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Scientific Computing Challenge

How do we create
reusable
implementations which are also
efficient?
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Introduction

Scientific Computing Insight

Structures are conserved,

but tradeoffs change.
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Structure vs. Tradeoffs

This is how PETSc works:

M. Knepley (UC)

LSuU

7/76


http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

This is how PETSc works:

@ Sparse matrix-vector product has a common structure

M. Knepley (UC) GPU LsU 7/76


http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

This is how PETSc works:

@ Sparse matrix-vector product has a common structure
@ Different storage formats are chosen based upon

e architecture
e PDE
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Introduction

Structure vs. Tradeoffs

Ax=b
{ b, Ab, A(Ab), A(A(Ab)), ...}

This is how PETSc works:

@ Krylov solvers have a common structure
@ Different solvers are chosen based upon

e problem characteristics
@ architecture
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Introduction

Structure vs. Tradeoffs

This is how treecodes work:

@ Hierarchical algorithms have a common structure
@ Different analytical and geometric decisions depend upon

@ problem configuration
@ accuray requirements
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Introduction

Structure vs. Tradeoffs

Chemist’s View

lon Channels
Proteins with a Hole

Figure by Raimund Dutzler

Chemical Bonds are lines
Surface is Electrical Potential
is negative (acid)
is positive (base)

This is how biology works:
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Structure vs. Tradeoffs

This is how biology works:
@ For ion channels, Nature uses the same

e protein building blocks
e energetic balances
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Introduction

Structure vs. Tradeoffs

This is how biology works:
@ For ion channels, Nature uses the same

e protein building blocks
e energetic balances

@ Different energy terms predominate for different uses
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Introduction
Representation Hierarchy

Divide the work into levels:
@ Model

@ Algorithm

@ Implementation
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Introduction
Representation Hierarchy

Divide the work into levels:  Spiral Project:

@ Model @ Discrete Fourier Transform (DSP)
@ Algorithm @ Fast Fourier Transform (SPL)
@ Implementation @ C Implementation (SPL Compiler)
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Introduction
Representation Hierarchy

Divide the work into levels: FLAME Project:

@ Model @ Abstract LA (PME/Invariants)
@ Algorithm @ Basic LA (FLAME/FLASH)
@ Implementation @ Scheduling (SuperMatrix)
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Introduction
Representation Hierarchy

Divide the work into levels: FEnICS Project:
@ Model @ Navier-Stokes (FFC)
@ Algorithm @ Finite Element (FIAT)
@ Implementation @ Integration/Assembly (FErari)
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Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)
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Introduction
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer
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Introduction

DFT (single precision): on 3 GHz 2 x Core 2 Extreme
performance [Gflop/s]
30

=+=Spiral 5.0 SPMD
Spiral 5.0 sequential
35 ==Intel IPP 5.0
=4=FFTW 3.2 alpha SMP
=w=FFTW 2.2 alpha sequential

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144
input size

@ Spiral Team, http://www.spiral.net
@ Uses an intermediate language, SPL, and then generates C
@ Works by circumscribing the algorithmic domain
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Introduction

FLAME & FLASH

Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070

T T T T
Algorithm-by-blocks on four T10 processors —+—
1400 CUBLAS sgemm on a single T10 processor -+ - B

MKL sgemm on Intel Xeon QuadCore (4 cores) -+

1200

1000
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Matrix size

@ Robert van de Geijn, http://www.cs.utexas.edu/users/flame
@ FLAME is an Algorithm-By-Blocks interface
@ FLASH/SuperMatrix is a runtime system
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e Short Introduction to FMM
@ Spatial Decomposition
@ Data Decomposition
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Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
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Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
Advantages
@ Mesh-free
@ O(N) time
@ Distributed and multicore (GPU) parallelism
@ Small memory bandwidth requirement
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Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

O(x) =D K(xi,x)q(x) (1)
J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques
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Short Introduction to FMM
PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

