Tree-based methods on GPUs

Felipe Cruz' and Matthew Knepley?-3

"Department of Mathematics
University of Bristol

2Computation Institute
University of Chicago

SDepartment of Molecular Biology and Physiology
Rush University Medical Center

Department of Mathematics, LSU
Baton Rouge, LA Sept 25, 2009

/\ RUSH UNIVERSITY
s MENICAT CENTER
M. Knepley (UC) GPU LsU 1/76

Introduction

Outline

@ Introduction

M. Knepley (UC) GPU LSU 2/76

Scientific Computing Challenge

How do we create
reusable
implementations which are also
efficient?

M. Knepley (UC) GPU LSU 5/76

Introduction

Scientific Computing Insight

Structures are conserved,

but tradeoffs change.

M. Knepley (UC) GPU LSU 6/76

Introduction

Structure vs. Tradeoffs

This is how PETSc works:

M. Knepley (UC)

LSuU

7/76

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

This is how PETSc works:

@ Sparse matrix-vector product has a common structure

M. Knepley (UC) GPU LsU 7/76

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

This is how PETSc works:

@ Sparse matrix-vector product has a common structure
@ Different storage formats are chosen based upon

e architecture
e PDE

M. Knepley (UC) GPU LsU 7/76

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

Ax=b
{ b, Ab, A(Ab), A(A(Ab)), ...}

This is how PETSc works:

M. Knepley (UC) GPU LSU 8/76

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

Ax=b
{ b, Ab, A(Ab), A(A(Ab)), ...}

This is how PETSc works:

@ Krylov solvers have a common structure

M. Knepley (UC) GPU LSU 8/76

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

Ax=b
{ b, Ab, A(Ab), A(A(Ab)), ...}

This is how PETSc works:

@ Krylov solvers have a common structure
@ Different solvers are chosen based upon

e problem characteristics
@ architecture

M. Knepley (UC) GPU LSU 8/76

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

This is how treecodes work:

M. Knepley (UC) GPU LSU 9/76

Introduction

Structure vs. Tradeoffs

This is how treecodes work:
@ Hierarchical algorithms have a common structure

M. Knepley (UC) GPU LSU 9/76

Introduction

Structure vs. Tradeoffs

This is how treecodes work:

@ Hierarchical algorithms have a common structure
@ Different analytical and geometric decisions depend upon

@ problem configuration
@ accuray requirements

M. Knepley (UC) GPU LSU 9/76

Introduction

Structure vs. Tradeoffs

Chemist’s View

lon Channels
Proteins with a Hole

Figure by Raimund Dutzler

Chemical Bonds are lines
Surface is Electrical Potential
is negative (acid)
is positive (base)

This is how biology works:

M. Knepley (UC) GPU

LsuU

10/76

Introduction

Structure vs. Tradeoffs

This is how biology works:
@ For ion channels, Nature uses the same

e protein building blocks
e energetic balances

M. Knepley (UC) GPU LSU 10/76

Introduction

Structure vs. Tradeoffs

This is how biology works:
@ For ion channels, Nature uses the same

e protein building blocks
e energetic balances

@ Different energy terms predominate for different uses

M. Knepley (UC) GPU LSU 10/76

Introduction
Representation Hierarchy

Divide the work into levels:
@ Model

@ Algorithm

@ Implementation

M. Knepley (UC) GPU LSU 11/76

http://www.spiral.net

Introduction
Representation Hierarchy

Divide the work into levels: Spiral Project:

@ Model @ Discrete Fourier Transform (DSP)
@ Algorithm @ Fast Fourier Transform (SPL)
@ Implementation @ C Implementation (SPL Compiler)

M. Knepley (UC) GPU LSU 11/76

http://www.spiral.net

Introduction
Representation Hierarchy

Divide the work into levels: FLAME Project:

@ Model @ Abstract LA (PME/Invariants)
@ Algorithm @ Basic LA (FLAME/FLASH)
@ Implementation @ Scheduling (SuperMatrix)

M. Knepley (UC) GPU LsU 11/76

http://www.cs.utexas.edu/users/flame

Introduction
Representation Hierarchy

Divide the work into levels: FEnICS Project:
@ Model @ Navier-Stokes (FFC)
@ Algorithm @ Finite Element (FIAT)
@ Implementation @ Integration/Assembly (FErari)

