Developing GPU-Enabled Scientific Libraries

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

GPU-SMP 2011
GPU Solutions to Multiscale Problems in Science and Engineering
Lanzhou, China July 18-21, 2011

/\ RUSH UNIVERSITY
\II MEDICAL CENTER
M. Knepley (UC) GPU GPU-SMP 1/85

Scientific Libraries
Ouitline

@ Scientific Libraries
@ What is PETSc?

M. Knepley (UC) GPU GPU-SMP 3/85

Main Point

To be widely accepted,

M. Knepley (UC) GPU GPU-SMP 4/85

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

M. Knepley (UC) GPU GPU-SMP 4/85

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
Infrastructure.

M. Knepley (UC) GPU GPU-SMP 4/85

Scientific Libraries

Lessons from Clusters and MPPs

Failure
e Parallelizing Compilers
e Automatic program decomposition

M. Knepley (UC) GPU GPU-SMP 5/85

Scientific Libraries

Lessons from Clusters and MPPs

Failure
e Parallelizing Compilers
e Automatic program decomposition

Success
e MPI (Library Approach)
e PETSc (Parallel Linear Algebra)
e User provides only the mathematical description

M. Knepley (UC) GPU GPU-SMP 5/85

Scientific Libraries What is PETSc?

Outline

@ Scientific Libraries
@ What is PETSc?

M. Knepley (UC) GPU GPU-SMP 6/85

Scientific Libraries What is PETSc?

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

Domain
We want to experiment with different I]E[:ﬂ“]l][]sm["]
@ Models
@ Discretizations
@ Solvers
@ Algorithms

@ which blur these boundaries

M. Knepley (UC) GPU GPU-SMP

7/85

http://amzn.com/0521602866

Scientific Libraries What is PETSc?

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
— Barry Smith

M. Knepley (UC) GPU GPU-SMP 8/85

http://www.mcs.anl.gov/~bsmith

Scientific Libraries What is PETSc?

Advice from Bill Gropp

You want to think about how you decompose your data
structures, how you think about them globally. [...] If you
were building a house, you'd start with a set of blueprints
that give you a picture of what the whole house looks like.
You wouldn’t start with a bunch of tiles and say. “Well I'll
put this tile down on the ground, and then I'll find a tile
to go next to it.” But all too many people try to build their
parallel programs by creating the smallest possible tiles
and then trying to have the structure of their code emerge
from the chaos of all these little pieces. You have to have
an organizing principle if you’re going to survive making
your code parallel.

(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)

M. Knepley (UC) GPU GPU-SMP 9/85

http://www.rce-cast.com/Podcast/rce-28-mpich2.html

Scientific Libraries What is PETSc?

What is PETSc?

A freely available and supported research code
for the parallel solution of nonlinear algebraic
equations

Free

e Download from http://www.petsc.org
o Free for everyone, including industrial users

Supported

e Hyperlinked manual, examples, and manual pages for all routines
@ Hundreds of tutorial-style examples
@ Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python

M. Knepley (UC) GPU GPU-SMP 10/85

http://www.petsc.org
mailto:petsc-maint@mcs.anl.gov

Scientific Libraries What is PETSc?

What is PETSc?

@ Portable to any parallel system supporting MPI, including:
o Tightly coupled systems
@ Cray XT6, BG/Q, NVIDIA Fermi, K Computer
o Loosely coupled systems, such as networks of workstations
@ IBM, Mac, iPad/iPhone, PCs running Linux or Windows
@ PETSc History
e Begun September 1991
@ Over 60,000 downloads since 1995 (version 2)
o Currently 400 per month
@ PETSc Funding and Support
o Department of Energy
o ECP, PSAAPIIl, AMR, BES, SciDAC, MICS
o National Science Foundation
e CSSI, SI2, CIG, CISE
o Intel Parallel Computing Center

M. Knepley (UC) GPU GPU-SMP 11/85

Scientific Libraries What is PETSc?

The PETSc Team

.

Satish Balay

Bea E

| L
Hong Zhang Llsandro Dalcin Stefano Zampini Mark Adams

Matt Knepley Barry Sm'th Jed Brown

% ~
Toby Isaac Hong Zhang Pierre Jolivet Junch'ao Zhang

M. Knepley (UC) GPU GPU-SMP 12/85

Scientific Libraries What is PETSc?

Who Uses PETSc?

Computational Scientists

e Earth Science

PyLith (CIG)

e Underworld (Monash)

e Salvus (ETHZ)

o TerraFERMA (LDEO, Columbia, Oxford)

e Multiphysics
o MOOSE
o GRINS

e Subsurface Flow and Porous Media

o PFLOTRAN (DOE)
o STOMP (DOE)

M. Knepley (UC) GPU GPU-SMP 13/85

http://www.geodynamics.org/cig/software/pylith
http://www.underworldproject.org/
https://salvus.io/
http://terraferma.github.io/
http://mooseframework.org/
https://grinsfem.github.io/
http://ees.lanl.gov/pflotran/
http://stomp.pnnl.gov/

Scientific Libraries What is PETSc?

Who Uses PETSc?