@ Leverages PETSc
@ Same open source license
o Uses Sieve for parallelism
@ Extensible design in C++
o Templated over the kernel
o Templated over traversal for evaluation
@ MPI implementation
o Novel parallel strategy for anisotropic/sparse particle distributions
o PetFMM-A dynamically load-balancing parallel fast multipole library
e 86% efficient strong scaling on 64 procs
@ Example application using the Vortex Method for fluids

@ (coming soon) GPU implementation
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Short Introduction to FMM

PetFMM CPU Performance

Strong Scaling
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Short Introduction to FMM

PetFMM CPU Performance

Strong Scaling
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9 Short Introduction to FMM
@ Spatial Decomposition
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Pairs of boxes are divided into near and far:
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Short Introduction to FMM Spatial Decomposition

Spatial Decomposition

Pairs of boxes are divided into near and far:

are treated as very near.
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Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
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Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

e o
]
I @ Completion moves data for
I o Neighbors
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Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List
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9 Short Introduction to FMM

@ Data Decomposition
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Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
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Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
e Box centers, Neighbors

@ box + neighbors
o Blobs

@ box + interaction list

o Interaction list cells and values
e Multipole and local coefficients

Notice this is multiscale since data is divided at each level
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e Serial Implementation
@ Control Flow
@ Interface
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Serial Implementation Control Flow

Outline

e Serial Implementation
@ Control Flow
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Serial Implementation Control Flow

FMM Control Flow

<.. {}x{\> Create Multipole Expansions Evaluate Local Expansions. ..“.:
SNV

—> P2M —> M2M ----> M2L ----> L2L ----> L2P

Kernel operations will map to GPU tasks.
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Serial Implementation Control Flow

FMM Control Flow

Parallel Operation

<+——» M2Mand L2L translations <« ---p M2Ltransformation e Local domain

Root tree

Level k

Kernel operations will map to GPU tasks.
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Serial Implementation Interface
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e Serial Implementation

@ Interface
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Serial Implementation Interface

Evaluator Interface

@ initializeExpansions (tree, blobInfo)

o Generate multipole expansions on the lowest level
e Requires loop over cells
e O(p)

@ upwardSweep (tree)

e Translate multipole expansions to intermediate levels
e Requires loop over cells and children (support)
° O(p%)

@ downwardSweep (tree)

e Convert multipole to local expansions and translate local
expansions on intermediate levels

o Requires loop over cells and parent (cone)

o O(p?)
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Serial Implementation Interface

Evaluator Interface

@ evaluateBlobs (tree, blobInfo)
e Evaluate direct and local field interactions on lowest level
e Requires loop over cells and neighbors (in section)
o O(p?)
@ evaluate(tree, blobs, blobInfo)
o Calculate the complete interaction (multipole + direct)
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Serial Implementation Interface

Kernel Interface

Method Description

P2M(t) Multipole expansion coefficients
L2P (t) Local expansion coefficients
M2M (t) Multipole-to-multipole translation
M21T, (t) Multipole-to-local translation
L2L(t) Local-to-local translation
evaluate (blobs) | Direct interaction

@ Evaluator is templated over Kernel
@ There are alternative kernel-independent methods

e kifmm3d

M. Knepley (UC)
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Multicore Interfaces
Outline

e Multicore Interfaces
@ GPU Programming
@ FLASH
@ PetFMM
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Multicore Interfaces GPU Programming

GPU vs. CPU

A GPU looks like a big CPU with no virtual memory:
@ Many more hardware threads encourage concurrency
@ Makes bandwidth limitations even more acute
@ Shared memory is really a user-managed cache
@ Texture memory is also a specialized cache
@ User also manages a very small code segment
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GPU vs. CPU

Multicore Interfaces

Power usage can be very different:

GPU Programming

Platform TF KW | GB/s Price ($) | GF/$ | GF/W
IBM BG/P 14 | 40.00 | 57.0* 1,800,000 | 0.008 | 0.35
IBM BlueGene | 280 | 5000 ??7? | 350,000,000 | 0.0008 | 0.55
NVIDIA C1060 1| 0.19 | 102.0 1,475 | 0.680 | 5.35
ATl 9250 1| 0.12| 635 840 | 1.220 | 8.33

Table: Comparison of Supercomputing Hardware.