M. Knepley (UC) GPU LsU 11/76

http://www.fenics.org

Introduction
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

M. Knepley (UC) GPU LsU 11/76

Introduction
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

M. Knepley (UC) GPU LsU 11/76

Introduction

DFT (single precision): on 3 GHz 2 x Core 2 Extreme
performance [Gflop/s]
30

=+=Spiral 5.0 SPMD
Spiral 5.0 sequential
35 ==Intel IPP 5.0
=4=FFTW 3.2 alpha SMP
=w=FFTW 2.2 alpha sequential

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144
input size

@ Spiral Team, http://www.spiral.net
@ Uses an intermediate language, SPL, and then generates C
@ Works by circumscribing the algorithmic domain

M. Knepley (UC) GPU LSU 12/76

http://www.spiral.net

Introduction

FLAME & FLASH

Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070

T T T T
Algorithm-by-blocks on four T10 processors —+—
1400 CUBLAS sgemm on a single T10 processor -+ - B

MKL sgemm on Intel Xeon QuadCore (4 cores) -+

1200

1000

GFLOPS

600

400

200

.
0 5000 10000 15000 20000
Matrix size

@ Robert van de Geijn, http://www.cs.utexas.edu/users/flame
@ FLAME is an Algorithm-By-Blocks interface
@ FLASH/SuperMatrix is a runtime system

M. Knepley (UC) GPU LSU 13/76

http://www.cs.utexas.edu/users/flame

Short Introduction to FMM
Outline

e Short Introduction to FMM
@ Spatial Decomposition
@ Data Decomposition

M. Knepley (UC) GPU LSU 14/76

Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity

M. Knepley (UC) GPU LSU 15/76

Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
Advantages
@ Mesh-free
@ O(N) time
@ Distributed and multicore (GPU) parallelism
@ Small memory bandwidth requirement

M. Knepley (UC) GPU LSU 15/76

Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

O(x) =D K(xi,x)q(x) (1)
J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques

M. Knepley (UC) GPU LSU 16/76

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques

M. Knepley (UC) GPU LSU 16/76

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

Short Introduction to FMM
PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

@ Leverages PETSc
@ Same open source license
o Uses Sieve for parallelism
@ Extensible design in C++
o Templated over the kernel
o Templated over traversal for evaluation
@ MPI implementation
o Novel parallel strategy for anisotropic/sparse particle distributions
o PetFMM-A dynamically load-balancing parallel fast multipole library
e 86% efficient strong scaling on 64 procs
@ Example application using the Vortex Method for fluids

@ (coming soon) GPU implementation

M. Knepley (UC) GPU LsU 17/76

http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/0905.2637
http://onlinelibrary.wiley.com/doi/10.1002/nme.2972/abstract

Short Introduction to FMM

PetFMM CPU Performance

Strong Scaling

256

128

Speedup

./ uniform 4ML8R5 —&—
s uniform 10ML9R5 —e—

2 ¥ spiral IMLBR5 —>»— |
spiral w/ space-filling IML8R5 —&—
1)) Perfect Speedup - - - - -
2 4 8 16 32 64 128 256

M. Knepley (UC) GPU LSU 18/76

Short Introduction to FMM

PetFMM CPU Performance

Strong Scaling

Evaluation —+—
Load balancing stage —e—
Total time —8—

10° ; ; ;
ME Initialization —»—
\E Upward Sweep —%—
\:Q Downward Sweep —o—

\o\

I
Il
f
/

i
/
rA

3

N 7]
/

4 8 16 32 64 128 256
M. Knepley (UC) GPU LSU 18/76

Short Introduction to FMM Spatial Decomposition

Outline

9 Short Introduction to FMM
@ Spatial Decomposition

M. Knepley (UC) GPU LSU 19/76

Short Introduction to FMM Spatial Decomposition

Spatial Decomposition

Pairs of boxes are divided into near and far:

M. Knepley (UC) GPU LSU 20/76

Short Introduction to FMM Spatial Decomposition

Spatial Decomposition

Pairs of boxes are divided into near and far:

are treated as very near.