Computational Scientists

e CFD
e IBAMR
o Fluidity
e OpenFVM

e Fusion

e XGC

e BOUT++

e NIMROD

e M3D—C'

M. Knepley (UC) GPU GPU-SMP 14/85

https://github.com/IBAMR/IBAMR
http://amcg.ese.ic.ac.uk/index.php?title=Fluidity
http://openfvm.sourceforge.net/
http://w3.physics.lehigh.edu/~xgc/
https://bout.llnl.gov/
http://www.nimrodteam.org/
https://w3.pppl.gov/~nferraro/m3dc1.html

Scientific Libraries What is PETSc?

Who Uses PETSc?

Algorithm Developers

o lterative methods
Deflated GMRES

o LGMRES
e QCG

o SpecEst

e Preconditioning researchers
FETI-DP (Klawonn and Rheinbach)
o STRUMPACK (Ghysels and Li)

e HPDDM (Jolivet and Nataf)

e ParPre (Eijkhout)

M. Knepley (UC) GPU

GPU-SMP

15/85

http://www.uni-due.de/numerik/klawonn.shtml
http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/oliver-rheinbach/kontakt
https://github.com/pghysels/STRUMPACK
https://github.com/hpddm/hpddm
http://www.netlib.org/scalapack/manual.ps
http://tacc-web.austin.utexas.edu/staff/home/veijkhout/public_html/

Scientific Libraries What is PETSc?

Who Uses PETSc?

Algorithm Developers

e Discretization
Firedrake
FENiCS
libMesh

Deal Il
PETSc-FEM
OOFEM
PetRBF

e Outer Loop Solvers

e Eigensolvers (SLEPc)
@ Optimization (PERMON)

M. Knepley (UC) GPU GPU-SMP 16/85

http://firedrakeproject.org/
http://fenicsproject.org/
http://libmesh.sourceforge.net/
http://www.dealii.org/
http://www.cimec.org.ar/petscfem
http://www.oofem.org/
http://barbagroup.bu.edu/Barba_group/PetRBF.html
http://www.grycap.upv.es/slepc/
http://industry.it4i.cz/en/products/permon/

Scientific Libraries What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 500 billion unknowns

e UNIC on BG/P and XT5
o PFLOTRAN for flow in porous media

M. Knepley (UC) GPU GPU-SMP 17/85

https://hpgmg.org/

Scientific Libraries What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 500 billion unknowns

e UNIC on BG/P and XT5
o PFLOTRAN for flow in porous media

@ PETSc has run on over 1,500,000 cores efficiently
e Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

M. Knepley (UC) GPU GPU-SMP 17/85

https://hpgmg.org/

Scientific Libraries What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 500 billion unknowns

e UNIC on BG/P and XT5
o PFLOTRAN for flow in porous media

@ PETSc has run on over 1,500,000 cores efficiently
e Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

@ PETSc applications have run at 23% of peak (600 Teraflops)

@ Jed Brown on NERSC Edison
o HPGMG code

M. Knepley (UC) GPU GPU-SMP 17/85

https://hpgmg.org/

Scientific Libraries What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

M. Knepley (UC) GPU GPU-SMP 18/85

http://portal.acm.org/citation.cfm?id=245883

Scientific Libraries What is PETSc?

Interface Questions

How should the user interact with

manycore systems?
Through computational libraries

M. Knepley (UC) GPU-SMP 18/85

http://portal.acm.org/citation.cfm?id=245883

Scientific Libraries What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?

M. Knepley (UC) GPU-SMP 18/85

http://portal.acm.org/citation.cfm?id=245883

Scientific Libraries What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral APl (Smith and Gropp, 1996)

M. Knepley (UC) GPU GPU-SMP 18/85

http://portal.acm.org/citation.cfm?id=245883

Scientific Libraries What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral APl (Smith and Gropp, 1996)

How should the library interact with
manycore systems?

M. Knepley (UC) GPU GPU-SMP 18/85

http://portal.acm.org/citation.cfm?id=245883

Scientific Libraries What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral APl (Smith and Gropp, 1996)

How should the library interact with
manycore systems?

@ Existing library APIs

@ Code generation (CUDA, OpenCL, PyCUDA)

@ Custom multi-language extensions

M. Knepley (UC) GPU GPU-SMP 18/85

http://portal.acm.org/citation.cfm?id=245883

Scientific Libraries What is PETSc?

Performance Analysis

In order to understand and predict the performance of GPU code, we
need:

good models for the computation, which make it possible to evaluate
the efficiency of an implementation;

a flop rate, which tells us how well we are utilizing the hardware;

timing, which is what users care about;

M. Knepley (UC) GPU GPU-SMP 19/85

Linear Systems

Outline

@ Linear Systems

M. Knepley (UC) GPU GPU-SMP 20/85

Linear Systems

Performance Expectations

Linear Systems

The Sparse Matrix-Vector product (SpMV)
is limited by system memory bandwidih,
rather than by peak flop rate.

@ We expect bandwidth ratio speedup (3x—6x for most systems)
@ Memory movement is more important than minimizing flops

@ Kernel is a vectorized, segmented sum (Blelloch, Heroux, and
Zagha: CMU-CS-93-173)

M. Knepley (UC) GPU GPU-SMP 21/85

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.1840&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.1840&rep=rep1&type=pdf

Linear Systems

Memory Bandwidth

All computations in this presentation are memory bandwidth limited.
We have a bandwidth peak, the maximum flop rate achievable given a
bandwidth. This depends on 3, the ratio of bytes transferred to flops
done by the algorithm.

