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Introduction

What I Need From You

Tell me if you do not understand
Tell me if an example does not work
Suggest better wording or figures
Followup problems at petsc-maint@mcs.anl.gov
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Introduction

Ask Questions!!!

Helps me understand what you are missing

Helps you clarify misunderstandings

Helps others with the same question
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Introduction

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov
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Introduction

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

We want to experiment with different
Models
Discretizations
Solvers
Algorithms

which blur these boundaries
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Introduction

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
— Barry Smith
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Introduction

Advice from Bill Gropp

You want to think about how you decompose your data
structures, how you think about them globally. [...] If you
were building a house, you’d start with a set of blueprints
that give you a picture of what the whole house looks like.
You wouldn’t start with a bunch of tiles and say. “Well I’ll
put this tile down on the ground, and then I’ll find a tile
to go next to it.” But all too many people try to build their
parallel programs by creating the smallest possible tiles
and then trying to have the structure of their code emerge
from the chaos of all these little pieces. You have to have
an organizing principle if you’re going to survive making
your code parallel.

(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)
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Introduction

What is PETSc?

A freely available and supported research code
for the parallel solution of nonlinear algebraic
equations

Free
Download from http://www.petsc.org
Free for everyone, including industrial users

Supported
Hyperlinked manual, examples, and manual pages for all routines
Hundreds of tutorial-style examples
Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python

M. Knepley PETSc UW ’11 9 / 123

http://www.petsc.org
mailto:petsc-maint@mcs.anl.gov


Introduction

What is PETSc?

Portable to any parallel system supporting MPI, including:
Tightly coupled systems

Cray XT6, BG/Q, NVIDIA Fermi, K Computer
Loosely coupled systems, such as networks of workstations

IBM, Mac, iPad/iPhone, PCs running Linux or Windows

PETSc History
Begun September 1991
Over 60,000 downloads since 1995 (version 2)
Currently 400 per month

PETSc Funding and Support
Department of Energy

ECP, PSAAPIII, AMR, BES, SciDAC, MICS
National Science Foundation

CSSI, SI2, CIG, CISE

Intel Parallel Computing Center
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Introduction

Timeline (Old People)
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Introduction

Timeline (Young People)
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Introduction

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley PETSc UW ’11 13 / 123

https://hpgmg.org/


Introduction

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley PETSc UW ’11 13 / 123

https://hpgmg.org/


Introduction

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley PETSc UW ’11 13 / 123

https://hpgmg.org/


Introduction

New Model for Scientific Software

Application

FFC/SyFi
eqn. definitionsympy symbolics

numpy
da

ta
st

ru
ct

ur
es

petsc4py

so
lve

rs

PyCUDA

integration/assembly

PETSc
CUDA

OpenCL
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Introduction Who uses and develops PETSc?

Who Uses PETSc?

Computational Scientists

Earth Science
PyLith (CIG)
Underworld (Monash)
Salvus (ETHZ)
TerraFERMA (LDEO, Columbia, Oxford)

Multiphysics
MOOSE
GRINS

Subsurface Flow and Porous Media
PFLOTRAN (DOE)
STOMP (DOE)
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Introduction Who uses and develops PETSc?

Who Uses PETSc?

Computational Scientists

CFD
IBAMR
Fluidity
OpenFVM

Fusion
XGC
BOUT++
NIMROD
M3D − C1
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Introduction Who uses and develops PETSc?

Who Uses PETSc?

Algorithm Developers

Iterative methods
Deflated GMRES
LGMRES
QCG
SpecEst

Preconditioning researchers
FETI-DP (Klawonn and Rheinbach)
STRUMPACK (Ghysels and Li)
HPDDM (Jolivet and Nataf)
ParPre (Eijkhout)
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Introduction Who uses and develops PETSc?

Who Uses PETSc?

Algorithm Developers

Discretization
Firedrake
FEniCS
libMesh
Deal II
PETSc-FEM
OOFEM
PetRBF

Outer Loop Solvers
Eigensolvers (SLEPc)
Optimization (PERMON)
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Introduction Who uses and develops PETSc?

The PETSc Team

Matt Knepley Barry Smith Satish Balay Jed Brown

Hong Zhang Lisandro Dalcin Stefano Zampini Mark Adams

Toby Isaac Hong Zhang Pierre Jolivet Junchao Zhang
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Introduction Stuff for Windows

Questions for Windows Users

Have you installed cygwin?
Need python, make, and build-utils packages

Will you use the GNU compilers?
If not, remove link.exe

If MS, check compilers from cmd window and use win32fe

Which MPI will you use?
You can use --with-mpi=0

If MS, need to install MPICH2
If GNU, can use --download-mpich

Minimal build works on Linux subsystem

M. Knepley PETSc UW ’11 22 / 123

http://www.cygwin.com
http://www.mcs.anl.gov/research/projects/mpich2


Introduction How can I get PETSc?

Outline

1 Introduction
Who uses and develops PETSc?
Stuff for Windows
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

M. Knepley PETSc UW ’11 23 / 123



Introduction How can I get PETSc?

Downloading PETSc

There is a Git repository

The latest tarball is on the PETSc site:
https://web.cels.anl.gov/projects/petsc/download/release-
snapshots/

There is a pip package (pip install petsc petsc4py)

There is a Debian package (aptitude install petsc-dev)
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Introduction How can I get PETSc?

Cloning PETSc

The full development repository is open to the public
https://gitlab.com/petsc/petsc/

Why is this better?
You can clone to any release (or any specific ChangeSet)
You can easily rollback changes (or releases)
You can get fixes from us the same day
You can easily submit changes using a pull request

All releases are just tags:
Source at tag v3.18.0
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Introduction How can I get PETSc?