M. Knepley (UC) GPU LSU 20/76

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations

M. Knepley (UC) GPU LSU 21/76

FMM in Sieve

Short Introduction to FMM Spatial Decomposition

M. Knepley (UC)

@ The Quadtiree is a Sieve
o with optimized operations

@ Multipoles are stored in sections

LsSuU

21/76

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

M. Knepley (UC) GPU LSU 21/76

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined
o

M. Knepley (UC) GPU LSU 21/76

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

M. Knepley (UC) GPU LSU 21/76

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

e o
]
I @ Completion moves data for
I o Neighbors

M. Knepley (UC) GPU LSU 21/76

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List

M. Knepley (UC) GPU LSU 21/76

Short Introduction to FMM Data Decomposition

Outline

9 Short Introduction to FMM

@ Data Decomposition

M. Knepley (UC) GPU LSU 22/76

Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:

M. Knepley (UC) GPU LSU 23/76

Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
e Box centers, Neighbors

M. Knepley (UC) GPU LSU 23/76

Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
e Box centers, Neighbors

@ box + neighbors
o Blobs

M. Knepley (UC) GPU LSU 23/76

Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
e Box centers, Neighbors

@ box + neighbors
o Blobs

@ box + interaction list

o Interaction list cells and values
e Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (UC) GPU LSU 23/76

Serial Implementation

Outline

e Serial Implementation
@ Control Flow
@ Interface

M. Knepley (UC) GPU LSU 24/76

Serial Implementation Control Flow

Outline

e Serial Implementation
@ Control Flow

M. Knepley (UC) GPU LSU 25/76

Serial Implementation Control Flow

FMM Control Flow

<.. {}x{\> Create Multipole Expansions Evaluate Local Expansions. ..“.:
SNV

—> P2M —> M2M ----> M2L ----> L2L ----> L2P

Kernel operations will map to GPU tasks.

M. Knepley (UC) GPU LSuU

26/76

Serial Implementation Control Flow

FMM Control Flow

Parallel Operation

<+——» M2Mand L2L translations <« ---p M2Ltransformation e Local domain

Root tree

Level k

Kernel operations will map to GPU tasks.

M. Knepley (UC) GPU LSU 26/76

Serial Implementation Interface

Outline

e Serial Implementation

@ Interface

M. Knepley (UC) GPU LSU 27/76

Serial Implementation Interface

Evaluator Interface

@ initializeExpansions (tree, blobInfo)

o Generate multipole expansions on the lowest level
e Requires loop over cells
e O(p)

@ upwardSweep (tree)

e Translate multipole expansions to intermediate levels
e Requires loop over cells and children (support)
° O(p%)

@ downwardSweep (tree)

e Convert multipole to local expansions and translate local
expansions on intermediate levels

o Requires loop over cells and parent (cone)

o O(p?)

M. Knepley (UC) GPU LSU 28/76

Serial Implementation Interface

Evaluator Interface

@ evaluateBlobs (tree, blobInfo)
e Evaluate direct and local field interactions on lowest level
e Requires loop over cells and neighbors (in section)
o O(p?)
@ evaluate(tree, blobs, blobInfo)
o Calculate the complete interaction (multipole + direct)

M. Knepley (UC) GPU LSU 29/76

Serial Implementation Interface

Kernel Interface

Method Description

P2M(t) Multipole expansion coefficients
L2P (t) Local expansion coefficients
M2M (t) Multipole-to-multipole translation
M21T, (t) Multipole-to-local translation
L2L(t) Local-to-local translation
evaluate (blobs) | Direct interaction

@ Evaluator is templated over Kernel
@ There are alternative kernel-independent methods

e kifmm3d

M. Knepley (UC)

LsuU

30/76

http://www.mrl.nyu.edu/~harper/kifmm3d

Multicore Interfaces
Outline

e Multicore Interfaces
@ GPU Programming
@ FLASH
@ PetFMM

M. Knepley (UC) GPU LSU 31/76

Multicore Interfaces GPU Programming

Outline

e Multicore Interfaces
@ GPU Programming

M. Knepley (UC) GPU LSU 32/76

Multicore Interfaces GPU Programming

GPU vs. CPU

A GPU looks like a big CPU with no virtual memory:
@ Many more hardware threads encourage concurrency
@ Makes bandwidth limitations even more acute
@ Shared memory is really a user-managed cache
@ Texture memory is also a specialized cache
@ User also manages a very small code segment

M. Knepley (UC) GPU LSU 33/76

GPU vs. CPU

Multicore Interfaces

Power usage can be very different:

GPU Programming

Platform TF KW | GB/s Price ($) | GF/$ | GF/W
IBM BG/P 14 | 40.00 | 57.0* 1,800,000 | 0.008 | 0.35
IBM BlueGene | 280 | 5000 ??7? | 350,000,000 | 0.0008 | 0.55
NVIDIA C1060 1| 0.19 | 102.0 1,475 | 0.680 | 5.35
ATl 9250 1| 0.12| 635 840 | 1.220 | 8.33

Table: Comparison of Supercomputing Hardware.

