells . . Depth 2
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Plex Enhancement Short Review of Plex

Sample Meshes

Optimized triangular mesh

Vertices

Cells

N
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Plex Enhancement Short Review of Plex

Sample Meshes

Interpolated quadrilateral mesh
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Plex Enhancement Short Review of Plex

Sample Meshes

Optimized quadrilateral mesh

Vertices 2 3 4 5 6 7

Cells . ‘
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Plex Enhancement Short Review of Plex

Sample Meshes

Interpolated tetrahedral mesh

Vertices 2 3 4 5 6 Depth 0
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Plex Enhancement Short Review of Plex

Basic Operations

Cone

We begin with the basic §
covering relation, / K
cone(0) = {2, 3, 4} 7@ 0 (4 1 *10

9

Vertices 7 8 9 10 Depth 0

- W !

Cells ‘ . Depth 2
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Plex Enhancement Short Review of Plex

Basic Operations

Support

reverse arrows to get the 8

dual operation, / K
support(9) = {3, 4, 6} 76 0 (4 1 >e10
Vertices 7 8 9 10 Depth 0

Edges W Depth 1

Cells . . Depth 2

Y G AMR ICL17 28/48



Plex Enhancement Short Review of Plex

Basic Operations

Closure

add the transitive closure

of the relation, /‘K
closure(0) = {0, 2, 3, 4, } 0 4 1
Vertices 7 8 9 10 Depth 0

- W !

Cells ‘ . Depth 2
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Plex Enhancement Short Review of Plex

Basic Operations

Star

and the transitive closure 8

of the dual, /‘K
star(7) ={7, 2, 3, 0} 0 4 1 e 10

Vertices 7 8 9 10 Depth 0

LSRN

- W !

Cells ‘ . Depth 2

Y G AMR ICL17

30/48



Plex Enhancement Short Review of Plex

Basic Operations

Meet

and augment with lattice

operations. / K
meet(0, 1) = {4} 0 4 1
Vertices 7 8 9 10 Depth 0

- W !

Cells ‘ . Depth 2
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Plex Enhancement Short Review of Plex

Basic Operations

Join

and augment with lattice

operations. / K
join(8, 9) = {4} 76 0 (4 1 >0
Vertices 7 8 9 10 Depth 0

Edges W Depth 1

Cells . . Depth 2
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Plex Enhancement Parent-Child and Support Additions

Outline

e Plex Enhancement

@ Parent-Child and Support Additions
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Plex Enhancement Parent-Child and Support Additions

Nonconforming Doublet

How to encode in Plex?
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Plex Enhancement Parent-Child and Support Additions

Nonconforming Doublet

Choice 1: Make A a degenerate quadrilateral
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Plex Enhancement Parent-Child and Support Additions

Nonconforming Doublet

Choice 2: Break cone- support duality
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Plex Enhancement Dual Basis Calculation

Outline

e Plex Enhancement

@ Dual Basis Calculation
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Plex Enhancement Dual Basis Calculation

Dual Bases

In general, the union of all cell functionals

Nr
we=JJ &

i=1pecS
will contain linear dependencies. Instead, we use

Nr

we=|]J U Q.

i=1 {pe S:parent(y;(p))=0}
and we must have a linear relation

WY = [EWe
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Plex Enhancement Dual Basis Calculation

Creating /¢

If we have a child point p such that

°p,ges

° »i(P) C ¥j(q)
o ¢ 'opi:p— qis affine

then we can expand Qf in terms of Q;.
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Plex Enhancement Dual Basis Calculation

Creating /¢

For o, € QP, by Axiom II,

(puior)(V) = (pxior)(e; o) V)
= (5 peior) (@] V)
= Z (90;11 ©xior)(Ys)os(p V)

0s€Q

= > (g enion) (Ws)os(v)

os€Q)

— Z (g0;/1 ©+,i0r)(Vs)os(V).

