PETSc: Platform for Scientific Computing

Matthew Knepley

Computation Institute
University of Chicago

ME 964: High Performance Computing
for Engineering Applications
University of Wisconsin — Madison
April 21, 2011

47\ RUSH UNIVERSITY
\ly MEDICAL CENTER

M. Knepley PETSc UW 11 1/123

Introduction
Outline

0 Introduction

@ Who uses and develops PETSc?
Stuff for Windows
@ How can | get PETSc?
@ How do | Configure PETSc?
@ How do | Build PETSc?
°
°

How do | run an example?
How do | get more help?

M. Knepley PETSc UW 11 2/123

What | Need From You

e Tell me if you do not understand

e Tell me if an example does not work

e Suggest better wording or figures

e Followup problems at petsc-maint@mcs.anl.gov

M. Knepley PETSc UW 11 3/123

mailto:petsc-maint@mcs.anl.gov

Introduction

Ask Questions!!!

e Helps me understand what you are missing
e Helps you clarify misunderstandings

e Helps others with the same question

M. Knepley PETSc UW 11 4/123

How We Can Help at the Tutorial

e Point out relevant documentation

e Answer email at petsc-maint@mcs.anl.gov

M. Knepley PETSc UW 11 5/123

mailto:petsc-maint@mcs.anl.gov

How We Can Help at the Tutorial

e Point out relevant documentation
e Quickly answer questions

e Answer email at petsc-maint@mcs.anl.gov

M. Knepley PETSc UW 11 5/123

mailto:petsc-maint@mcs.anl.gov

How We Can Help at the Tutorial

e Point out relevant documentation
e Quickly answer questions
e Help install

e Answer email at petsc-maint@mcs.anl.gov

M. Knepley PETSc UW 11 5/123

mailto:petsc-maint@mcs.anl.gov

How We Can Help at the Tutorial

e Point out relevant documentation

e Quickly answer questions

e Help install

e Guide design of large scale codes

e Answer email at petsc-maint@mcs.anl.gov

M. Knepley PETSc UW 11 5/123

mailto:petsc-maint@mcs.anl.gov

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

Domain
We want to experiment with different I]E[:ﬂ“]l][]sm["]
@ Models
@ Discretizations
@ Solvers
@ Algorithms

@ which blur these boundaries

M. Knepley PETSc UW 11 6/123

http://amzn.com/0521602866

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
— Barry Smith

M. Knepley PETSc UW 11 7/123

http://www.mcs.anl.gov/~bsmith

Advice from Bill Gropp

You want to think about how you decompose your data
structures, how you think about them globally. [...] If you
were building a house, you'd start with a set of blueprints
that give you a picture of what the whole house looks like.
You wouldn’t start with a bunch of tiles and say. “Well I'll
put this tile down on the ground, and then I'll find a tile
to go next to it.” But all too many people try to build their
parallel programs by creating the smallest possible tiles
and then trying to have the structure of their code emerge
from the chaos of all these little pieces. You have to have
an organizing principle if you’re going to survive making
your code parallel.

(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)

M. Knepley PETSc UW 11 8/123

http://www.rce-cast.com/Podcast/rce-28-mpich2.html

What is PETSc?

A freely available and supported research code
for the parallel solution of nonlinear algebraic
equations

Free

e Download from http://www.petsc.org
o Free for everyone, including industrial users

Supported

e Hyperlinked manual, examples, and manual pages for all routines
@ Hundreds of tutorial-style examples
@ Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python

M. Knepley PETSc UW 11 9/123

http://www.petsc.org
mailto:petsc-maint@mcs.anl.gov

What is PETSc?