Processor BW (GB/s) Peak (GF/s) BW Peak* (GF/s)
Core 2 Duo 4 34 1
GeForce 9400M 21 54 5
GTX 285 159 1062 40
Tesla M2050 144 1030 36

*Bandwidth peak is shown for 5 = 4

M. Knepley (UC) GPU GPU-SMP 22/85

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

@ Protoypical operation is Triad (WAXPY): w =y + ax
@ Measures the memory bandwidth bottleneck (much below peak)
@ Datasets outstrip cache

Machine Peak (MF/s) | Triad (MB/s) | MF/MW Eqg. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 | 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 | 8500.0 (0.8%)

Table: Bandwidth limited machine performance

M. Knepley (UC)

http://www.cs.virginia.edu/stream/

GPU-SMP 23/85

http://www.cs.virginia.edu/stream/

Linear Systems

Analysis of Sparse Matvec (SpMV)

Assumptions
@ No cache misses
@ No waits on memory references
Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V' Number of vectors to multiply
We can look at bandwidth needed for peak performance

2\ m 6
(8 + V) e + v byte/flop (1)
or achieveable performance given a bandwith BW
Vnz
BW Mt 2
(8V +2)m + 6nz op/s @)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.

M. Knepley (UC) GPU GPU-SMP 24/85

http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf
http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf

Linear Systems
Linear Algebra Interfaces

Strong interfaces mean:
e Easy code interoperability (LAPACK, Trilinos)
e Easy portability (GPU)

e Seamless optimization

M. Knepley (UC) GPU GPU-SMP 25/85

VECCUDA

Strategy: Define a new Vec implementation

@ Uses Thrust for data storage and operations on GPU
@ Supports full PETSc Vec interface

@ Inherits PETSc scalar type

@ Can be activated at runtime, —vec_type cuda

@ PETSc provides memory coherence mechanism

M. Knepley (UC) GPU GPU-SMP 26/85

http://code.google.com/p/thrust/

MATAIJCUDA

Also define new Mat implementations

@ Uses Cusp for data storage and operations on GPU
@ Supports full PETSc Mat interface, some ops on CPU
@ Can be activated at runtime, -mat_type aijcuda

@ Notice that parallel matvec necessitates off-GPU data transfer

M. Knepley (UC) GPU GPU-SMP 27/85

http://code.google.com/p/cusp-library/

Linear Systems
Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,
Minden, Smith, Knepley, 2010

@ All linear algebra types work with solvers
@ Entire solve can take place on the GPU
e Only communicate scalars back to CPU
@ GPU communication cost could be amortized over several solves

@ Preconditioners are a problem
@ Cusp has a promising AMG

M. Knepley (UC) GPU GPU-SMP 28/85

http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf

Linear Systems

Example

Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp

—-da_mat_type aijcusp -mat_no_inode

-da_grid_x 100 -da_grid_y 100
—-pc_type none -pc_mg_levels 1
-preload off -cuda_synchronize
-log_summary

M. Knepley (UC)

Setup types
Set grid size
Setup solver
Setup run

GPU-SMP

29/85

Linear Systems

Example

PFLOTRAN

Flow Solver S s 005 025 043 05 038
32 x 32 x 32 grid

Routine | Time (s) | MFlops | MFlops/s

CPU

KSPSolve | 8.3167 4370 526

MatMult 1.5031 769 512 e
KSPSolve 1.6382 4500 2745 | P Lichtner, G. Hammond,
MatMult 0.3554 830 2337 | R. Mills, B. Phillip

M. Knepley (UC) GPU GPU-SMP 30/85

Linear Systems

Serial Performance

NVIDIA GeForce 9400M

Performance on SNES Example 19
250 T T : : T : :

200

150

Time (s)

100

50

0D 20000 40000 60000 80000 100000 120000 140000 160000
Number of Dof

M. Knepley (UC) GPU GPU-SMP 31/85

Linear Systems

Serial Performance

NVIDIA Tesla M2050

Performance on SNES Example 19

140 T T T T T T T
— GPU VecMDot
""" CPU VecMDot
120 — GPU VecMAXPY
CPU VecMAXPY
— GPU MatMult
100f| - CPU MatMult
~ 80
ik
[
E
= eof
40+
20
__‘_F__A_,_._ﬁ,.._-/— ---------------------------
00 20000 40000 60000 80000 100000 120000 140000 160000

Number of Dof

M. Knepley (UC) GPU GPU-SMP 32/85

Linear Systems

Serial Performance

NVIDIA Tesla M2050

GPU vs. CPU Performance on SNES Example 19

250 T T . T .
Il VecMDot
B VecMAXPY
Il MatMult
200}
150
0
[
E
=
100
50
0 400 1600 10000 40000 90000 160000

Number of Dof

M. Knepley (UC) GPU GPU-SMP 33/85

Assembly

Outline

e Assembly

M. Knepley (UC) GPU GPU-SMP 34/85

Assembly

Performance Expectations

Matrix Assembly

Matrix Assembly, aggregation of inputs,
is also limited by memory bandwidth,
rather than by peak flop rate.