Unpacking PETSc

Just clone development repository
git clone http://gitlab.com/petsc/petsc.git
git checkout -rv3.24.0

or

Unpack the tarball
tar xzf petsc.tar.gz
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Introduction How can I get PETSc?

Exercise 1

Download and Unpack PETSc!
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Introduction How do I Configure PETSc?

Configuring PETSc

Set $PETSC_DIR to the installation root directory
Run the configuration utility

$PETSC_DIR/configure

$PETSC_DIR/configure --help

$PETSC_DIR/configure --download-mpich

$PETSC_DIR/configure --prefix=/usr

There are many examples in $PETSC_DIR/config/examples

Config files in $PETSC_DIR/$PETSC_ARCH/lib/petsc/conf

Config header in $PETSC_DIR/$PETSC_ARCH/include

$PETSC_ARCH has a default if not specified
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Introduction How do I Configure PETSc?

Configuring PETSc

You can easily reconfigure with the same options
./$PETSC_ARCH/lib/petsc/conf/reconfigure-$PETSC_ARCH.py

Can maintain several different configurations
./configure -PETSC_ARCH=arch-linux-opt --with-debugging=0

All configuration information is in the logfile
./$PETSC_ARCH/lib/petsc/conf/configure.log

ALWAYS send this file with bug reports
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Introduction How do I Configure PETSc?

Automatic Downloads
Starting in 2.2.1, some packages are automatically

Downloaded
Configured and Built (in $PETSC_DIR/externalpackages)
Installed with PETSc

Currently works for
petsc4py, mpi4py
PETSc documentation utilities (Sowing, c2html)
BLAS, LAPACK, Elemental, ScaLAPACK
GMP, MPFR
ConcurrencyKit, hwloc
MPICH, OpenMPI
ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
SuiteSparse, MUMPS, SuperLU, SuperLU_Dist, PaStiX, Pardiso
SLEPc, HYPRE, ML
BLOPEX, FFTW, STRUMPACK, SPAI, CUSP, Sundials
Triangle, TetGen, p4est, Pragmatic
HDF5, NetCDF, ExodusII
AfterImage, gifLib, libjpeg, opengl
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Introduction How do I Configure PETSc?

Exercise 2

Configure your downloaded PETSc.
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Introduction How do I Build PETSc?

Building PETSc

There is now One True Way to build PETSc:
make

make install if you configured with --prefix

Check build when done with make check

Can build multiple configurations
PETSC_ARCH=arch-linux-opt make

Libraries are in $PETSC_DIR/$PETSC_ARCH/lib/

Complete log for each build is in logfile
./$PETSC_ARCH/lib/petsc/conf/make.log

ALWAYS send this with bug reports
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Introduction How do I Build PETSc?

Exercise 3

Build your configured PETSc.
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Introduction How do I Build PETSc?

Exercise 4

Reconfigure PETSc to use ParMetis.

1 linux-debug/lib/petsc/conf/reconfigure-linux-debug.py

--PETSC_ARCH=arch-linux-parmetis

--download-metis --download-parmetis

2 PETSC_ARCH=linux-parmetis make

3 PETSC_ARCH=linux-parmetis make check
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Introduction How do I run an example?
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Introduction How do I run an example?

Running PETSc

Try running PETSc examples first
cd $PETSC_DIR/src/snes/tutorials

Build examples using make targets
make ex5

Run using MPI directly
./ex5 -snes_max_it 5

mpirun -np 2 ./ex5 -snes_max_it 5

mpiexec -n 2 ./ex5 -snes_monitor
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Introduction How do I run an example?

Using MPI

The Message Passing Interface is:
a library for parallel communication
a system for launching parallel jobs (mpirun/mpiexec)
a community standard

Launching jobs is easy
mpiexec -n 4 ./ex5

You should never have to make MPI calls when using PETSc
Almost never
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Introduction How do I run an example?

Common Viewing Options

Gives a text representation
-vec_view

Generally views subobjects too
-snes_view

Can visualize some objects
-mat_view draw::

Alternative formats
-vec_view binary:sol.bin:, -vec_view ::matlab, -vec_view socket

Sometimes provides extra information
-mat_view ::ascii_info, -mat_view ::ascii_info_detailed

Generic viewing option
-foo_view <type>:<filename>:<format>:<file mode>
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Introduction How do I run an example?

Common Monitoring Options

Display the residual
-ksp_monitor

Can disable dynamically
-ksp_monitors_cancel

Does not display subsolvers
-snes_monitor

Can use the true residual
-ksp_monitor_true_residual

Can display different subobjects
-snes_monitor_residual, -snes_monitor_solution,
-snes_monitor_solution_update

-snes_monitor_range

-ksp_gmres_krylov_monitor

Can display the spectrum
-ksp_monitor_singular_value
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Introduction How do I run an example?

Exercise 5

Run SNES Example 5 using come custom options.

1 cd $PETSC_DIR/src/snes/examples/tutorials

2 make ex5

3 mpiexec ./ex5 -snes_monitor -snes_view

4 mpiexec ./ex5 -snes_type tr -snes_monitor
-snes_view

5 mpiexec ./ex5 -ksp_monitor -snes_monitor
-snes_view

6 mpiexec ./ex5 -pc_type jacobi -ksp_monitor
-snes_monitor -snes_view

7 mpiexec ./ex5 -ksp_type bicg -ksp_monitor
-snes_monitor -snes_view
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Introduction How do I run an example?

Exercise 6

Create a new code based upon SNES Example 5.