@ Portable to any parallel system supporting MPI, including:
o Tightly coupled systems
@ Cray XT6, BG/Q, NVIDIA Fermi, K Computer
o Loosely coupled systems, such as networks of workstations
@ IBM, Mac, iPad/iPhone, PCs running Linux or Windows
@ PETSc History
e Begun September 1991
@ Over 60,000 downloads since 1995 (version 2)
o Currently 400 per month
@ PETSc Funding and Support
o Department of Energy
o ECP, PSAAPIIl, AMR, BES, SciDAC, MICS
o National Science Foundation
e CSSI, SI2, CIG, CISE
o Intel Parallel Computing Center

M. Knepley PETSc UW 11 10/123

Introduction

Timeline (Old People)

PETSc-1PETSc-2 PETSc-3
Barry

Bill
Lois
Satish
Dinesh
Hong
Kris
Matt
Victor
Dmitry

MPI-1
1991 1995 MPI-2 2000 2005 2010 2015

M. Knepley PETSc UW 11 11/123

Introduction

Timeline (Young People)

PETSc-3
Lisandro

Jed
Shri
Peter [
Jason
Mark
Patrick
Michael
Toby
Karl
Stefano
Dave

2000 2005 2010 2015

M. Knepley PETSc UW 11 12/123

Introduction

What Can We Handle?

@ PETSc has run implicit problems with over 500 billion unknowns

e UNIC on BG/P and XT5
o PFLOTRAN for flow in porous media

M. Knepley PETSc UW 11 13/123

https://hpgmg.org/

Introduction

What Can We Handle?

@ PETSc has run implicit problems with over 500 billion unknowns

e UNIC on BG/P and XT5
o PFLOTRAN for flow in porous media

@ PETSc has run on over 1,500,000 cores efficiently
e Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

M. Knepley PETSc UW 11 13/123

https://hpgmg.org/

Introduction

What Can We Handle?

@ PETSc has run implicit problems with over 500 billion unknowns

e UNIC on BG/P and XT5
o PFLOTRAN for flow in porous media

@ PETSc has run on over 1,500,000 cores efficiently
e Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

@ PETSc applications have run at 23% of peak (600 Teraflops)

@ Jed Brown on NERSC Edison
o HPGMG code

M. Knepley PETSc UW 11 13/123

https://hpgmg.org/

Introduction
New Model for Scientific Software
Application
FFC/SyFi

data structures

UW 11 14/123

M. Knepley

Introduction Who uses and develops PETSc?

Outline

@ Introduction
@ Who uses and develops PETSc?

M. Knepley PETSc UW 11 15/123

Introduction Who uses and develops PETSc?

Who Uses PETSc?

Computational Scientists

e Earth Science

PyLith (CIG)

e Underworld (Monash)

e Salvus (ETHZ)

o TerraFERMA (LDEO, Columbia, Oxford)

e Multiphysics
o MOOSE
o GRINS

e Subsurface Flow and Porous Media

o PFLOTRAN (DOE)
o STOMP (DOE)

M. Knepley PETSc UW 11 16/123

http://www.geodynamics.org/cig/software/pylith
http://www.underworldproject.org/
https://salvus.io/
http://terraferma.github.io/
http://mooseframework.org/
https://grinsfem.github.io/
http://ees.lanl.gov/pflotran/
http://stomp.pnnl.gov/

Introduction Who uses and develops PETSc?

Who Uses PETSc?

Computational Scientists

e CFD
e IBAMR
o Fluidity
e OpenFVM

e Fusion

e XGC

e BOUT++

e NIMROD

e M3D—C'

M. Knepley PETSc UW 11 17/123

https://github.com/IBAMR/IBAMR
http://amcg.ese.ic.ac.uk/index.php?title=Fluidity
http://openfvm.sourceforge.net/
http://w3.physics.lehigh.edu/~xgc/
https://bout.llnl.gov/
http://www.nimrodteam.org/
https://w3.pppl.gov/~nferraro/m3dc1.html

Introduction Who uses and develops PETSc?

Who Uses PETSc?