M. Knepley (UC)

LsuU

33/76

Multicore Interfaces GPU Programming

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

@ Protoypical operation is Triad (WAXPY): w =y + ax
@ Measures the memory bandwidth bottleneck (much below peak)
@ Datasets outstrip cache

Machine Peak (MF/s) | Triad (MB/s) | MF/MW Eqg. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 | 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 | 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/

M. Knepley (UC) GPU LSU 34/76

http://www.cs.virginia.edu/stream/

Multicore Interfaces GPU Programming

Analysis of Sparse Matvec (SpMV)

Assumptions
@ No cache misses
@ No waits on memory references
Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V' Number of vectors to multiply
We can look at bandwidth needed for peak performance

2\ m 6
<8 + V> ey byte/flop (2)
or achieveable performance given a bandwith BW
Vnz
BV 2)msenz oV Milop/s ®)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.

M. Knepley (UC) GPU LSU 35/76

http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf
http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf

Multicore Interfaces GPU Programming

Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
— bytes/flop(1122.4 MB/s) = 151 MFlops/s, 4
(8+2)%+6y/p(/s) ps/ (4)

which is a dismal 8.8% of peak.

Can improve performance by
@ Blocking
@ Multiple vectors
but operation issue limitations take over.

M. Knepley (UC) GPU LSU 36/76

Multicore Interfaces GPU Programming

Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

— bytes/flop(1122.4 MB/s) = 151 MFlops/s, 4
(8+2)%+6y/p(/s) ps/ (4)

which is a dismal 8.8% of peak.

Better approaches:
@ Unassembled operator application (Spectral elements, FMM)

e N data, N° computation
@ Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

e N data, Nk computation

M. Knepley (UC) LSU 36/76

Multicore Interfaces GPU Programming

GPU programming in General

@ What design ideas are useful?
@ How do we customize them for GPUs?

@ Can we show an example?

M. Knepley (UC) GPU LSU 37/76

Multicore Interfaces GPU Programming

Break Operations Into Small Chunks

Usually called modularity
@ Also called orthogonality or separation of concerns

@ Allows reduction of complexity
e eXtreme programming

@ Just concerned with functionality

M. Knepley (UC) GPU LSU 38/76

Multicore Interfaces GPU Programming

Break Operations Into Small Chunks
GPU Differences

We now have to worry about code size!
@ 16K total for NVIDIA 1060C board
@ Instructions can be a significant portion of memory usage

@ Have to split operations which logically belong together

@ Also allows aggregation of memory access
o Computation can be regrouped

@ Needs tools to manage many small tasks

M. Knepley (UC) GPU LSU 39/76

Multicore Interfaces GPU Programming

Break Operations Into Small Chunks

Example

Reduction over a dataset
@ For instance, computation of finite element integrals

@ Break into computation and aggregation stages
@ Model this by:

e Maximum flop rate stage
e Bandwidth limited stage

M. Knepley (UC) GPU LSU 40/76

Multicore Interfaces GPU Programming

Break Operations Into Small Chunks

Example

Reduction over a dataset
@ For instance, computation of Multipole-to-Local transform

@ Break into computation and aggregation stages
@ Model this by:

e Maximum flop rate stage
e Bandwidth limited stage

M. Knepley (UC) GPU LSU 40/76

Multicore Interfaces GPU Programming

Reorder for Locality

Exploits “nearby” operations to aggregate computation
@ Can be temporal or spatial

@ Usually exploits a cache

@ Difficult to predict/model on a modern processor

M. Knepley (UC) GPU LSU 41/76

Multicore Interfaces GPU Programming

Reorder for Locality
GPU Differences

We have to manage our “cache” explicitly
@ The NVIDIA 1060C shared memory is only 16K for 32 threads

@ We must also manange “main memory” explicitly
o Need to move data to/from GPU

@ Must be aware of limited precision when reordering
@ Can be readily modeled

@ Need tools for automatic data movement (marshalling)