1 Create a new directory
mkdir -p /home/knepley/proj/newsim/src

2 Copy the source
cp ex5.c /home/knepley/proj/newsim/src
Add myStuff.c and myStuff2.F

3 Create a PETSc makefile
bin/ex5: src/ex5.o src/myStuff.o src/myStuff2.o
${CLINKER} -o $@ $^ ${PETSC_SNES_LIB}

include ${PETSC_DIR}/conf/variables
include ${PETSC_DIR}/conf/rules

To get the project ready-made

hg clone https://bitbucket.org/knepley/simplepetscexample newsim
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Introduction How do I get more help?

Getting More Help

http://www.petsc.org
Hyperlinked documentation

Online Manual
Manual pages for every method
HTML of all example code (linked to manual pages)

FAQ
Full support at petsc-maint@mcs.anl.gov
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Version Control

Location and Retrieval
“Where’s the Tarball”

Version Control
Mercurial, Git, Subversion

Hosting
BitBucket, GitHub, Launchpad

Community involvement
arXiv, PubMed
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Version Control

Distributed Version Control

CVS/SVN manage a single repository
Versioned data
Local copy for modification and checkin

Mercurial manages many repositories
Identified by URLs
No one Master

Repositories communicate by ChangeSets
Use push and pull to move changesets
Can move arbitrary changes with patch queues
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Version Control

Project Workflow

User

Figure: Single Repository
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Version Control

Project Workflow

Master

User A User B

Figure: Master Repository with User Clones
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Version Control

Project Workflow

Master Release

User Bugfix

Figure: Project with Release and Bugfix Repositories
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Vector Algebra

Vector Algebra

What are PETSc vectors?
Fundamental objects representing

solutions
right-hand sides
coefficients

Each process locally owns a subvector of contiguous global data
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Vector Algebra

Vector Algebra

How do I create vectors?

VecCreate(MPI_Commcomm, Vec*v)

VecSetSizes(Vecv, PetscInt n, PetscInt N)

VecSetType(Vecv, VecType typeName)

VecSetFromOptions(Vecv)

Can set the type at runtime

M. Knepley PETSc UW ’11 53 / 123



Vector Algebra

Vector Algebra

A PETSc Vec
Supports all vector space operations

VecDot(), VecNorm(), VecScale()

Has a direct interface to the values
VecGetArray(), VecGetArrayF90()

Has unusual operations
VecSqrtAbs(), VecStrideGather()

Communicates automatically during assembly
Has customizable communication (PetscSF, VecScatter)
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Vector Algebra

Parallel Assembly
Vectors and Matrices

Processes may set an arbitrary entry
Must use proper interface

Entries need not be generated locally
Local meaning the process on which they are stored

PETSc automatically moves data if necessary
Happens during the assembly phase
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Vector Algebra

Vector Assembly

A three step process
Each process sets or adds values
Begin communication to send values to the correct process
Complete the communication

VecSetValues ( Vec v , Pe tsc In t n , Pe tsc In t rows [ ] ,
PetscScalar values [ ] , InsertMode mode)

Mode is either INSERT_VALUES or ADD_VALUES

Two phases allow overlap of communication and computation
VecAssemblyBegin(v)
VecAssemblyEnd(v)
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Vector Algebra

One Way to Set the Elements of a Vector

i e r r = VecGetSize ( x , &N) ;CHKERRQ( i e r r ) ;
i e r r = MPI_Comm_rank (PETSC_COMM_WORLD, &rank ) ;CHKERRQ( i e r r ) ;
i f ( rank == 0) {

va l = 0 . 0 ;
f o r ( i = 0 ; i < N; ++ i ) {

i e r r = VecSetValues ( x , 1 , &i , &val , INSERT_VALUES ) ;CHKERRQ( i e r r ) ;
va l += 10 .0 ;

}
}
/ * These rou t i nes ensure t h a t the data i s

d i s t r i b u t e d to the other processes * /
i e r r = VecAssemblyBegin ( x ) ;CHKERRQ( i e r r ) ;
i e r r = VecAssemblyEnd ( x ) ;CHKERRQ( i e r r ) ;
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Vector Algebra

One Way to Set the Elements of a Vector

VecGetSize ( x , &N) ;
MPI_Comm_rank (PETSC_COMM_WORLD, &rank ) ;
i f ( rank == 0) {

va l = 0 . 0 ;
f o r ( i = 0 ; i < N; ++ i ) {

VecSetValues ( x , 1 , &i , &val , INSERT_VALUES ) ;
va l += 10 .0 ;

}
}
/ * These rou t i nes ensure t h a t the data i s

d i s t r i b u t e d to the other processes * /
VecAssemblyBegin ( x ) ;
VecAssemblyEnd ( x ) ;
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Vector Algebra

A Better Way to Set the Elements of a Vector

VecGetOwnershipRange ( x , &low , &high ) ;
va l = low * 1 0 . 0 ;
f o r ( i = low ; i < high ; ++ i ) {

VecSetValues ( x , 1 , &i , &val , INSERT_VALUES ) ;
va l += 10 .0 ;

}
/ * No data w i l l be communicated here * /
VecAssemblyBegin ( x ) ;
VecAssemblyEnd ( x ) ;
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Vector Algebra

Selected Vector Operations

Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y = y + a ∗ x
VecAYPX(Vec y, PetscScalar a, Vec x) y = x + a ∗ y
VecWAYPX(Vec w, PetscScalar a, Vec x, Vec y) w = y + a ∗ x
VecScale(Vec x, PetscScalar a) x = a ∗ x
VecCopy(Vec y, Vec x) y = x
VecPointwiseMult(Vec w, Vec x, Vec y) wi = xi ∗ yi
VecMax(Vec x, PetscInt *idx, PetscScalar *r) r = maxri
VecShift(Vec x, PetscScalar r) xi = xi + r
VecAbs(Vec x) xi = |xi |
VecNorm(Vec x, NormType type, PetscReal *r) r = ||x ||
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Vector Algebra