@ We expect bandwidth ratio speedup (3x—6x for most systems)
@ Input for FEM is a set of element matrices

@ Kernel is dominated by sort (submission to TOMS)

M. Knepley (UC) GPU GPU-SMP 35/85

Assembly
Assembly Interface

A single new method is added:

MatSetValuesBatch(Mat J, Petscint Ne, PetscIint NI,
Petsclnt »elemRows,
PetscScalar selemMats)

Thus, a user just batches his input to
achieve massive concurrency.

M. Knepley (UC) GPU GPU-SMP 36/85

Serial Assembly Steps

@ Copy elemRows and elemMat to device

M. Knepley (UC) GPU GPU-SMP 37/85

Serial Assembly Steps

@ Copy elemRows and elemMat to device
@ Allocate storage for intermediate COO matrix

M. Knepley (UC) GPU GPU-SMP 37/85

Serial Assembly Steps

@ Copy elemRows and elemMat to device
@ Allocate storage for intermediate COO matrix
© Use repeat&itile iterators to expand row input

M. Knepley (UC) GPU GPU-SMP 37/85

Assembly
Convenience lterators

repeated_range<IndexArraylterator>

rowInd (elemRows. begin (), elemRows.end (), NI);
tiled_range<IndexArraylterator >

collnd (elemRows. begin (), elemRows.end(), NI, NI);

N, =3
elemRows 013
rowlnd 000[111]3383
collnd 013/013|013

M. Knepley (UC) GPU GPU-SMP 38/85

Serial Assembly Steps

@ Copy elemRows and elemMat to device
@ Allocate storage for intermediate COO matrix
© Use repeat&tile iterators to expand row input

M. Knepley (UC) GPU GPU-SMP 39/85

Serial Assembly Steps

© Sort COO matrix by row and column
@ Get permutation from (stably) sorting columns
@ Gather rows with this permutation
© Get permutation from (stably) sorting rows
@ Gather columns with this permutation
@ Gather values with this permutation

M. Knepley (UC) GPU GPU-SMP 39/85

Multikey Sort

Initial input

A~ N N N N~~~ o~
. WO OW—-_L0W=—=
Lerzezeze

M. Knepley (UC) GPU GPU-SMP 40/85

Multikey Sort

Number pairs Index
1 0 0
(3 1) 1
(0 0) 2
1 1) 3
(3 3) 4
0 1) 5
(0 3 6
(3 0) 7
(1 3 8

M. Knepley (UC) GPU GPU-SMP 41/85

Multikey Sort

After stable sort of columns 0o ln%ex
(0 0 2
(3 0 7
3 1 1
1 1 3
(o 1 5
(3 3) 4
(0 3) 6
1 3 8

M. Knepley (UC) GPU GPU-SMP 42/85

Multikey Sort

After gather of rows Index
using column permutation,
and implicit renumbering

A~ N N N~~~ o~ o~
O WO 12 WWO —
Leezzzeee
oONOO O A~ WN-—=-O

M. Knepley (UC) GPU GPU-SMP 43/85

Multikey Sort

After stable sort of rows, Index
and gather of columns
using row permutation

—

A~ N N~~~ o~~~
WWwWw-—L 22000
Lzeezeeze
DWNOOOPL~,ONO

M. Knepley (UC) GPU GPU-SMP 44/85

Serial Assembly Steps

@ Copy elemRows and elemMat to device

@ Allocate storage for intermediate COO matrix
© Use repeat&tile iterators to expand row input
© Sort COO matrix by row and column

M. Knepley (UC) GPU GPU-SMP 45/85

Serial Assembly Steps

@ Compute number of unique (i,j) entries using inner_product()

M. Knepley (UC) GPU GPU-SMP 45/85

Counting Unique Entries

Initial input

N N N N N N N N N
WWWw-—=-L =2 000O0
OO0 20 W= -0
RN NN N NN N

M. Knepley (UC) GPU GPU-SMP 46/85

>
el
=
@
7]
7]
<<

(%9}
2
S
p—
c
L
()
>
g
=
>
(@)
=
p—
=
2
o
®)

.~ N~~~ o~~~ —~

O+ MO+~ 0O0OO0O0o

OO0 OO~ MmMOmm

— O S S N N ' ~— ~—

~ N~~~ o~ o~~~

O MO+~ 0O 0O

OO0 OO~ MmMmm

— N S S~ ' N ' ~— ~—

Duplicate input

47/85

GPU-SMP

GPU

M. Knepley (UC)

Counting Unique Entries

Shift new sequence
and truncate initial input

A~ N~~~ o~~~
WWw-—=2 =2 0000
OO0 20 W= 2120
—_— — — — — ~— ~— —
A~ N N~~~ o~ o~
WWwwWw-—L2 2000
eeezeezz

M. Knepley (UC) GPU GPU-SMP 48/85

Counting Unique Entries

“Multiply entries” using
not-equals binary operator

AN AN TN N N N N S
WW-—= - 000O0
OO L0 W-—=—-0
N N N N N N S N
AN AN N N N N SN S
WWWw-—=- 000
ceLeoeess
[T o JE QU G G G o R