Algorithm Developers

e lterative methods
o Deflated GMRES
o LGMRES
e QCG
o SpecEst

e Preconditioning researchers
e FETI-DP (Klawonn and Rheinbach)
o STRUMPACK (Ghysels and Li)
e HPDDM (Jolivet and Nataf)
e ParPre (Eijkhout)

M. Knepley PETSc UW 11 18/123

http://www.uni-due.de/numerik/klawonn.shtml
http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/oliver-rheinbach/kontakt
https://github.com/pghysels/STRUMPACK
https://github.com/hpddm/hpddm
http://www.netlib.org/scalapack/manual.ps
http://tacc-web.austin.utexas.edu/staff/home/veijkhout/public_html/

Introduction Who uses and develops PETSc?

Who Uses PETSc?

Algorithm Developers

e Discretization
Firedrake
FENiCS
libMesh

Deal Il
PETSc-FEM
OOFEM
PetRBF

e Outer Loop Solvers

e Eigensolvers (SLEPc)
@ Optimization (PERMON)

M. Knepley PETSc

UW 11

19/123

http://firedrakeproject.org/
http://fenicsproject.org/
http://libmesh.sourceforge.net/
http://www.dealii.org/
http://www.cimec.org.ar/petscfem
http://www.oofem.org/
http://barbagroup.bu.edu/Barba_group/PetRBF.html
http://www.grycap.upv.es/slepc/
http://industry.it4i.cz/en/products/permon/

Introduction Who uses and develops PETSc?

The PETSc Team

Matt Knepley Barry Sm'th Satish Balay

a;ﬁ! E

‘ 4
Hong Zhang Llsandro Dalcin Stefano Zampini Mark Adams

an

Toby Isaac Hong Zhang Pierre Jolivet Junchao Zhang

Jed Brpwn

M. Knepley PETSc UW 11 20/123

Introduction Stuff for Windows

Outline

@ Introduction

@ Stuff for Windows

M. Knepley PETSc UW 11 PAVAPX]

Introduction Stuff for Windows

Questions for Windows Users

@ Have you installed cygwin?
o Need python, make, and build-utils packages

@ Will you use the GNU compilers?

@ If not, remove 1ink.exe
o If MS, check compilers from cma window and use win32fe

@ Which MPI will you use?

@ You can use --with-mpi=0
e If MS, need to install MPICH2
e If GNU, can use --download-mpich

@ Minimal build works on Linux subsystem

M. Knepley PETSc UW 11 22/123

http://www.cygwin.com
http://www.mcs.anl.gov/research/projects/mpich2

Introduction How can | get PETSc?

Outline

@ Introduction

@ How can | get PETSc?

M. Knepley PETSc UW 11 23/123

Introduction How can | get PETSc?

Downloading PETSc

@ There is a Git repository

@ The latest tarball is on the PETSc site:
https://web.cels.anl.gov/projects/petsc/download/release-
snapshots/

@ There is a pip package (pip install petsc petscipy)

@ There is a Debian package (aptitude install petsc—dev)

M. Knepley PETSc UW 11 24/123

http://git-scm.com/
https://gitlab.com/petsc/petsc/
https://web.cels.anl.gov/projects/petsc/download/release-snapshots/
https://web.cels.anl.gov/projects/petsc/download/release-snapshots/
https://pypi.org/project/petsc/
https://packages.debian.org/search?keywords=petsc

Introduction How can | get PETSc?

Cloning PETSc

@ The full development repository is open to the public
e https://gitlab.com/petsc/petsc/
@ Why is this better?
@ You can clone to any release (or any specific ChangeSet)
@ You can easily rollback changes (or releases)
@ You can get fixes from us the same day
@ You can easily submit changes using a pull request
@ All releases are just tags:
e Source at tag v3.18.0

M. Knepley PETSc UW 11 25/123

https://gitlab.com/petsc/petsc/
https://gitlab.com/petsc/petsc/-/tree/v3.24.0

Introduction How can | get PETSc?