Working With Local Vectors

It is sometimes more efficient to directly access local storage of a Vec.
PETSc allows you to access the local storage with

VecGetArray(Vec, double *[])

You must return the array to PETSc when you finish
VecRestoreArray(Vec, double *[])

Allows PETSc to handle data structure conversions
Commonly, these routines are fast and do not involve a copy
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Vector Algebra

VecGetArray in C

Vec v ;
PetscScalar * ar ray ;
Pe tsc In t n , i ;

VecGetArray ( v , &ar ray ) ;
VecGetLocalSize ( v , &n ) ;
PetscSynchron izedPr in t f (PETSC_COMM_WORLD,

" F i r s t element o f l o c a l a r ray i s %f \ n " , a r ray [ 0 ] ) ;
PetscSynchronizedFlush (PETSC_COMM_WORLD) ;
f o r ( i = 0 ; i < n ; ++ i ) {

a r ray [ i ] += ( PetscScalar ) rank ;
}
VecRestoreArray ( v , &ar ray ) ;
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Vector Algebra

VecGetArray in F77

# inc lude " f i n c l u d e / petsc . h "

Vec v ;
PetscScalar ar ray ( 1 )
PetscOf fse t o f f s e t
Pe tsc In t n , i
PetscErrorCode i e r r

c a l l VecGetArray ( v , array , o f f s e t , i e r r )
c a l l VecGetLocalSize ( v , n , i e r r )
do i =1 ,n

ar ray ( i + o f f s e t ) = ar ray ( i + o f f s e t ) + rank
end do
c a l l VecRestoreArray ( v , array , o f f s e t , i e r r )
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Vector Algebra

VecGetArray in F90

# inc lude " f i n c l u d e / petsc . h90 "

Vec v ;
PetscScalar p o i n t e r : : a r ray ( : )
Pe tsc In t n , i
PetscErrorCode i e r r

c a l l VecGetArrayF90 ( v , array , i e r r )
c a l l VecGetLocalSize ( v , n , i e r r )
do i =1 ,n

ar ray ( i ) = ar ray ( i ) + rank
end do
c a l l VecRestoreArrayF90 ( v , array , i e r r )
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Vector Algebra

VecGetArray in Python

wi th v as a :
f o r i i n range ( len ( a ) ) :

a [ i ] = 5 .0* i
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Vector Algebra

DMDAVecGetArray in C

DM da ;
Vec v ;
DMDALocalInfo * i n f o ;
PetscScalar * * ar ray ;

DMDAVecGetArray ( da , v , &ar ray ) ;
f o r ( j = in fo −>ys ; j < in fo −>ys+ in fo −>ym; ++ j ) {

f o r ( i = in fo −>xs ; i < in fo −>xs+ in fo −>xm; ++ i ) {
u = x [ j ] [ i ] ;
uxx = ( 2 . 0 * u − x [ j ] [ i −1] − x [ j ] [ i + 1 ] ) * hydhx ;
uyy = ( 2 . 0 * u − x [ j − 1 ] [ i ] − x [ j + 1 ] [ i ] ) * hxdhy ;
f [ j ] [ i ] = uxx + uyy ;

}
}
DMDAVecRestoreArray ( da , v , &ar ray ) ;
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Vector Algebra

DMDAVecGetArray in F90

DM da
Vec v
PetscScalar , p o i n t e r : : a r ray ( : , : )

c a l l DMDAGetCorners ( ada , xs , ys ,PETSC_NULL_INTEGER,
xm,ym,PETSC_NULL_INTEGER, i e r r )

c a l l DMDAVecGetArrayF90 ( da , v , array , i e r r ) ;
do i = xs , xs+xm

do j = ys , ys+ym
u = x ( i , j )
uxx = ( 2 . 0 * u − x ( i −1 , j ) − x ( i +1 , j ) ) * hydhx ;
uyy = ( 2 . 0 * u − x ( i , j −1) − x ( i , j +1)* hxdhy ;
f ( i , j ) = uxx + uyy ;

enddo
enddo
c a l l DMDAVecRestoreArrayF90 ( da , v , array , i e r r ) ;
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Matrix Algebra

Matrix Algebra

What are PETSc matrices?

Fundamental objects for storing stiffness matrices and Jacobians
Each process locally owns a contiguous set of rows
Supports many data types

AIJ, Block AIJ, Symmetric AIJ, Block Matrix, etc.
Supports structures for many packages

Elemental, MUMPS, SuperLU, UMFPack, PasTiX
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Matrix Algebra

How do I create matrices?

MatCreate(MPI_Commcomm, Mat*A)

MatSetSizes(MatA, PetscInt m, PetscInt n, PetscInt M, PetscInt N)

MatSetType(MatA, MatType typeName)

MatSetFromOptions(MatA)

Can set the type at runtime

MatSeqAIJPreallocation(MatA, PetscIntnz, const PetscInt nnz[])

MatXAIJPreallocation(MatA, bs, dnz [], onz [], dnzu[], onzu[])

MatSetValues(MatA, m, rows[], n, cols [], values [], InsertMode)

MUST be used, but does automatic communication
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Matrix Algebra

Matrix Polymorphism

The PETSc Mat has a single user interface,
Matrix assembly

MatSetValues()
MatGetLocalSubMatrix()

Matrix-vector multiplication
MatMult()

Matrix viewing
MatView()

but multiple underlying implementations.
AIJ, Block AIJ, Symmetric Block AIJ,
Dense
Matrix-Free
etc.