M. Knepley (UC) GPU GPU-SMP 49/85

Counting Unique Entries

Reduction of entries plus 1 1
. . o 0|0 1) = 1
gives number of unique ©)0 1) — o
entries © 11 3 — f
o 3@ 0 = 1

1T oo 1) = 1

1 H|@E 0 = 1

B 0|3 00 = 0

3 0|3 0 = 0

6

M. Knepley (UC) GPU GPU-SMP 50/85

Serial Assembly Steps

@ Copy elemRows and elemMat to device

@ Allocate storage for intermediate COO matrix

© Use repeat&tile iterators to expand row input

© Sort COO matrix by row and column

@ Compute number of unique (i,j) entries using inner_product()

M. Knepley (UC) GPU GPU-SMP 51/85

Serial Assembly Steps

@ Copy elemRows and elemMat to device

@ Allocate storage for intermediate COO matrix

© Use repeat&tile iterators to expand row input

© Sort COO matrix by row and column

@ Compute number of unique (i,j) entries using inner_product()
© Allocate COO storage for final matrix

M. Knepley (UC) GPU GPU-SMP 51/85

Serial Assembly Steps

@ Copy elemRows and elemMat to device

@ Allocate storage for intermediate COO matrix

© Use repeat&tile iterators to expand row input

© Sort COO matrix by row and column

@ Compute number of unique (i,j) entries using inner_product()
© Allocate COO storage for final matrix

@ Sum values with the same (i,j) index using reduce_by_key()

M. Knepley (UC) GPU GPU-SMP 51/85

Serial Assembly Steps

@ Copy elemRows and elemMat to device

@ Allocate storage for intermediate COO matrix

© Use repeat&tile iterators to expand row input

© Sort COO matrix by row and column

@ Compute number of unique (i,j) entries using inner_product()
© Allocate COO storage for final matrix

@ Sum values with the same (i,j) index using reduce_by_key()
©Q Convert to AlJ matrix

© Copy from GPU (if necessary)

M. Knepley (UC) GPU GPU-SMP 51/85

Parallel Assembly Steps

@ Copy elemRows and elemMat to device

M. Knepley (UC) GPU GPU-SMP 52/85

Parallel Assembly Steps

@ Copy elemRows and elemMat to device
© Use repeat&tile iterators to expand row input

M. Knepley (UC) GPU GPU-SMP 52/85

Parallel Assembly Steps

@ Copy elemRows and elemMat to device

© Use repeat&tile iterators to expand row input
© Communicate off-process entry sizes

@ Find number of off-process rows (serial)
@ Map rows to processes (serial)
© Send number of rows to each process (collective)

M. Knepley (UC) GPU GPU-SMP 52/85

Parallel Assembly Steps

@ Copy elemRows and elemMat to device
@ Use repeat&tile iterators to expand row input
© Communicate off-process entry sizes

M. Knepley (UC) GPU GPU-SMP 53/85

Parallel Assembly Steps

© Allocate storage for intermediate diagonal COO matrix

M. Knepley (UC) GPU GPU-SMP 53/85

Parallel Assembly Steps

© Allocate storage for intermediate diagonal COO matrix
© Partition entries

@ Partition into diagonal and off-diagonal&off-process using
partition_copy ()

@ Partition again into off-diagonal and off-process using
stable_partition ()

M. Knepley (UC) GPU GPU-SMP 53/85

Assembly

Partitioning Entries

Process owns rows [0, 3)

Initial input

- = 2 WO O WO Ww

~ o~ o~~~ o~ —
O = W -0 WwWw-—=O0
NN NN Nt N

M. Knepley (UC) GPU GPU-SMP 54/85

Assembly

Partitioning Entries

Process owns rows [0, 3)

Partition into E? ?g
diagonal, and Diagonal = 5)
off-diagonal & g ‘13;
off-process entries Off-diagonal (3 0)
and (1 3)

Off-process (3 3)

(0 3)

M. Knepley (UC) GPU GPU-SMP 55/85

Assembly

Partitioning Entries

Process owns rows [0, 3)

Partition again into
off-diagonal and Diagonal
off-process entries

Off-diagonal

Off-process

WO =W wo =+ —=-0
N S S | e e | SN SN S S

W Wo==To=1o

M. Knepley (UC) GPU GPU-SMP 56/85

Parallel Assembly Steps

@ Copy elemRows and elemMat to device

@ Use repeatd&tile iterators to expand row input

© Communicate off-process entry sizes

© Allocate storage for intermediate diagonal COO matrix
© Partition entries

M. Knepley (UC) GPU GPU-SMP 57/85

Parallel Assembly Steps

@ Copy elemRows and elemMat to device

@ Use repeatd&tile iterators to expand row input

© Communicate off-process entry sizes

© Allocate storage for intermediate diagonal COO matrix
© Partition entries

© Send off-process entries

M. Knepley (UC) GPU GPU-SMP 57/85

Parallel Assembly Steps

@ Copy elemRows and elemMat to device

@ Use repeatd&tile iterators to expand row input

© Communicate off-process entry sizes

© Allocate storage for intermediate diagonal COO matrix

© Partition entries

© Send off-process entries

@ Allocate storage for intermediate off-diagonal COO matrix

M. Knepley (UC) GPU GPU-SMP 57/85

Parallel Assembly Steps

@ Copy elemRows and elemMat to device

@ Use repeatd&tile iterators to expand row input

© Communicate off-process entry sizes

© Allocate storage for intermediate diagonal COO matrix

© Partition entries

© Send off-process entries

@ Allocate storage for intermediate off-diagonal COO matrix

© Repartition entries into diagonal and off-diagonal using
partition_copy ()