Unpacking PETSc

@ Just clone development repository

@ git clone http://gitlab.com/petsc/petsc.git
@ git checkout -rv3.24.0

or

@ Unpack the tarball

@ tar xzf petsc.tar.gz

M. Knepley PETSc UW 11 26/123

Introduction How can | get PETSc?

Exercise 1

Download and Unpack PETSc!

M. Knepley PETSc UW 11 27/128

Introduction How do | Configure PETSc?

Outline

@ Introduction

@ How do | Configure PETSc?

M. Knepley PETSc UW 11 28/123

Introduction How do | Configure PETSc?

Configuring PETSc

@ Set speTsc_prr to the installation root directory
@ Run the configuration utility
@ SPETSC_DIR/configure
@ S$PETSC_DIR/configure --help
@ SPETSC_DIR/configure —--download-mpich
@ SPETSC_DIR/configure —-prefix=/usr
@ There are many examples in speTsc_DIR/config/examples
@ Config files in spETsc_pIR/$PETSC_ARCH/1ib/petsc/conf

o Config header in spETSC_DIR/$PETSC_ARCH/include
e speTsc_arcH has a default if not specified

M. Knepley PETSc UW 11 29/123

https://bitbucket.org/petsc/petsc/src/master/config/examples/

Introduction How do | Configure PETSc?

Configuring PETSc

@ You can easily reconfigure with the same options

@ ./SPETSC_ARCH/lib/petsc/conf/reconfigure-$PETSC_ARCH.py
@ Can maintain several different configurations

@ ./configure -PETSC_ARCH=arch-linux-opt --with-debugging=0
@ All configuration information is in the logfile

@ ./S$PETSC_ARCH/lib/petsc/conf/configure.log
o ALWAYS send this file with bug reports

M. Knepley PETSc UW 11 29/123

Introduction How do | Configure PETSc?

Automatic Downloads

@ Starting in 2.2.1, some packages are automatically

Downloaded
Configured and Built (in $spETsc_DIR/externalpackages)
Installed with PETSc

@ Currently works for

petsc4py, mpidpy

PETSc documentation utilities (Sowing, c2html)

BLAS, LAPACK, Elemental, ScaLAPACK

GMP, MPFR

ConcurrencyKit, hwloc

MPICH, OpenMPI

ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
SuiteSparse, MUMPS, SuperLU, SuperLU_Dist, PaStiX, Pardiso
SLEPc, HYPRE, ML

BLOPEX, FFTW, STRUMPACK, SPAI, CUSP, Sundials
Triangle, TetGen, p4est, Pragmatic

HDF5, NetCDF, Exodusl|

Afterlmage, gifLib, libjpeg, opengl

M. Knepley PETSc UW 11 30/123

Introduction How do | Configure PETSc?

Exercise 2

Configure your downloaded PETSc.

M. Knepley PETSc UW 11 31/123

Introduction How do | Build PETSc?

Outline

@ Introduction

@ How do | Build PETSc?

M. Knepley PETSc UW 11 32/123

Introduction How do | Build PETSc?

Building PETSc

@ There is now One True Way to build PETSc:

@ make
@ make install if you configured with --prefix
@ Check build when done with make check

@ Can build multiple configurations
@ PETSC_ARCH=arch-linux-opt make
@ Libraries are in spETSC_DIR/$PETSC_ARCH/1ib/

@ Complete log for each build is in logfile
@ ./S$PETSC_ARCH/lib/petsc/conf/make.log

o ALWAYS send this with bug reports

M. Knepley PETSc UW 11 33/128

Introduction How do | Build PETSc?

Exercise 3

Build your configured PETSc.

M. Knepley PETSc UW 11 34/123

Introduction How do | Build PETSc?

Exercise 4

Reconfigure PETSc to use ParMetis.

o linux-debug/lib/petsc/conf/reconfigure-linux-debug.py

@ --PETSC_ARCH=arch-linux-parmetis

@ --download-metis --download-parmetis
e PETSC_ARCH=linux-parmetis make

e PETSC_ARCH=linux-parmetis make check

M. Knepley PETSc UW 11 35/123

Introduction How do | run an example?