A matrix is defined by its interface, not by its data structure.
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Matrix Algebra

Matrix Assembly

A three step process
Each process sets or adds values
Begin communication to send values to the correct process
Complete the communication

MatSetValues(A, m, rows[], n, cols [], values [], mode)

mode is either INSERT_VALUES or ADD_VALUES
Logically dense block of values

Two phase assembly allows overlap of communication and
computation

MatAssemblyBegin(A, type)
MatAssemblyEnd(A, type)
type is either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY
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Matrix Algebra

One Way to Set the Elements of a Matrix
Simple 3-point stencil for 1D Laplacian

v [ 0 ] = −1.0; v [ 1 ] = 2 . 0 ; v [ 2 ] = −1.0;
i f ( rank == 0) {

f o r ( row = 0; row < N; row++) {
co ls [ 0 ] = row −1; co ls [ 1 ] = row ; co ls [ 2 ] = row +1;
i f ( row == 0) {

MatSetValues (A,1 ,& row ,2 ,& co ls [1 ] ,& v [ 1 ] , INSERT_VALUES ) ;
} e lse i f ( row == N−1) {

MatSetValues (A,1 ,& row ,2 , cols , v , INSERT_VALUES ) ;
} e lse {

MatSetValues (A,1 ,& row ,3 , cols , v , INSERT_VALUES ) ;
}

}
}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY ) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY ) ;
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Matrix Algebra

Matrix Storage Layout

Each process locally owns a submatrix of contiguous global rows
Each submatrix consists of diagonal and off-diagonal parts

proc 5

proc 4

proc 3
proc 2
proc 1

proc 0
diagonal blocks
offdiagonal blocks

MatGetOwnershipRange(Mat A,int *start,int *end)
start: first locally owned row of global matrix
end-1: last locally owned row of global matrix
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Matrix Algebra

A Better Way to Set the Elements of a Matrix
Simple 3-point stencil for 1D Laplacian

v [ 0 ] = −1.0; v [ 1 ] = 2 . 0 ; v [ 2 ] = −1.0;
MatGetOwnershipRange (A,& s t a r t ,&end ) ;
f o r ( row = s t a r t ; row < end ; row++) {

co ls [ 0 ] = row −1; co ls [ 1 ] = row ; co ls [ 2 ] = row +1;
i f ( row == 0) {

MatSetValues (A,1 ,& row ,2 ,& co ls [1 ] ,& v [ 1 ] , INSERT_VALUES ) ;
} e lse i f ( row == N−1) {

MatSetValues (A,1 ,& row ,2 , cols , v , INSERT_VALUES ) ;
} e lse {

MatSetValues (A,1 ,& row ,3 , cols , v , INSERT_VALUES ) ;
}

}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY ) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY ) ;
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Matrix Algebra

Why Are PETSc Matrices That Way?

No one data structure is appropriate for all problems
Blocked and diagonal formats provide performance benefits
PETSc has many formats
Makes it easy to add new data structures

Assembly is difficult enough without worrying about partitioning
PETSc provides parallel assembly routines
High performance still requires making most operations local
However, programs can be incrementally developed.
MatPartitioning and MatOrdering can help
Its better to partition and reorder the underlying grid

Matrix decomposition in contiguous chunks is simple
Makes interoperation with other codes easier
For other ordering, PETSc provides “Application Orderings” (AO)
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Algebraic Solvers

Solver Types

Explicit:
Field variables are updated using local neighbor information

Semi-implicit:
Some subsets of variables are updated with global solves
Others with direct local updates

Implicit:
Most or all variables are updated in a single global solve
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Algebraic Solvers

Linear Solvers
Krylov Methods

Using PETSc linear algebra, just add:
KSPSetOperators(ksp, A, M, flag)
KSPSolve(ksp, b, x)

Can access subobjects
KSPGetPC(ksp, &pc)

Preconditioners must obey PETSc interface
Basically just the KSP interface

Can change solver dynamically from the command line
-ksp_type bicgstab
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Algebraic Solvers

Nonlinear Solvers

Using PETSc linear algebra, just add:
SNESSetFunction(snes, r, residualFunc, ctx)
SNESSetJacobian(snes, A, M, jacFunc, ctx)
SNESSolve(snes, b, x)

Can access subobjects
SNESGetKSP(snes, &ksp)

Can customize subobjects from the cmd line
Set the subdomain preconditioner to ILU with −sub_pc_type ilu
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Algebraic Solvers

Basic Solver Usage

Use SNESSetFromOptions() so that everything is set dynamically
Set the type

Use −snes_type (or take the default)
Set the preconditioner

Use −npc_snes_type (or take the default)
Override the tolerances

Use −snes_rtol and −snes_atol

View the solver to make sure you have the one you expect
Use −snes_view

For debugging, monitor the residual decrease
Use −snes_monitor
Use −ksp_monitor to see the underlying linear solver
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Algebraic Solvers

3rd Party Solvers in PETSc
Complete table of solvers

Sequential LU
ESSL (IBM)
SuperLU (Sherry Li, LBNL)
Suitesparse (Tim Davis, U. of Florida)
LUSOL (MINOS, Michael Saunders, Stanford)
PILUT (Hypre, David Hysom, LLNL)

Parallel LU
Elemental/Clique (Jack Poulson, Google)
MUMPS (Patrick Amestoy, IRIT)
SuperLU_Dist (Jim Demmel and Sherry Li, LBNL)
Pardiso (MKL, Intel)
STRUMPACK (Pieter Ghysels, LBNL)

Parallel Cholesky
Elemental (Jack Poulson, Google)
DSCPACK (Padma Raghavan, Penn. State)
MUMPS (Patrick Amestoy, Toulouse)
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Algebraic Solvers

3rd Party Preconditioners in PETSc

Complete table of solvers
Parallel Algebraic Multigrid

GAMG (Mark Adams, LBNL)
BoomerAMG (Hypre, LLNL)
ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)