M. Knepley (UC) GPU GPU-SMP 57/85

Parallel Assembly Steps

@ Copy elemRows and elemMat to device

@ Use repeatd&tile iterators to expand row input

© Communicate off-process entry sizes

© Allocate storage for intermediate diagonal COO matrix

© Partition entries

© Send off-process entries

@ Allocate storage for intermediate off-diagonal COO matrix

© Repartition entries into diagonal and off-diagonal using
partition_copy ()

© Repeat serial assembly on both matrices

M. Knepley (UC) GPU GPU-SMP 57/85

Assembly

Serial Performance

NVIDIA GTX 285

Performance on KSP Example 4
35 :

— MatCUSPSetValBch
------ ElemAssembly

3.0

25

2.0

Time (s)

15F

1.0F

0.5

O'OD 200000 400000 600000 800000 1000000 1200000 1400000 1600000
Number of Dof

M. Knepley (UC) GPU GPU-SMP 58/85

Integration
Outline

e Integration
@ Analytic Flexibility
@ Computational Flexibility
@ Efficiency

M. Knepley (UC) GPU GPU-SMP 59/85

Integration

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) GPU GPU-SMP 60/85

http://www.bitbucket.org/aterrel/flamefem

Integration

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) GPU GPU-SMP 60/85

http://www.bitbucket.org/aterrel/flamefem

Integration

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility

e Computational Flexibility

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) GPU GPU-SMP 60/85

http://www.bitbucket.org/aterrel/flamefem

Integration

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility
e Computational Flexibility

e Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) GPU GPU-SMP 60/85

http://www.bitbucket.org/aterrel/flamefem

Integration Analytic Flexibility

Outline

e Integration
@ Analytic Flexibility

M. Knepley (UC) GPU GPU-SMP 61/85

Integration Analytic Flexibility

Analytic Flexibility

Laplacian

/T Vi(X) - Vj(x)dx (3)

M. Knepley (UC) GPU GPU-SMP 62/85

Integration Analytic Flexibility

Analytic Flexibility

Laplacian

/T Vi(X) - Vj(x)dx (3)

element = FiniteElement(’Lagrange’, tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction (element)
a = inner(grad(v), grad(u))=dx

M. Knepley (UC) GPU GPU-SMP 62/85

Integration Analytic Flexibility

Analytic Flexibility

Linear Elasticity

] /T (Vo) +V76i0) : (Vo) + V) dx (4)

M. Knepley (UC) GPU GPU-SMP 63/85

Integration Analytic Flexibility

Analytic Flexibility

Linear Elasticity

] /T (Vo) +V76i0) : (Vo) + V) dx (4)

element = VectorElement(’Lagrange’, tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction (element)
a = inner(sym(grad(v)), sym(grad(u)))=dx

M. Knepley (UC) GPU GPU-SMP 63/85

Integration Analytic Flexibility

Analytic Flexibility

Full Elasticity

M. Knepley (UC) GPU GPU-SMP 64/85

Integration Analytic Flexibility

Analytic Flexibility

Full Elasticity

1/7_ <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (5)

element = VectorElement(’Lagrange’, tetrahedron, 1)
cElement = TensorElement(’Lagrange’, tetrahedron, 1,
(dim, dim, dim, dim))

TestFunction (element)

TrialFunction (element)

Coefficient (cElement)

, J, k, I = indices(4)

= sym(grad(v))[i,j]+C[i,j,k,I]+=sym(grad(u))[k,|]+dx

v
u
C
i
a

M. Knepley (UC) GPU GPU-SMP 64/85

Integration Analytic Flexibility

Analytic Flexibility

Full Elasticity

1/7_ <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (5)

element = VectorElement(’Lagrange’, tetrahedron, 1)
cElement = TensorElement(’Lagrange’, tetrahedron, 1,
(dim, dim, dim, dim))

TestFunction (element)

TrialFunction (element)

Coefficient (cElement)

, J, k, I = indices(4)

= sym(grad(v))[i,j]+C[i,j,k,I]+=sym(grad(u))[k,|]+dx

v
u
C
i
a

Currently broken in FEnIiCS release

M. Knepley (UC) GPU GPU-SMP 64/85

Integration Analytic Flexibility

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

J7 Véi(x) - Vj(x)dx (6)
= - ag;(x) 6@5,() ax)
= Jp 22020 ‘93; |J|dx (®)
= et [, 20 7O gy)
- GT(TIK, (10)

Coefficients are also put into the geometric part.