M. Knepley (UC)

LsuU
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Multicore Interfaces GPU Programming

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

@ Protoypical operation is Triad (WAXPY): w =y + ax
@ Measures the memory bandwidth bottleneck (much below peak)
@ Datasets outstrip cache

Machine Peak (MF/s) | Triad (MB/s) | MF/MW Eqg. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 | 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 | 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/
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Multicore Interfaces GPU Programming

Analysis of Sparse Matvec (SpMV)

Assumptions
@ No cache misses
@ No waits on memory references
Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V' Number of vectors to multiply
We can look at bandwidth needed for peak performance

2\ m 6
<8 + V> ey byte/flop (2)
or achieveable performance given a bandwith BW
Vnz
BV 2)msenz oV Milop/s ®)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.
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Multicore Interfaces GPU Programming

Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
— bytes/flop(1122.4 MB/s) = 151 MFlops/s, 4
(8+2)%+6y/p( /s) ps/ (4)

which is a dismal 8.8% of peak.

Can improve performance by
@ Blocking
@ Multiple vectors
but operation issue limitations take over.
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Multicore Interfaces GPU Programming

Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

— bytes/flop(1122.4 MB/s) = 151 MFlops/s, 4
(8+2)%+6y/p( /s) ps/ (4)

which is a dismal 8.8% of peak.

Better approaches:
@ Unassembled operator application (Spectral elements, FMM)

e N data, N° computation
@ Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

e N data, Nk computation

M. Knepley (UC) LSU 36/76



Multicore Interfaces GPU Programming

GPU programming in General

@ What design ideas are useful?
@ How do we customize them for GPUs?

@ Can we show an example?
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Multicore Interfaces GPU Programming

Break Operations Into Small Chunks

Usually called modularity
@ Also called orthogonality or separation of concerns

@ Allows reduction of complexity
e eXtreme programming

@ Just concerned with functionality
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Multicore Interfaces GPU Programming

Break Operations Into Small Chunks
GPU Differences

We now have to worry about code size!
@ 16K total for NVIDIA 1060C board
@ Instructions can be a significant portion of memory usage

@ Have to split operations which logically belong together

@ Also allows aggregation of memory access
o Computation can be regrouped

@ Needs tools to manage many small tasks
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Multicore Interfaces GPU Programming

Break Operations Into Small Chunks

Example

Reduction over a dataset
@ For instance, computation of finite element integrals

@ Break into computation and aggregation stages
@ Model this by:

e Maximum flop rate stage
e Bandwidth limited stage
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Multicore Interfaces GPU Programming

Break Operations Into Small Chunks

Example

Reduction over a dataset
@ For instance, computation of Multipole-to-Local transform

@ Break into computation and aggregation stages
@ Model this by:

e Maximum flop rate stage
e Bandwidth limited stage

M. Knepley (UC) GPU LSU  40/76



Multicore Interfaces GPU Programming

Reorder for Locality

Exploits “nearby” operations to aggregate computation
@ Can be temporal or spatial

@ Usually exploits a cache

@ Difficult to predict/model on a modern processor
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Multicore Interfaces GPU Programming

Reorder for Locality
GPU Differences

We have to manage our “cache” explicitly
@ The NVIDIA 1060C shared memory is only 16K for 32 threads

@ We must also manange “main memory” explicitly
o Need to move data to/from GPU

@ Must be aware of limited precision when reordering
@ Can be readily modeled

@ Need tools for automatic data movement (marshalling)
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Multicore Interfaces GPU Programming

Reorder for Locality

Example

Data-Aware Work Queue
@ A work queue manages many small tasks

e Dependencies are tracked with a DAG
e Queue should manage a single computational phase (supertask)

@ Nodes also manage an input and output data segment

e Specific classes can have known sizes
e Can hold main memory locations for segments

@ Framework manages marshalling:
Allocates contiguous data segments
Calculates segment offsets for tasks
Marshalls (moves) data

Passes offsets to supertask execution
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Multicore Interfaces FLASH