Parallel BDDC (Stefano Zampini, KAUST)
Parallel ILU, PaStiX (Faverge Mathieu, INRIA)
Parallel Redistribution (Dave May, Oxford and Patrick Sanan, USI)
Parallel Sparse Approximate Inverse

Parasails (Hypre, Edmund Chow, LLNL)
SPAI 3.0 (Marcus Grote and Barnard, NYU)
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SNES

Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function
Evaluation Postprocessing

Jacobian
Evaluation

Application
Initialization

Main Routine

PETSc
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SNES

SNES Paradigm

The SNES interface is based upon callback functions
FormFunction(), set by SNESSetFunction()

FormJacobian(), set by SNESSetJacobian()

When PETSc needs to evaluate the nonlinear residual F (x),
Solver calls the user’s function

User function gets application state through the ctx variable
PETSc never sees application data
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SNES

Topology Abstractions

DMDA
Abstracts Cartesian grids in any dimension
Supports stencils, communication, reordering
Nice for simple finite differences

DMMesh
Abstracts general topology in any dimension
Also supports partitioning, distribution, and global orders
Allows aribtrary element shapes and discretizations
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SNES

Assembly Abstractions

DM
Abstracts the logic of multilevel (multiphysics) methods
Manages allocation and assembly of local and global structures
Interfaces to PCMG solver

PetscSection
Abstracts functions over a topology
Manages allocation and assembly of local and global structures
Will merge with DM somehow
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SNES

SNES Function

User provided function calculates the nonlinear residual:

PetscErrorCode ( * func ) (SNES snes , Vec x , Vec r , vo id * c t x )

x: The current solution
r: The residual

ctx: The user context passed to SNESSetFunction()

Use this to pass application information, e.g. physical constants
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SNES

SNES Jacobian

User provided function calculates the Jacobian:

PetscErrorCode ( * func ) (SNES snes , Vec x , Mat * J , Mat *M, vo id * c t x )

x: The current solution
J: The Jacobian
M: The Jacobian preconditioning matrix (possibly J itself)

ctx: The user context passed to SNESSetJacobian()

Use this to pass application information, e.g. physical constants

Alternatively, you can use
matrix-free finite difference approximation, -snes_mf
finite difference approximation with coloring, -snes_fd
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SNES

SNES Variants

Picard iteration

Line search/Trust region strategies

Quasi-Newton

Nonlinear CG/GMRES

Nonlinear GS/ASM

Nonlinear Multigrid (FAS)

Variational inequality approaches
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SNES

Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD
Dense

Activated by -snes_fd
Computed by SNESDefaultComputeJacobian()

Sparse via colorings (default)
Coloring is created by MatFDColoringCreate()
Computed by SNESDefaultComputeJacobianColor()

Can also use Matrix-free Newton-Krylov via 1st-order FD
Activated by -snes_mf without preconditioning
Activated by -snes_mf_operator with user-defined
preconditioning

Uses preconditioning matrix from SNESSetJacobian()
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SNES

SNES Example
Driven Cavity

Velocity-vorticity formulation
Flow driven by lid and/or bouyancy
Logically regular grid

Parallelized with DMDA

Finite difference discretization
Authored by David Keyes

$PETSC_DIR/src/snes/examples/tutorials/ex19.c
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SNES

Driven Cavity Application Context

typedef s t r u c t {
/ * −−−−− basic a p p l i c a t i o n data −−−−− * /
PetscReal l i d _ v e l o c i t y ;
PetscReal p r a n d t l
PetscReal grashof ;
PetscBool draw_contours ;

} AppCtx ;

$PETSC_DIR/src/snes/examples/tutorials/ex19.c
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SNES

Driven Cavity Residual Evaluation

Residual (SNES snes , Vec X, Vec F , vo id * p t r ) {
AppCtx * user = ( AppCtx * ) p t r ;

/ * l o c a l s t a r t i n g and ending g r i d po in t s * /
Pe tsc In t i s t a r t , iend , j s t a r t , jend ;
PetscScalar * f ; / * l o c a l vec to r data * /
PetscReal grashof = user −>grashof ;
PetscReal p r a n d t l = user −> p r a n d t l ;
PetscErrorCode i e r r ;

/ * Code to communicate non loca l ghost po i n t data * /
VecGetArray (F , & f ) ;
/ * Code to compute l o c a l f u n c t i o n components * /
VecRestoreArray (F , & f ) ;
r e t u r n 0 ;

}

$PETSC_DIR/src/snes/examples/tutorials/ex19.c
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SNES

Better Driven Cavity Residual Evaluation

ResLocal (DMDALocalInfo * in fo ,
PetscScalar * * x , PetscScalar * * f , vo id * c tx )

{
f o r ( j = in fo −>ys ; j < in fo −>ys+ in fo −>ym; ++ j ) {

f o r ( i = in fo −>xs ; i < in fo −>xs+ in fo −>xm; ++ i ) {
u = x [ j ] [ i ] ;
uxx = ( 2 . 0 * u − x [ j ] [ i −1] − x [ j ] [ i + 1 ] ) * hydhx ;
uyy = ( 2 . 0 * u − x [ j − 1 ] [ i ] − x [ j + 1 ] [ i ] ) * hxdhy ;
f [ j ] [ i ] . u = uxx + uyy − . 5 * ( x [ j + 1 ] [ i ] . omega−x [ j − 1 ] [ i ] . omega ) * hx ;
f [ j ] [ i ] . v = uxx + uyy + . 5 * ( x [ j ] [ i + 1 ] . omega−x [ j ] [ i − 1 ] .omega ) * hy ;
f [ j ] [ i ] . omega = uxx + uyy +