Outline

@ Introduction

@ How do | run an example?

M. Knepley PETSc UW 11 36/123

Introduction How do | run an example?

Running PETSc

@ Try running PETSc examples first
@ cd $SPETSC_DIR/src/snes/tutorials
@ Build examples using make targets
@ make ex5
@ Run using MPI directly

@ ./ex5 -snes_max_it 5
@ mpirun -np 2 ./ex5 -snes_max_it 5

@ mpiexec -n 2 ./ex5 —-snes_monitor

M. Knepley PETSc UW 11 37/123

Introduction How do | run an example?

Using MPI

@ The Message Passing Interface is:

o a library for parallel communication
e a system for launching parallel jobs (mpirun/mpiexec)
@ a community standard

@ Launching jobs is easy
@ mpiexec -n 4 ./ex5

@ You should never have to make MPI calls when using PETSc
o Almost never

M. Knepley PETSc UW 11 38/123

Introduction How do | run an example?

Common Viewing Options

@ Gives a text representation

@ -vec_view
@ Generally views subobijects too

@ -snes_view
@ Can visualize some objects

@ -mat_view draw::
@ Alternative formats

@ -vec_view binary:sol.bin:, -vec_view ::matlab, -vec_view socket
@ Sometimes provides extra information

@ —mat_view ::ascii_info, -mat_view ::ascii_info_detailed
@ Generic viewing option

@ -foo_view <type>:<filename>:<format>:<file mode>

M. Knepley PETSc UW 11 39/123

Introduction How do | run an example?

Common Monitoring Options

@ Display the residual

@ -ksp_monitor

@ Can disable dynamically
@ -ksp_monitors_cancel

@ Does not display subsolvers
@ -snes_monitor

@ Can use the true residual
@ -ksp_monitor_true_residual

@ Can display different subobjects
@ -snes_monitor_residual, -snes_monitor_solution,

—snes_monitor_solution_update

@ -snes_monitor_range
@ -ksp_gmres_krylov_monitor

@ Can display the spectrum

@ -ksp_monitor_singular_value

M. Knepley PETSc UW 11 40/123

Introduction How do | run an example?

Exercise 5

Run SNES Example 5 using come custom options.

cd SPETSC_DIR/src/snes/examples/tutorials
make ex5

mpiexec ./ex5 —-snes_monitor -snes_view
mpiexec ./ex5 —-snes_type tr —-snes_monitor
—-snes_view

mpiexec ./ex5 —-ksp_monitor —-snes_monitor
-snes_view

mpiexec ./ex5 —-pc_type Jjacobi —-ksp_monitor
—-snes_monitor —-snes_view

© 0 0 0000

mpiexec ./ex5 -ksp_type bicg -ksp_monitor
—-snes_monitor —-snes_view

M. Knepley PETSc UW 11 41/123

Introduction How do | run an example?

Exercise 6

Create a new code based upon SNES Example 5.

@ Create a new directory
@ mkdir -p /home/knepley/proj/newsim/src
@ Copy the source

@ cp ex5.c /home/knepley/proj/newsim/src
o Addmystuff.c andmyStuff2.F

© Create a PETSc makefile

@ bin/ex5: src/ex5.0 src/myStuff.o src/myStuff2.o
° ${CLINKER} -o $Q@ $” ${PETSC_SNES_LIB}

@ include ${PETSC_DIR}/conf/variables

@ include S$S{PETSC_DIR}/conf/rules

To get the project ready-made

hg clone https://bitbucket.org/knepley/simplepetscexample newsim

M. Knepley PETSc UW 11 42/123

Introduction How do | get more help?

Outline

@ Introduction

@ How do | get more help?

M. Knepley PETSc UW 11 43/123

Introduction How do | get more help?