M. Knepley (UC) GPU LSU 42/76

Multicore Interfaces GPU Programming

Reorder for Locality

Example

Data-Aware Work Queue
@ A work queue manages many small tasks

e Dependencies are tracked with a DAG
e Queue should manage a single computational phase (supertask)

@ Nodes also manage an input and output data segment

e Specific classes can have known sizes
e Can hold main memory locations for segments

@ Framework manages marshalling:
Allocates contiguous data segments
Calculates segment offsets for tasks
Marshalls (moves) data

Passes offsets to supertask execution

M. Knepley (UC) GPU LSU 43/76

Multicore Interfaces FLASH

Outline

e Multicore Interfaces

@ FLASH

M. Knepley (UC) GPU LSU 44/76

Multicore Interfaces FLASH

FLASH Design

FLASH enables multicore computing through FLAME

M. Knepley (UC) GPU LSU 45/76

Multicore Interfaces FLASH

FLASH Design

FLASH enables multicore computing through FLAME

@ LA interface is identical to FLAME
@ FLAME executes operates immediately

M. Knepley (UC) GPU LSU 45/76

Multicore Interfaces FLASH

FLASH Design

FLASH enables multicore computing through FLAME

@ LA interface is identical to FLAME
@ FLAME executes operates immediately
@ FLASH queues operations, and

M. Knepley (UC) GPU LSU 45/76

Multicore Interfaces FLASH

FLASH Design

FLASH enables multicore computing through FLAME

@ LA interface is identical to FLAME

@ FLAME executes operates immediately

@ FLASH queues operations, and

@ Executes queues on user call (does nothing in FLAME)

M. Knepley (UC) GPU LSU 45/76

Multicore Interfaces FLASH

Cholesky Factorization

FLA_Part_2x2 (A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL);
while (FLA_Object_length (ATL) < FLA_Object_length(A)) {
FLA_Repart_2x2_to_3x3(
ATL, ATR, &A00, &A01, &A02,
&A10, &All, &Al2,
ABL, ABR, &A20, &A21, &A22, 1, 1, FLA_BR);
FLASH_Chol (FLA_UPPER_TRIANGULAR, All);
FLASH _Trsm(FLA_LEFT,FLA_UPPER_TRIANGULAR,FLA_TRANSPOSE,
FLA_NONUNIT DIAG, FLA_ONE, All, Al2);
FLASH_Syrk (FLA_UPPER_TRIANGULAR, FLA_TRANSPOSE,
FLA_MINUS_ONE, Al2, FLA_ONE, A22);
FLA_Cont_with_ 3x3_to_2x2(
&ATL, &ATR, A00, A01, A02,
A10, All1l, Al2,
§ABL, &ABR, A20, A21, A22, FLA_TL);
}
FLA_Queue_exec () ;
M. Knepley (UC) GPU LSU 46/76

Multicore Interfaces PetFMM

Outline

e Multicore Interfaces

@ PetFMM

M. Knepley (UC) GPU LSU 47/76

Multicore Interfaces PetFMM

PetFMM-GPU

We break down sweep operations into Tasks
@ Cell loops are now tiled
@ Tasks are queued
@ We can form a DAG since we know the dependence structure
@ Scheduling is possible

This asynchronous interface can enable
@ Overlapping direct and multipole calculations
@ Reorganizing the downward sweep
@ Adaptive expansions

M. Knepley (UC) GPU LSU

48/76

Multicore Interfaces PetFMM

GPU Classes

Section
@ size () returns the number of values
@ getFiberDimension (cell) returns the number of cell values
@ restrict/update () retrieves and changes cell values
@ clone/extract () converts between CPU and GPU objects
Evaluator
initializeExpansions ()

upwardSweep ()

downwardSweepTranslate ()

o
o
@ downwardSweepTransform ()
()
@ evaluateBlobs ()

()

evaluate ()

M. Knepley (UC) GPU LSU 49/76

Multicore Interfaces PetFMM

GPU Classes

Section
@ size () returns the number of values
@ getFiberDimension (cell) returns the number of cell values
@ restrict/update () retrieves and changes cell values
@ clone/extract () converts between CPU and GPU objects

Task

@ Input data size

@ Output data size

@ Dependencies (future)
TaskQueue

@ Manages storage and offsets

@ evaluate ()