( vxp * ( u − x [ j ] [ i − 1 ] .omega) + vxm * ( x [ j ] [ i + 1 ] .omega − u ) ) * hy +
( vyp * ( u − x [ j − 1 ] [ i ] . omega) + vym * ( x [ j + 1 ] [ i ] . omega − u ) ) * hx −
0 .5* grashof * ( x [ j ] [ i + 1 ] . temp − x [ j ] [ i − 1 ] . temp ) * hy ;

f [ j ] [ i ] . temp = uxx + uyy + p r a n d t l *
( ( vxp * ( u − x [ j ] [ i − 1 ] . temp ) + vxm * ( x [ j ] [ i + 1 ] . temp − u ) ) * hy +
( vyp * ( u − x [ j − 1 ] [ i ] . temp ) + vym * ( x [ j + 1 ] [ i ] . temp − u ) ) * hx ) ;

} } }

$PETSC_DIR/src/snes/examples/tutorials/ex19.c
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DA

What is a DMDA?

DMDA is a topology interface on structured grids
Handles parallel data layout
Handles local and global indices

DMDAGetGlobalIndices() and DMDAGetAO()
Provides local and global vectors

DMGetGlobalVector() and DMGetLocalVector()
Handles ghost values coherence

DMGlobalToLocalBegin/End() and DMLocalToGlobalBegin/End()
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DA

Residual Evaluation

The DM interface is based upon local callback functions
FormFunctionLocal()

FormJacobianLocal()

Callbacks are registered using
SNESSetDM(), TSSetDM()

DMSNESSetFunctionLocal(), DMTSSetJacobianLocal()

When PETSc needs to evaluate the nonlinear residual F(x),
Each process evaluates the local residual

PETSc assembles the global residual automatically
Uses DMLocalToGlobal() method
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DA

Ghost Values
To evaluate a local function f (x), each process requires

its local portion of the vector x
its ghost values, bordering portions of x owned by neighboring
processes

Local Node
Ghost Node
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DA

DMDA Global Numberings

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering
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DA

DMDA Global vs. Local Numbering

Global: Each vertex has a unique id belongs on a unique process
Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering
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DA

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(* lf )(DMDALocalInfo *info, PetscScalar**x, PetscScalar ** r , void *ctx)

info: All layout and numbering information
x: The current solution (a multidimensional array)
r: The residual

ctx: The user context passed to DMDASNESSetFunctionLocal()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, lfunc, &ctx)

M. Knepley PETSc UW ’11 102 / 123



DA

Bratu Residual Evaluation

∆u + λeu = 0

ResLocal (DMDALocalInfo * in fo , PetscScalar * * x , PetscScalar * * f , vo id * c tx ) {
f o r ( j = in fo −>ys ; j < in fo −>ys+ in fo −>ym; ++ j ) {

f o r ( i = in fo −>xs ; i < in fo −>xs+ in fo −>xm; ++ i ) {
u = x [ j ] [ i ] ;
i f ( i ==0 | | j ==0 | | i == M | | j == N) {

f [ j ] [ i ] = 2 . 0 * ( hydhx+hxdhy ) * u ; cont inue ;
}
u_xx = ( 2 . 0 * u − x [ j ] [ i −1] − x [ j ] [ i + 1 ] ) * hydhx ;
u_yy = ( 2 . 0 * u − x [ j − 1 ] [ i ] − x [ j + 1 ] [ i ] ) * hxdhy ;
f [ j ] [ i ] = u_xx + u_yy − hx * hy * lambda * exp ( u ) ;

} } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c
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DA

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(* ljac )(DMDALocalInfo *info, PetscScalar**x, MatJ, void *ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian

ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)
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DA

Bratu Jacobian Evaluation

JacLocal (DMDALocalInfo * in fo , PetscScalar * * x , Mat jac , vo id * c tx ) {
f o r ( j = in fo −>ys ; j < in fo −>ys + in fo −>ym; j ++) {

f o r ( i = in fo −>xs ; i < in fo −>xs + in fo −>xm; i ++) {
row . j = j ; row . i = i ;
i f ( i == 0 | | j == 0 | | i == mx−1 | | j == my−1) {

v [ 0 ] = 1 . 0 ;
Mat SetVa luesStenc i l ( jac ,1 ,& row ,1 ,& row , v , INSERT_VALUES ) ;

} e lse {
v [ 0 ] = −(hx / hy ) ; co l [ 0 ] . j = j −1; co l [ 0 ] . i = i ;
v [ 1 ] = −(hy / hx ) ; co l [ 1 ] . j = j ; co l [ 1 ] . i = i −1;
v [ 2 ] = 2 . 0 * ( hy / hx+hx / hy )

− hx * hy * lambda * PetscExpScalar ( x [ j ] [ i ] ) ;
v [ 3 ] = −(hy / hx ) ; co l [ 3 ] . j = j ; co l [ 3 ] . i = i +1;
v [ 4 ] = −(hx / hy ) ; co l [ 4 ] . j = j +1; co l [ 4 ] . i = i ;
Mat SetVa luesStenc i l ( jac ,1 ,& row ,5 , col , v , INSERT_VALUES ) ;

} } } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c
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DA

DMDA Vectors

The DMDA object contains only layout (topology) information
All field data is contained in PETSc Vecs

Global vectors are parallel
Each process stores a unique local portion
DMCreateGlobalVector(DM da, Vec *gvec)

Local vectors are sequential (and usually temporary)
Each process stores its local portion plus ghost values
DMCreateLocalVector(DM da, Vec *lvec)
includes ghost and boundary values!
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DA

Updating Ghosts

Two-step process enables overlapping
computation and communication

DMGlobalToLocalBegin(da, gvec, mode, lvec)

gvec provides the data
mode is either INSERT_VALUES or ADD_VALUES
lvec holds the local and ghost values

DMGlobalToLocalEnd(da, gvec, mode, lvec)

Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().