Getting More Help

@ http://www.petsc.org
@ Hyperlinked documentation

@ Online Manual
e Manual pages for every method
e HTML of all example code (linked to manual pages)

e FAQ
@ Full support at petsc-maint@mcs.anl.gov

M. Knepley PETSc UW 11 44/123

http://www.petsc.org
https://petsc.org/main/docs/manual/
https://petsc.org/main/docs/manualpages/
https://petsc.org/main/faq/
mailto:petsc-maint@mcs.anl.gov

Version Control

Outline

@ Version Control

M. Knepley PETSc UW 11 45/123

Version Control

Location and Retrieval

“Where’s the Tarball”

@ Version Control
e Mercurial, Git, Subversion

@ Hosting
e BitBucket, GitHub, Launchpad

@ Community involvement
e arXiv, PubMed

M. Knepley PETSc UW 11 46/123

http://mercurial.selenic.com
http://git-scm.com
http://subversion.tigris.org
http://bitbucket.org
http://github.com
https://launchpad.net
http://arXiv.org
http://www.ncbi.nlm.nih.gov/pubmed

Version Control

Distributed Version Control

@ CVS/SVN manage a single repository

e Versioned data
e Local copy for modification and checkin

@ Mercurial manages many repositories

o Identified by URLs
o No one Master

@ Repositories communicate by ChangeSets

@ Use push and pull to move changesets
e Can move arbitrary changes with patch queues

M. Knepley PETSc UW 11 47/123

Version Control
Project Workflow

Figure: Single Repository

M. Knepley PETSc UW 11 48/123

Version Control

Project Workflow

Figure: Master Repository with User Clones

M. Knepley PETSc UW 11 49/123

Version Control
Project Workflow

Master |=========-= »| Release

Figure: Project with Release and Bugfix Repositories

M. Knepley PETSc UW 11 50/123

Vector Algebra

Outline

e Vector Algebra

M. Knepley PETSc UW 11 51/123

Vector Algebra
Vector Algebra

What are PETSc vectors?

@ Fundamental objects representing

@ solutions
e right-hand sides
e coefficients

@ Each process locally owns a subvector of contiguous global data

M. Knepley PETSc UW 11 52/123

Vector Algebra
Vector Algebra

How do | create vectors?

@ VecCreate(MPI_Commcomm, Vecxv)
@ VecSetSizes(Vecv, Petscint n, Petscint N)

@ VecSetType(Vecv, VecType typeName)
@ VecSetFromOptions(Vecv)
o Can set the type at runtime

M. Knepley PETSc UW 11 53/123

Vector Algebra
Vector Algebra

A PETSc Vec

@ Supports all vector space operations
@ VecDot(), VecNorm(), VecScale()
@ Has a direct interface to the values
@ VecGetArray(), VecGetArrayF90()
@ Has unusual operations
@ VecSqrtAbs(), VecStrideGather()
@ Communicates automatically during assembly

@ Has customizable communication (PetscSF, VecScatter)

M. Knepley PETSc UW 11 54/123

Vector Algebra

Parallel Assembly

Vectors and Matrices

@ Processes may set an arbitrary entry

o Must use proper interface
@ Entries need not be generated locally

e Local meaning the process on which they are stored
@ PETSc automatically moves data if necessary

e Happens during the assembly phase

M. Knepley PETSc UW 11 55/123

Vector Algebra

Vector Assembly

@ A three step process
e Each process sets or adds values
e Begin communication to send values to the correct process
o Complete the communication

VecSetValues(Vec v, Petscint n, Petsclnt rows[],
PetscScalar values[], InsertMode mode)

@ Mode is either INSERT_VALUES Or ADD_VALUES
@ Two phases allow overlap of communication and computation

@ VecAssemblyBegin(v)
@ VecAssemblyEnd(v)