Outline

e Multicore Interfaces

@ FLASH
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Multicore Interfaces FLASH

FLASH Design

FLASH enables multicore computing through FLAME
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Multicore Interfaces FLASH

FLASH Design

FLASH enables multicore computing through FLAME

@ LA interface is identical to FLAME

@ FLAME executes operates immediately

@ FLASH queues operations, and

@ Executes queues on user call (does nothing in FLAME)
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Multicore Interfaces FLASH

Cholesky Factorization

FLA_Part_2x2 (A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL);
while (FLA_Object_length (ATL) < FLA_Object_length(A)) {
FLA_Repart_2x2_to_3x3(
ATL, ATR, &A00, &A01, &A02,
&A10, &All, &Al2,
ABL, ABR, &A20, &A21, &A22, 1, 1, FLA_BR);
FLASH_Chol (FLA_UPPER_TRIANGULAR, All);
FLASH _Trsm(FLA_LEFT,FLA_UPPER_TRIANGULAR,FLA_TRANSPOSE,
FLA_NONUNIT DIAG, FLA_ONE, All, Al2);
FLASH_Syrk (FLA_UPPER_TRIANGULAR, FLA_TRANSPOSE,
FLA_MINUS_ONE, Al2, FLA_ONE, A22);
FLA_Cont_with_ 3x3_to_2x2(
&ATL, &ATR, A00, A01, A02,
A10, All1l, Al2,
§ABL, &ABR, A20, A21, A22, FLA_TL);
}
FLA_Queue_exec () ;
M. Knepley (UC) GPU LSU 46/76



Multicore Interfaces PetFMM

Outline

e Multicore Interfaces

@ PetFMM

M. Knepley (UC) GPU LSU  47/76



Multicore Interfaces PetFMM

PetFMM-GPU

We break down sweep operations into Tasks
@ Cell loops are now tiled
@ Tasks are queued
@ We can form a DAG since we know the dependence structure
@ Scheduling is possible

This asynchronous interface can enable
@ Overlapping direct and multipole calculations
@ Reorganizing the downward sweep
@ Adaptive expansions

M. Knepley (UC) GPU LSU
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Multicore Interfaces PetFMM

GPU Classes

Section
@ size () returns the number of values
@ getFiberDimension (cell) returns the number of cell values
@ restrict/update () retrieves and changes cell values
@ clone/extract () converts between CPU and GPU objects
Evaluator
initializeExpansions ()

upwardSweep ()

downwardSweepTranslate ()

o
o
@ downwardSweepTransform ()
()
@ evaluateBlobs ()

()

evaluate ()

M. Knepley (UC) GPU LSU  49/76



Multicore Interfaces PetFMM

GPU Classes

Section
@ size () returns the number of values
@ getFiberDimension (cell) returns the number of cell values
@ restrict/update () retrieves and changes cell values
@ clone/extract () converts between CPU and GPU objects

Task

@ Input data size

@ Output data size

@ Dependencies (future)
TaskQueue

@ Manages storage and offsets

@ evaluate ()

M. Knepley (UC) GPU LSU  49/76



Multicore Interfaces PetFMM

Upward Sweep

@ cell block

in cell and child centers, child multipole coeff
out cell multipole coeff

Downward Sweep Transform Task

@ cell block

in cell and interaction list centers, interaction list multipole coeff
out cell temp local coeff
Downward Sweep Expansion Task

@ cell block

in cell and parent centers, cell temp local coeff, parent local coeff
out cell local coeff

M. Knepley (UC) GPU LSU
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Multicore Interfaces PetFMM

Upward Sweep

@ cell block

in cell and child centers, child multipole coeff
out cell multipole coeff
Downward Sweep Transform Task

@ cell block

in cell and interaction list centers, cell multipole coeff
out interaction list temp local coefficients
Downward Sweep Expansion Task

@ cell block

in cell and parent centers, cell temp local coeff, parent local coeff
out cell local coeff
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Multicore Interfaces PetFMM