0s€Uteclos(parent(p)) Q!

where we use Axiom | in the last line.
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Plex Enhancement Dual Basis Calculation

Creating /¢

Two Key Points:
e Sparsity of [{
We find anchor points, the points in clos of the
transitive closure of parent(p) that are in W¢.

e Entriesin [{
The matrix interpolates Q7 from its anchor point
functionals. The entries have the form
(¢, owior)(¥s) for o, € Q and shape function
Vs € P(K).
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Plex Enhancement Dual Basis Calculation

Creating /¢

Also, refinement usually follows a predictable pattern,

SO we can evaluate the transfer functionals for the
refined reference cell,

using a reference tree stored as a Plex,

and then map to an actual cell.
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Plex Enhancement Dual Basis Calculation

Creating /¢

/* Concatenate functionals of Q as pointsRef and weights x/
1 EvaluateBasis(bspace,fSize,nPoints,sizes,pointsRef,weights,work,Amat);

/* Amat (i, j) evaluates basis i at dual basis functional jJ */
2 MatLUFactor(Amat,NULL,NULL,NULL);

/+ loop over cells */

for (c = cStart; ¢ < cEnd; c++) {
DMPlexGetTreeParent(dm,c,&parent, NULL);
if (parent == c) continue;
/+ Ref. tree mappings are affine, corner (v0) and Jacobian (J) */
DMPlexComputeCellGeometryFEM(dm,c,NULL,v0,J,NULL,&detJ);
DMPIlexComputeCellGeome-
tryFEM(dm,parent,NULL,vOparent,Jparent,invdparent,&detJpar);

9 for (i = 0; i < nPoints; i++) {

© N o g s W

10 /* spdim is the spatial dimension */
11 /+ push coordinates of functionals forward from child x/
12 CoordinatesRefToReal(spdim,spdim,v0,J,&pointsRef[i*spdim],vtmp);

13 /+ pull coordinates of functionals back to parent x/

14 CoordinatesRealToRef(spdim,spdim,vOparent,invdparent,vtmp,&pointsReal[i*spdim]);

16 EvaluateBasis(bspace,{Size,nPoints,sizes,pointsReal,weights,work,Bmat);

17 /* Bmat (i, j) evaluates basis i at transfered functional j */
18 MatMatSolve(Amat,Bmat,Xmat);
19 /% ... partition the columns of Xmat between the points -in clos (e)
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Plex Enhancement Dual Basis Calculation

Creating /¢

If o, is associated with p € clos(c),

column r of X constrains o, to the dual basis of
root cell parent(c),

Xsr is only nonzero if functional o is associated to
a point in clos(parent(p)).
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Examples

Outline
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Examples

Poisson with Finite Elements

A Poisson problem discretized with Q, elements
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Poisson with Finite Elements

A Poisson problem discretized with Q, elements
reproduced using SNES ex12:

Jex12 -run_type test -simplex 0 -interpolate 1
-petscspace_order 2 -petscspace_poly_tensor
-dm_plex_convert_type pdest -dm_forest_initial_refinement 2

-dm_forest_minimum_refinement 0

-dm_forest_maximum_refinement 6

-dm_p4est_refine_pattern hash
-dm_view vtk:amr.vtu:vtk_vtu
-vec_view vtk:amr.vtu:vtk_vtu:append
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Examples

Euler with Finite Volumes

A shock impinging on an oblique density contrast modeled using the
Euler equation discretized with a TVD FV method

uEnergy
2.088e+01

B 35
~2500e+00
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Examples

Euler with Finite Volumes

A shock impinging on an oblique density contrast modeled using the
Euler equation discretized with a TVD FV method
reproduced using TS ex11:

Jex11 -ufv_vtk_interval 1 -monitor density,energy -f -grid_size 2,1 -grid_bounds -1,1.,0.,1

-bc_wall 1,2,3,4

-dm_type p4est -dm_forest_partition_overlap 1 -dm_forest_maximum_refinement 6
-dm_forest_minimum_refinement 2 -dm_forest_initial_refinement 2

-ufv_use_amr -refine_vec_tagger_box 0.5,inf -coarsen_vec_tagger_box 0,1.e-2
-refine_tag_view -coarsen_tag_view

-physics euler -eu_type iv_shock -ufv_cfl 10 -eu_alpha 60. -grid_skew_60 -eu_gamma 1.4
-eu_amach 2.02 -eu_rho2 3.

-petscfv_type leastsquares -petsclimiter_type minmod -petscfv_compute_gradients 0

-ts_final_time 1 -ts_ssp_type rks2 -ts_ssp_nstages 10
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Conclusions
Advantages

Why is this good?
e Can do unstructured refinement as well
e Can do arbitrary refinements (not just 2:1)
e Can do arbitrary shapes (not just quads)

e Integrates seamlessly with solvers
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Thank You!

http://www.caam.rice.edu/~mk51
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