M. Knepley PETSc UW ’11 107 / 123



DA

DMDA Stencils

Both the box stencil and star stencil are available.

proc 0 proc 1

proc 10

proc 0 proc 1

proc 10

Box Stencil Star Stencil
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DA

Setting Values on Regular Grids

PETSc provides

Mat SetVa luesStenc i l ( Mat A, m, Mat S t e n c i l idxm [ ] , n , Mat S t e n c i l idxn [ ] ,
PetscScalar values [ ] , InsertMode mode)

Each row or column is actually a MatStencil
This specifies grid coordinates and a component if necessary
Can imagine for unstructured grids, they are vertices

The values are the same logically dense block in row/col
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DA

Creating a DMDA

DMDACreate2d(comm, bdX, bdY, type, M, N, m, n, dof, s, lm[], ln[], DMDA *da)

bd: Specifies boundary behavior
DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, or
DM_BOUNDARY_PERIODIC

type: Specifies stencil
DMDA_STENCIL_BOX or DMDA_STENCIL_STAR

M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
dof: Degrees of freedom per node
s: The stencil width

lm/n: Alternative array of local sizes
Use NULL for the default
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PCFieldSplit

MultiPhysics Paradigm

The PCFieldSplit interface
extracts functions/operators corresponding to each physics

VecScatter and MatGetSubMatrix() for efficiency

assemble functions/operators over all physics
Generalizes LocalToGlobal() mapping

is composable with ANY PETSc solver and preconditioner
This can be done recursively

FieldSplit provides the buildings blocks
for multiphysics preconditioning.
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PCFieldSplit

MultiPhysics Paradigm

The PCFieldSplit interface
extracts functions/operators corresponding to each physics

VecScatter and MatGetSubMatrix() for efficiency

assemble functions/operators over all physics
Generalizes LocalToGlobal() mapping

is composable with ANY PETSc solver and preconditioner
This can be done recursively

Notice that this works in exactly the same manner as
multiple resolutions (MG, FMM, Wavelets)

multiple domains (Domain Decomposition)

multiple dimensions (ADI)
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PCFieldSplit

Preconditioning

Several varieties of preconditioners can be supported:
Block Jacobi or Block Gauss-Siedel
Schur complement
Block ILU (approximate coupling and Schur complement)
Dave May’s implementation of Elman-Wathen type PCs

which only require actions of individual operator blocks

Notice also that we may have any combination of
“canned” PCs (ILU, AMG)
PCs needing special information (MG, FMM)
custom PCs (physics-based preconditioning, Born approximation)

since we have access to an algebraic interface
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PETSc-GPU

Thrust

Thrust is a CUDA library of parallel algorithms

Interface similar to C++ Standard Template Library

Containers (vector) on both host and device

Algorithms: sort, reduce, scan

Freely available, part of PETSc configure (-with-thrust-dir)

Included as part of CUDA 4.0 installation
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PETSc-GPU

Cusp

Cusp is a CUDA library for
sparse linear algebra and graph computations

Builds on data structures in Thrust

Provides sparse matrices in several formats (CSR, Hybrid)

Includes some preliminary preconditioners (Jacobi, SA-AMG)

Freely available, part of PETSc configure (-with-cusp-dir)
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PETSc-GPU

VECCUDA

Strategy: Define a new Vec implementation

Uses Thrust for data storage and operations on GPU

Supports full PETSc Vec interface

Inherits PETSc scalar type

Can be activated at runtime, -vec_type cuda

PETSc provides memory coherence mechanism
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PETSc-GPU

Memory Coherence

PETSc Objects now hold a coherence flag

PETSC_CUDA_UNALLOCATED No allocation on the GPU
PETSC_CUDA_GPU Values on GPU are current
PETSC_CUDA_CPU Values on CPU are current
PETSC_CUDA_BOTH Values on both are current

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.
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PETSc-GPU

MATAIJCUDA

Also define new Mat implementations

Uses Cusp for data storage and operations on GPU

Supports full PETSc Mat interface, some ops on CPU

Can be activated at runtime, -mat_type aijcuda

Notice that parallel matvec necessitates off-GPU data transfer
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PETSc-GPU

Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,

Minden, Smith, Knepley, 2010

All linear algebra types work with solvers

Entire solve can take place on the GPU
Only communicate scalars back to CPU

GPU communication cost could be amortized over several solves

Preconditioners are a problem
Cusp has a promising AMG
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PETSc-GPU

Installation

PETSc only needs
# Turn on CUDA
--with-cuda
# Specify the CUDA compiler
--with-cudac=’nvcc -m64’
# Indicate the location of packages
# --download-* will also work soon
--with-thrust-dir=/PETSc3/multicore/thrust
--with-cusp-dir=/PETSc3/multicore/cusp
# Can also use double precision
--with-precision=single
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PETSc-GPU

Example
Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
-da_mat_type aijcusp -mat_no_inode # Setup types
-da_grid_x 100 -da_grid_y 100 # Set grid size
-pc_type none -pc_mg_levels 1 # Setup solver
-preload off -cuda_synchronize # Setup run
-log_summary
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PETSc-GPU

Example
PFLOTRAN

Flow Solver
32 × 32 × 32 grid

Routine Time (s) MFlops MFlops/s
CPU
KSPSolve 8.3167 4370 526
MatMult 1.5031 769 512
GPU
KSPSolve 1.6382 4500 2745
MatMult 0.3554 830 2337

P. Lichtner, G. Hammond,
R. Mills, B. Phillip
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