Upward Sweep

@ cell block

in cell and child centers, child multipole coeff
out cell multipole coeff
Downward Sweep Reduce Task

@ cell block

in interaction list temp local coefficients
out cell temp local coefficients
Downward Sweep Expansion Task

@ cell block

in cell and parent centers, cell temp local coeff, parent local coeff
out cell local coeff

M. Knepley (UC) GPU LSU
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Multicore Interfaces PetFMM

Transform Task

Shifts interaction cell multipole expansion to cell local expansion

@ Add a task for each interaction cell
@ All tasks with same origin are merged

@ Local memory:

o 2 (p+1) blockSize (Pascal) + 2 p blockSize (LE) + 2 p (ME)
8 terms 4416 bytes
17 terms 9096 bytes

@ Execution

o 1 block per ME

e Each thread reads a section of ME and the MEcenter
e Each thread computes an LE separately

e Each thread writes LE to separate global location
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Multicore Interfaces PetFMM

Reduce Task

Add up local expansion contributions from each interaction cell

@ Add a task for each cell
@ Local memory:
o 2*terms (LE)
8 terms 64 bytes
17 terms 136 bytes
@ Execution

o 1 block per output LE
e Each thread reads a section of input LE
e Each thread adds to shared output LE

M. Knepley (UC) GPU

LsuU
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Multicore Interfaces PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N
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Multicore Interfaces PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N

@ New M2L design was implemented using PyCUDA
@ Port to C++ is underway

@ We can now achieve 500 GF on the NVIDIA Tesla
@ Previous best performance we found was 100 GF

@ We will release PetFMM-GPU in the new year
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Multicore Interfaces PetFMM

CPU vs GPU

Sample run for 250,000 vortex particles in an 8 level tree

Section Time(s)
PyCUDA Laptop C++
Setup 0.55 0.00
InitExpansions 10.74 0.93
UpSweep 0.36 5.02
DownSweepEnqueue 0.09 —
GPUOverhead 2.97 —
DownSweepM2LTrns 2.08 363.21
DownSweepM2LRed 0.45 —
DownSweeplL2L 0.36 4.11

Notice that once direct evaluation is moved to the GPU, Python can
easily outperform C++.
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Multicore Implementation
Outline

e Multicore Implementation
@ Complexity Analysis
@ Redesign
@ MultiGPU
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Outline

e Multicore Implementation
@ Complexity Analysis
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Multicore Implementation Complexity Analysis

Greengard & Gropp Analysis

For a shared memory machine,

T:ag+blog4P+chAIID+d$+e(N,P) (5)
@ Initialize multipole expansions, finest local expansions, final sum
©@ Reduction bottleneck
© Translation and Multipole-to-Local
© Direct interaction
@ Low order terms

A Parallel Version of the Fast Multipole Method,
L. Greengard and W.D. Gropp, Comp. Math. Appl., 20(7), 1990.
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Multicore Implementation Redesign

Outline

e Multicore Implementation

@ Redesign
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Multicore Implementation [RECESN

Question

What is the optimal number of particles per cell?

@ Greengard & Gropp
e Minimize time and maximize parallel efficiency

o Bop[ = \/g ~ 30
@ Gumerov & Duraiswami

e Follow GG, but also try to consider memory access
@ Byt = 91, but instead, they choose 320
e Heavily weights the N? part of the computation

@ We propose to cover up the bottleneck with direct evaluations

M. Knepley (UC) GPU LSU 59/76



Multicore Implementation Redesign

PetFMM Stages

Setup Up Sweep Down Sweep Evaluation
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Multicore Implementation [RECESN

Problem

Missing Concurrency

We can balance time in direct evaluation with idle time for small grids.