M. Knepley (UC) GPU GPU-SMP 65/85

Integration Analytic Flexibility

Weak Form Processing

from ffc.analysis import analyze_forms
from ffc.compiler import compute_ir

parameters = ffc.default_parameters()
parameters[' representation’] = ’tensor’
analysis = analyze_forms([a,L], {}, parameters)
ir = compute_ir(analysis, parameters)

a_K ir[2][0]['AK’][0][0]
a G ir[2][0]['AK"][0][1]
= a_K.AO0.astype (numpy. float32)

=aG

O X

M. Knepley (UC) GPU

GPU-SMP

66/85

Integration Computational Flexibility

Outline

e Integration

@ Computational Flexibility

M. Knepley (UC) GPU GPU-SMP 67/85

Integration Computational Flexibility

Computational Flexibility

We generate different computations on the fly,

and can change
e Element Batch Size

o Number of Concurrent Elements
e Loop unrolling
e Interleaving stores with computation

M. Knepley (UC) GPU GPU-SMP

68/85

Integration Computational Flexibility

Computational Flexibility

Basic Contraction

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) GPU GPU-SMP 69/85

Integration Computational Flexibility

Computational Flexibility

Basic Contraction

G K

. thread 0

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) GPU GPU-SMP 69/85

Integration Computational Flexibility

Computational Flexibility

Basic Contraction

G K

thread 0

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) GPU GPU-SMP 69/85

Integration Computational Flexibility

Computational Flexibility

Basic Contraction

G K

thread 0
I~
{ ~
Dt
‘70 75

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) GPU GPU-SMP 69/85

Integration Computational Flexibility

Computational Flexibility

Element Batch Size

thread 0

Go
G‘I . | l/,‘;\

75

G3. >

Figure: Tensor Contraction G*(T)K,

M. Knepley (UC) GPU GPU-SMP 70/85

Integration Computational Flexibility

Computational Flexibility

Element Batch Size

Figure: Tensor Contraction G*(T)K,

M. Knepley (UC) GPU GPU-SMP 70/85

Integration Computational Flexibility

Computational Flexibility

Element Batch Size

G B
G1 . ’&@'z’é e |+

e

Go q
R

G3 . w

Figure: Tensor Contraction G*(T)K,

thy

M. Knepley (UC) GPU GPU-SMP 70/85

Integration Computational Flexibility

Computational Flexibility

Element Batch Size

Figure: Tensor Contraction G*(T)K,

M. Knepley (UC) GPU GPU-SMP 70/85

Integration Computational Flexibility

Computational Flexibility

Concurrent Elements

thread

)

M. Knepley (UC) GPU GPU-SMP 71/85

Integration Computational Flexibility

Computational Flexibility

Concurrent Elements

Al
GO .ﬁreadS » thredd 2T 61
1 1

M. Knepley (UC) GPU GPU-SMP 71/85

Integration Computational Flexibility

Computational Flexibility

Concurrent Elements

M. Knepley (UC) GPU GPU-SMP 71/85

Integration Computational Flexibility

Computational Flexibility

Concurrent Elements

M. Knepley (UC) GPU GPU-SMP 71/85

Integration Computational Flexibility

Computational Flexibility

Loop Unrolling

/+ G K contraction: unroll = full =/
E[0] += G[0] « K[O];
E[0] += G[1] = K[1];
E[0] += G[2] « K[2];
E[0] += G[3] = K[3];
E[0] += G[4] « K[4];
E[0] += G[5] « K[5];
E[0] += G[6] « K[6];
E[0] += G[7] « K[7];
E[0] += G[8] « K[8];

M. Knepley (UC) GPU GPU-SMP 72/85

Integration Computational Flexibility

Computational Flexibility

Loop Unrolling

/= G K contraction: unroll = none «/
for(int b = 0; b < 1; ++b) {
const int n = b+1;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E[b] += G[n+«9+alpha+3+beta] = K[alpha*3+beta];

M. Knepley (UC) GPU GPU-SMP 73/85

Integration Computational Flexibility

Computational Flexibility

Interleaving stores

/= G K contraction: unroll = none «/
for(int b = 0; b < 4; ++b) {
const int n = bx1;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E[b] += G[n*9+alpha=3+beta] * K[alpha+3+beta];
}
}
}

/+ Store contraction results «/

elemMat[Eoffset+idx+0] = E[0];
elemMat[Eoffset+idx+16] = E[1];
elemMat[Eoffset+idx+32] = E[2];
elemMat[Eoffset+idx+48] = E[3];

M. Knepley (UC) GPU GPU-SMP 74/85

Integration Computational Flexibility

Computational Flexibility

Interleaving stores

n = 0;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E += G[n+9+alpha*3+beta] = K[alpha«3+beta];
}
}

/= Store contraction result =/
elemMat[Eoffset+idx+0] = E;
n=1; E=0.0; /+ contract «/
elemMat[Eoffset+idx+16] = E;
n=2; E=0.0; /+ contract «/
elemMat[Eoffset+idx+32] = E;
n=3;, E=0.0; /+ contract «/
elemMat[Eoffset+idx+48] = E;