M. Knepley (UC) GPU LSU 49/76

Multicore Interfaces PetFMM

Upward Sweep

@ cell block

in cell and child centers, child multipole coeff
out cell multipole coeff

Downward Sweep Transform Task

@ cell block

in cell and interaction list centers, interaction list multipole coeff
out cell temp local coeff
Downward Sweep Expansion Task

@ cell block

in cell and parent centers, cell temp local coeff, parent local coeff
out cell local coeff

M. Knepley (UC) GPU LSU

50/76

Multicore Interfaces PetFMM

Upward Sweep

@ cell block

in cell and child centers, child multipole coeff
out cell multipole coeff
Downward Sweep Transform Task

@ cell block

in cell and interaction list centers, cell multipole coeff
out interaction list temp local coefficients
Downward Sweep Expansion Task

@ cell block

in cell and parent centers, cell temp local coeff, parent local coeff
out cell local coeff

M. Knepley (UC) GPU LSU

50/76

Multicore Interfaces PetFMM

Upward Sweep

@ cell block

in cell and child centers, child multipole coeff
out cell multipole coeff
Downward Sweep Reduce Task

@ cell block

in interaction list temp local coefficients
out cell temp local coefficients
Downward Sweep Expansion Task

@ cell block

in cell and parent centers, cell temp local coeff, parent local coeff
out cell local coeff

M. Knepley (UC) GPU LSU

50/76

Multicore Interfaces PetFMM

Transform Task

Shifts interaction cell multipole expansion to cell local expansion

@ Add a task for each interaction cell
@ All tasks with same origin are merged

@ Local memory:

o 2 (p+1) blockSize (Pascal) + 2 p blockSize (LE) + 2 p (ME)
8 terms 4416 bytes
17 terms 9096 bytes

@ Execution

o 1 block per ME

e Each thread reads a section of ME and the MEcenter
e Each thread computes an LE separately

e Each thread writes LE to separate global location

M. Knepley (UC) GPU LSU 51/76

Multicore Interfaces PetFMM

Reduce Task

Add up local expansion contributions from each interaction cell

@ Add a task for each cell
@ Local memory:
o 2*terms (LE)
8 terms 64 bytes
17 terms 136 bytes
@ Execution

o 1 block per output LE
e Each thread reads a section of input LE
e Each thread adds to shared output LE

M. Knepley (UC) GPU

LsuU

52/76

Multicore Interfaces PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N

M. Knepley (UC) GPU LSU 53/76

http://www.pycuda.org

Multicore Interfaces PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N

@ New M2L design was implemented using PyCUDA
@ Port to C++ is underway

M. Knepley (UC) GPU LSU 53/76

http://www.pycuda.org

Multicore Interfaces PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N

@ New M2L design was implemented using PyCUDA
@ Port to C++ is underway

@ We can now achieve 500 GF on the NVIDIA Tesla
@ Previous best performance we found was 100 GF

M. Knepley (UC) GPU LSU 53/76

http://www.pycuda.org

Multicore Interfaces PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N

@ New M2L design was implemented using PyCUDA
@ Port to C++ is underway

@ We can now achieve 500 GF on the NVIDIA Tesla
@ Previous best performance we found was 100 GF

@ We will release PetFMM-GPU in the new year

M. Knepley (UC) GPU LSU 53/76

http://www.pycuda.org

Multicore Interfaces PetFMM

CPU vs GPU

Sample run for 250,000 vortex particles in an 8 level tree

Section Time(s)
PyCUDA Laptop C++
Setup 0.55 0.00
InitExpansions 10.74 0.93
UpSweep 0.36 5.02
DownSweepEnqueue 0.09 —
GPUOverhead 2.97 —
DownSweepM2LTrns 2.08 363.21
DownSweepM2LRed 0.45 —
DownSweeplL2L 0.36 4.11

Notice that once direct evaluation is moved to the GPU, Python can
easily outperform C++.

M. Knepley (UC) GPU LSU 54/76

Multicore Implementation
Outline

e Multicore Implementation
@ Complexity Analysis
@ Redesign
@ MultiGPU

M. Knepley (UC) GPU LSU 55/76

Multicore Implementation Complexity Analysis

Outline

e Multicore Implementation
@ Complexity Analysis

M. Knepley (UC) GPU LSU 56/76

Multicore Implementation Complexity Analysis

Greengard & Gropp Analysis

For a shared memory machine,

T:ag+blog4P+chAIID+d$+e(N,P) (5)
@ Initialize multipole expansions, finest local expansions, final sum
©@ Reduction bottleneck
© Translation and Multipole-to-Local
© Direct interaction
@ Low order terms

A Parallel Version of the Fast Multipole Method,
L. Greengard and W.D. Gropp, Comp. Math. Appl., 20(7), 1990.