M. Knepley PETSc UW 11 56/123

Vector Algebra

One Way to Set the Elements of a Vector

ierr = VecGetSize(x, &N);CHKERRQ(ierr);
ierr = MPlL_Comm_rank (PETSC_COMM WORLD, &rank);CHKERRQ(ierr);
if (rank == 0) {

val = 0.0;

for(i = 0; i < N; ++i) {
ierr = VecSetValues (x,
val += 10.0;

1, &i, &val, INSERT_VALUES);CHKERRQ(ierr)

}
}
/+ These routines ensure that the data is
distributed to the other processes =/
ierr = VecAssemblyBegin(x);CHKERRQ(ierr);
ierr = VecAssemblyEnd (x);CHKERRQ(ierr);

M. Knepley PETSc UW 11

57/123

Vector Algebra

One Way to Set the Elements of a Vector

VecGetSize (x, &N);
MPI_Comm_rank (PETSC_COMM WORLD, &rank);
if (rank == 0) {
val = 0.0;
for(i = 0; i < N; ++i) {
VecSetValues(x, 1, &i, &val, INSERT_VALUES);
val += 10.0;
}
}

/+ These routines ensure that the data is
distributed to the other processes =/

VecAssemblyBegin(x);

VecAssemblyEnd (x);

M. Knepley PETSc UW 11 58/123

Vector Algebra

A Better Way to Set the Elements of a Vector

VecGetOwnershipRange (x, &low, &high);

val = low=10.0;

for(i = low; i < high; ++i) {
VecSetValues(x, 1, &i, &val, INSERT_VALUES);
val += 10.0;

1

/= No data will be communicated here =/

VecAssemblyBegin (x);
VecAssemblyEnd (x);

M. Knepley PETSc UW 11 59/123

Vector Algebra
Selected Vector Operations

Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y=y+axx
VecAYPX(Vec y, PetscScalar a, Vec x) y=Xx+axy
VecWAYPX(Vec w, PetscScalar a, Vec x, Vecy) | w =y + axx
VecScale(Vec x, PetscScalar a) X=axX
VecCopy(Vec y, Vec x) y=x
VecPointwiseMult(Vec w, Vec x, Vec y) W = X * Y
VecMax(Vec x, Petscint *idx, PetscScalar *r) r = maxr;
VecShift(Vec x, PetscScalar r) X=X+ r
VecAbs(Vec x) Xi = |xj|
VecNorm(Vec x, NormType type, PetscReal *r) r=1|x||

M. Knepley PETSc UW 11 60/123

Working With Local Vectors

It is sometimes more efficient to directly access local storage of a vec.
@ PETSc allows you to access the local storage with
@ VecGetArray(Vec, double «[])
@ You must return the array to PETSc when you finish
@ VecRestoreArray(Vec, double +[])
@ Allows PETSc to handle data structure conversions
e Commonly, these routines are fast and do not involve a copy

M. Knepley PETSc UW 11 61/123

Vector Algebra

VecGetArray in C

Vec V;
PetscScalar =array ;
Petsclint n, i;

VecGetArray (v, &array);
VecGetlLocalSize (v, &n);
PetscSynchronizedPrintf (PETSC_COMM WORLD,
"First element of local array is %f\n", array[0]);
PetscSynchronizedFlush (PETSC_COMM WORLD) ;
for(i = 0; i < n; ++i) {
array[i] += (PetscScalar) rank;

}

VecRestoreArray (v, &array);

M. Knepley PETSc UW 11 62/123

Vector Algebra

VecGetArray in F77

#include "finclude/petsc.h"

Vec V;
PetscScalar array (1)
PetscOffset offset
Petsclint n, i

PetscErrorCode ierr

call VecGetArray(v, array, offset, ierr)
call VecGetLocalSize(v, n, ierr)
do i=1,n

array (i+offset) = array(i+offset) + rank
end do
call VecRestoreArray(v, array, offset, ierr)

M. Knepley PETSc UW 11 63/123

Vector Algebra

VecGetArray in F90

#include "finclude/petsc.h90"