M. Knepley (UC) GPU

GPU-SMP

75/85

Integration Efficiency

Outline

e Integration

@ Efficiency

M. Knepley (UC) GPU GPU-SMP 76/85

Integration Efficiency

Performance

Influence of Element Batch Sizes

CPU vs. GPU Flop Rate for 3D P, Lagrange Laplacian

90000
80000 Interleaye Stores = 1
Loop Unrolling = none
70000
60000
4 50000
2
E)
c
= 40000
NVIDIA bs64 cel is
30000 — NVIDIA bs64 ce2 is
— NVIDIA bs64 ce4 is
20000 —— NVIDIA bs128 cel is
— NVIDIA bs128 ce2 is
NVIDIA bs128 ce4 is
10000 — NVIDIA bs256 cel is
— NVIDIA bs256 ce2 is
— NVIDIA bs256 ce4 is
° 50000 100000 150000 200000
Number of Elements

U GPU-SMP 77185

M. Knepley (UC)

Integration Efficiency

Performance

Influence of Element Batch Sizes

CPU vs. GPU Flop Rate for 2D P, Lagrange ['Elasticity']

120000
Interleave Stores = 1
100000 Loop Unrolling = full
80000
K
7
& 60000
5
NVIDIA bs64 cel is unroll
40000 — NVIDIA bs64 ce2 is unroll ||
— NVIDIA bs64 ce4 is unroll
— NVIDIA bs128 cel is unroll
— NVIDIA bs128 ce2 is unroll
20000 NVIDIA bs128 ce4 is unroll [|
— NVIDIA bs256 cel is unroll
— NVIDIA bs256 ce2 is unroll
Y — NVIDIA bs256 ce4 is unroll
0 50000 100000 150000 200000

Number of Elements

M. Knepley (UC)

u

/85

Integration Efficiency

Performance

Influence of Code Structure

CPU vs. GPU Flop Rate for 3D P, Lagrange Laplacian

90000

80000 |

70000 |

60000 |

50000 |

MFlops/s

40000 -

30000

20000 |

100001 == NVIDIA bs128 ce? is

&~—4 NVIDIA bs128 ce2 ‘

0 50000 100000 150000 200000
Number of Elements

M. Knepley (UC) GPU GPU-SMP 79/85

Integration Efficiency

Performance

Influence of Code Structure

CPU vs. GPU Flop Rate for 3D P, Lagrange Laplacian
90000 T

80000 | Element Blocksize = 128
Concurrent Elem =2

70000 |

60000 |

50000 |

MFlops/s

40000 -

30000

20000 |

100001 == NVIDIA bs128 ce2 is unroll

4—4 NVIDIA bs128 ce2 unroll ‘

0 50000 100000 150000 200000
Number of Elements

M. Knepley (UC) GPU GPU-SMP 80/85

Integration Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P; Laplacian Integration

Model Price ($) | GF/s | MF/s$
GTX285 390 90 231
Core 2 Duo 300 2 6.6

M. Knepley (UC) GPU GPU-SMP 81/85

Integration Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P; Laplacian Integration

Model Price ($) | GF/s | MF/s$
GTX285 390 90 231
Core 2 Duo 300 12* 40

* Jed Brown Optimization Engine

M. Knepley (UC) GPU GPU-SMP 81/85

Yet To be Done

Outline

© Vet To be Done

M. Knepley (UC) GPU GPU-SMP 82/85

Yet To be Done
Competing Models

How should modern scientific
computing be structured?

Current Model: PETSC
@ Single language
@ Hand optimized

M. Knepley (UC) GPU GPU-SMP 83/85

http://www.mcs.anl.gov/petsc
http://numerics.kaust.edu.sa/pyclaw

Yet To be Done
Competing Models

How should modern scientific
computing be structured?

Current Model: PETSC
@ Single language
@ Hand optimized
@ 3rd party libraries

M. Knepley (UC) GPU GPU-SMP 83/85

http://www.mcs.anl.gov/petsc
http://numerics.kaust.edu.sa/pyclaw

Yet To be Done
Competing Models

How should modern scientific
computing be structured?

Current Model: PETSC
@ Single language
@ Hand optimized
@ 3rd party libraries
@ new hardware

M. Knepley (UC) GPU GPU-SMP 83/85

http://www.mcs.anl.gov/petsc
http://numerics.kaust.edu.sa/pyclaw

Yet To be Done
Competing Models

How should modern scientific
computing be structured?

Current Model: PETSC Alternative Model: PetCLAW

@ Single language @ Multiple language through Python

@ Hand optimized @ Optimization through code generation
@ 3rd party libraries @ 3rd party libaries through wrappers

@ new hardware @ New hardware through code generation

M. Knepley (UC) GPU GPU-SMP 83/85

http://www.mcs.anl.gov/petsc
http://numerics.kaust.edu.sa/pyclaw

Yet To be Done
New Model for Scientific Software
Application
FFC/SyFi

data structures

GPU-SMP

M. Knepley (UC)

What Do We Still Need?

e Better integration of code generation
o Match CUDA driver interface to CUDA runtime interface

e Extend code generation to quadrature schemes

o Kernel fusion in assembly

e Better hierarchical parallelism
o Larger scale parallel GPU tests

e Synchronization reduction in current algorithms

M. Knepley (UC) GPU GPU-SMP 85/85

	Scientific Libraries
	What is PETSc?

	Linear Systems
	Assembly
	Integration
	Analytic Flexibility
	Computational Flexibility
	Efficiency

	Yet To be Done