M. Knepley (UC) GPU LSU 57/76

Multicore Implementation Redesign

Outline

e Multicore Implementation

@ Redesign

M. Knepley (UC) GPU LSU 58/76

Multicore Implementation [RECESN

Question

What is the optimal number of particles per cell?

@ Greengard & Gropp
e Minimize time and maximize parallel efficiency

o Bop[= \/g ~ 30
@ Gumerov & Duraiswami

e Follow GG, but also try to consider memory access
@ Byt = 91, but instead, they choose 320
e Heavily weights the N? part of the computation

@ We propose to cover up the bottleneck with direct evaluations

M. Knepley (UC) GPU LSU 59/76

Multicore Implementation Redesign

PetFMM Stages

Setup Up Sweep Down Sweep Evaluation

M. Knepley (UC) GPU LsSuU 60/76

Multicore Implementation Redesign

PetFMM Stages

Setup Up Sweep Down Sweep Evaluation

M. Knepley (UC) GPU LsSuU 60/76

Multicore Implementation [RECESN

Problem

Missing Concurrency

We can balance time in direct evaluation with idle time for small grids.

@ The direct evaluation takes time a2
@ Assume a single thread group works on the first L tree levels

Thus, we need .

b4-1p
B> =

> N (6)

in order to cover the bottleneck. In an upcoming publication, we show

that this bound holds for all modern processors.

M. Knepley (UC) GPU LSU 61/76

Multicore Implementation [RECESN

Problem
Missing Bandwidth

We can restructure the M2L to conserve bandwidth

@ Matrix-free application of M2L

@ Reorganize traversal to minimize bandwidth

Old Pull in 27 interaction MEs, transform to LE, reduce

New Pull in cell ME, transform to 27 interaction LEs, partially reduce

M. Knepley (UC) GPU LSU 62/76

Multicore Implementation [RECESN

Matrix-Free M2L

The M2L transformation applies the operator

Mj = —17¢= (1) (i ij> (7)
J
Notice that the t exponent is constant along perdiagonals. Thus we
@ divide by t at each perdiagonal
@ calculate the Cj; by the recurrence along each perdiagonal
@ carefully formulate complex division (STL fails here)

M. Knepley (UC) GPU LSU 63/76

Multicore Implementation MultiGPU

Outline

e Multicore Implementation

@ MultiGPU

M. Knepley (UC) GPU LSU 64/76

Multicore Implementation MultiGPU

Parallel Tree Implementation

@ Divide tree into a root and local trees
@ Distribute local trees among processes

@ Provide communication pattern for local sections (overlap)
e Both neighbor and interaction list overlaps

o Sieve generates MPI from high level description

M. Knepley (UC) GPU LSU 65/76

Multicore Implementation MultiGPU

Parallel Tree Implementation

How should we distribute trees?

@ Multiple local trees per process allows good load balance
@ Partition weighted graph

@ Minimize load imbalance and communication

o Computation estimate:

Leaf Nijp (P2M) + nip? (M2L) + N;p (L2P) + 39N? (P2P)
Interior ngp? (M2M) + mp? (M2L) + nep? (L2L)

e Communication estimate:
Diagonal nc(L—k—1)

Lateral 2"% for incidence dimesion m
@ Leverage existing work on graph partitioning
e ParMetis

M. Knepley (UC) GPU LSU 66/76

http://www.cs.umn.edu/parmetis

Multicore Implementation MultiGPU

Parallel Tree Implementation

Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

@ Good partitions exist for non-uniform distributions
2D O (v/n(log n)3/?) edgecut
3D O (n?/3(log n)*) edgecut

@ As scalable as regular grids

@ As efficient as uniform distributions

@ ParMetis will find a nearly optimal partition

M. Knepley (UC) GPU LSU 67/76

http://portal.acm.org/citation.cfm?id=289842
http://portal.acm.org/citation.cfm?id=289842