@ The direct evaluation takes time a2
@ Assume a single thread group works on the first L tree levels

Thus, we need .

b4-1p
B> =

> N (6)

in order to cover the bottleneck. In an upcoming publication, we show

that this bound holds for all modern processors.
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Multicore Implementation [RECESN

Problem
Missing Bandwidth

We can restructure the M2L to conserve bandwidth

@ Matrix-free application of M2L

@ Reorganize traversal to minimize bandwidth

Old Pull in 27 interaction MEs, transform to LE, reduce

New Pull in cell ME, transform to 27 interaction LEs, partially reduce
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Multicore Implementation [RECESN

Matrix-Free M2L

The M2L transformation applies the operator

Mj = —17¢= (1) (i ij> (7)
J
Notice that the t exponent is constant along perdiagonals. Thus we
@ divide by t at each perdiagonal
@ calculate the Cj; by the recurrence along each perdiagonal
@ carefully formulate complex division (STL fails here)
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Multicore Implementation MultiGPU

Outline

e Multicore Implementation

@ MultiGPU
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Multicore Implementation MultiGPU

Parallel Tree Implementation

@ Divide tree into a root and local trees
@ Distribute local trees among processes

@ Provide communication pattern for local sections (overlap)
e Both neighbor and interaction list overlaps

o Sieve generates MPI from high level description
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Multicore Implementation MultiGPU

Parallel Tree Implementation

How should we distribute trees?

@ Multiple local trees per process allows good load balance
@ Partition weighted graph

@ Minimize load imbalance and communication

o Computation estimate:

Leaf Nijp (P2M) + nip? (M2L) + N;p (L2P) + 39N? (P2P)
Interior ngp? (M2M) + mp? (M2L) + nep? (L2L)

e Communication estimate:
Diagonal nc(L—k—1)

Lateral 2"% for incidence dimesion m
@ Leverage existing work on graph partitioning
e ParMetis
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Multicore Implementation MultiGPU

Parallel Tree Implementation

Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

@ Good partitions exist for non-uniform distributions
2D O (v/n(log n)3/?) edgecut
3D O (n?/3(log n)*) edgecut

@ As scalable as regular grids

@ As efficient as uniform distributions

@ ParMetis will find a nearly optimal partition
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Multicore Implementation MultiGPU

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

@ Good partitions exist for non-uniform distributions

2D C; = 1.24’:Co for random matching
3D C; =1.21'Cy?? for random matching

@ 3D proof needs assurance that averge degree does not increase

@ Efficient in practice
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Multicore Implementation MultiGPU

Parallel Tree Implementation

Advantages

e Simplicity
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Multicore Implementation MultiGPU

Parallel Tree Implementation

Advantages

e Simplicity

e Complete serial code reuse
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Multicore Implementation MultiGPU

Parallel Tree Implementation

Advantages

e Simplicity
e Complete serial code reuse

e Provably good performance and scalability

M. Knepley (UC) GPU LSU 69/76



Multicore Implementation MultiGPU

Distributing Local Trees

The interaction of locals trees is represented by a weighted graph.

This graph is partitioned, and trees assigned to processes.
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Multicore Implementation MultiGPU

PetFMM Load Balance

0.8
[
0.6 AN

NG
'\“\“/.

0.2
uniform 4ML8R5 —8—
uniform 10ML9R5 —e—
spiral IML8R5 —x—
0 ‘ spiral w/space-filling IML8RS —=—
2 4 8 16 32 64 128 256
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(b) 4 cores

MultiGPU
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(c) 8 cores
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Multicore Implementation MultiGPU

Parallel Data Movement

@ Complete neighbor section

© Upward sweep

@ Upward sweep on local trees
@ Gather to root tree
© Upward sweep on root tree

© Complete interaction list section

© Downward sweep

@ Downward sweep on root tree
@ Scatter to local trees
© Downward sweep on local trees
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Multicore Implementation MultiGPU

GPU Interaction

Since our parallelism is hierarchical
@ Local (serial) tree interface is preserved

@ GPU code can be reused locally without change

@ Multiple GPUs per node can also be used
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What’s Important?

Interface improvements bring concrete benefits

@ Facilitated code reuse

o Serial code was largely reused
e Test infrastructure completely reused

@ Opportunites for performance improvement

o Overlapping computations
o Better task scheduling

@ Expansion of capabilities

e Could now combine distributed and multicore implementations
e Could replace local expansions with cheaper alternatives
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