Multicore Implementation MultiGPU

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

@ Good partitions exist for non-uniform distributions

2D C; = 1.24’:Co for random matching
3D C; =1.21'Cy?? for random matching

@ 3D proof needs assurance that averge degree does not increase

@ Efficient in practice

M. Knepley (UC) GPU LSU 68/76

http://glaros.dtc.umn.edu/gkhome/node/79
http://glaros.dtc.umn.edu/gkhome/node/79

Multicore Implementation MultiGPU

Parallel Tree Implementation

Advantages

e Simplicity

M. Knepley (UC) GPU LSU 69/76

Multicore Implementation MultiGPU

Parallel Tree Implementation

Advantages

e Simplicity

e Complete serial code reuse

M. Knepley (UC) GPU

LsSuU

69/76

Multicore Implementation MultiGPU

Parallel Tree Implementation

Advantages

e Simplicity
e Complete serial code reuse

e Provably good performance and scalability

M. Knepley (UC) GPU LSU 69/76

Multicore Implementation MultiGPU

Distributing Local Trees

The interaction of locals trees is represented by a weighted graph.

This graph is partitioned, and trees assigned to processes.
M. Knepley (UC) GPU LSu 70/76

MultiGPU

c
S
s
<
[
£
kS
Q.
£
Q
o
S
5
=

istribution
Here local trees are assigned to processes:

Local Tree D

hhhhhhhhhhhhhhhhhHh

hhhhhhhhhhhhhhhhHh

71/76

LsuU

GPU

M. Knepley (UC)

Multicore Implementation MultiGPU

PetFMM Load Balance

0.8
[
0.6 AN

NG
'\“\“/.

0.2
uniform 4ML8R5 —8—
uniform 10ML9R5 —e—
spiral IML8R5 —x—
0 ‘ spiral w/space-filling IML8RS —=—
2 4 8 16 32 64 128 256

M. Knepley (UC)

(b) 4 cores

MultiGPU

c
S
s
<
[
£
kS
Q.
£
Q
o
S
=
=

=
9
p—
-]
O
o
p—
§
o
()
o
T
©
o
(@)
—l

(a) 2 cores

o
2
>
2
[o%
@
C
=
=

Here local trees are assigned to processes for a spiral distribution

©
~
—
[
N

aaaaaal
aaaaaal

(d) 16 cores

Kkkkkkkkaaa

NESESTESE |

|

kkkkkkkkkaaaaa

MultiGPU

GPU

c
S
s
<
[
£
kS
Q.
£
Q
o
S
=
=

=
9
p—
-]
O
o
p—
§
o
()
o
T
©
o
(@)
—l

(c) 8 cores

M. Knepley (UC)

Here local trees are assigned to processes for a spiral distribution:

MultiGPU

c
S
s
<
[
£
kS
Q.
£
©
o
S
=
=

=
9
p—
-]
O
o
p—
§
o
()
o
T
©
o
(@)
—l

Here local trees are assigned to processes for a spiral distribution

(f) 64 cores

(e) 32 cores

©
~
—
[
N

GPU

M. Knepley (UC)

Multicore Implementation MultiGPU

Parallel Data Movement

@ Complete neighbor section

© Upward sweep

@ Upward sweep on local trees
@ Gather to root tree
© Upward sweep on root tree

© Complete interaction list section

© Downward sweep

@ Downward sweep on root tree
@ Scatter to local trees
© Downward sweep on local trees

M. Knepley (UC) GPU LSU 74/76

Multicore Implementation MultiGPU

GPU Interaction

Since our parallelism is hierarchical
@ Local (serial) tree interface is preserved

@ GPU code can be reused locally without change

@ Multiple GPUs per node can also be used

M. Knepley (UC) GPU LSU 75/76

What’s Important?

Interface improvements bring concrete benefits

@ Facilitated code reuse

o Serial code was largely reused
e Test infrastructure completely reused

@ Opportunites for performance improvement

o Overlapping computations
o Better task scheduling

@ Expansion of capabilities

e Could now combine distributed and multicore implementations
e Could replace local expansions with cheaper alternatives

M. Knepley (UC) GPU LSU 76/76

	Introduction
	Short Introduction to FMM
	Spatial Decomposition
	Data Decomposition

	Serial Implementation
	Control Flow
	Interface

	Multicore Interfaces
	GPU Programming
	FLASH
	PetFMM

	Multicore Implementation
	Complexity Analysis
	Redesign
	MultiGPU