Vec V;
PetscScalar pointer :: array(:)
Petscint n, i

PetscErrorCode ierr

call VecGetArrayF90 (v, array, ierr)
call VecGetLocalSize(v, n, ierr)
do i=1,n
array (i) = array(i) + rank
end do
call VecRestoreArrayF90 (v, array, ierr)

M. Knepley PETSc UW 11 64/123

VecGetArray in Python

with v as a:
for i in range(len(a)):
al[i] = 5.0+«i

M. Knepley PETSc UW 11 65/123

Vector Algebra

DMDAVecGetArray in C

DM da;
Vec V;
DMDALocallnfo «info;
PetscScalar +«+array;

DVDAVecGetArray (da, v, &array);

for(j = info->ys; | < info->ys+info->ym; ++j) {
for(i = info->xs; i < info->xs+info->xm; ++i) {
u x[§10i];
UXX (2.0«u — x[j][i=-1] = x[j][i+1])*hydhx;

uyy

(2.0«u — x[j=1][i] = x[j+1][i])«hxdhy;
FLII0T]

UXX + Uuyy;

}
}
DVDAVecRestoreArray (da, v, &array);

M. Knepley PETSc UW 11 66/123

Vector Algebra

DMDAVecGetArray in F90

DM da
Vec \Y
PetscScalar,pointer :: array(:,:)

call DMDAGetCorners(ada,xs,ys,PETSC_NULL_INTEGER,
xm,ym,PETSC_NULL_INTEGER, ierr)
call DMDAVecGetArrayF90(da,v,array,ierr);

do i = xs,Xxs+xm
do j = ys,ys+ym
u = x(i,j)
UXX = (2.0*xu = x(i-1,j) = x(i+1,j))~hydhx;
uyy = (2.0+«u - x(i,j-1) = x(i,j+1)~hxdhy;
f(i,j) = uxx + uyy;
enddo
enddo

call DMDAVecRestoreArrayF90(da,v,array,ierr);

M. Knepley PETSc UW 11 67/123

Matrix Algebra
Outline

Q@ Matrix Algebra

M. Knepley PETSc UW 11 68/123

Matrix Algebra
Matrix Algebra

What are PETSc matrices?

@ Fundamental objects for storing stiffness matrices and Jacobians
@ Each process locally owns a contiguous set of rows

@ Supports many data types
o AlJ, Block AlJ, Symmetric AlJ, Block Matrix, etc.

@ Supports structures for many packages
e Elemental, MUMPS, SuperLU, UMFPack, PasTiX

M. Knepley PETSc UW 11 69/123

Matrix Algebra

How do | create matrices?

MatCreate(MPI_Commcomm, Mat+A)

MatSetSizes(MatA, Petscint m, Petscint n, Petscint M, Petscint N)
MatSetType(MatA, MatType typeName)

MatSetFromOptions(MatA)

@ Can set the type at runtime
MatSeqAlJPreallocation(MatA, Petscintnz, const Petscint nnz[])
MatXAlJPreallocation(MatA, bs, dnz[], onz[], dnzu[], onzul])
MatSetValues(MatA, m, rows|], n, cols [], values[], InsertMode)

o MUST be used, but does automatic communication

M. Knepley PETSc UW 11 70/123

Matrix Algebra
Matrix Polymorphism

The PETSc mat has a single user interface,
@ Matrix assembly

@ MatSetValues()
@ MatGetLocalSubMatrix()

@ Matrix-vector multiplication
@ MatMult()

@ Matrix viewing
@ MatView()

but multiple underlying implementations.
@ AlJ, Block AlJ, Symmetric Block AlJ,
@ Dense
@ Matrix-Free
@ etc.
A matrix is defined by its interface, not by its data structure.

M. Knepley PETSc UW 11 71/123

Matrix Algebra

Matrix Assembly

@ A three step process
e Each process sets or adds values
e Begin communication to send values to the correct process
o Complete the communication
@ MatSetValues(A, m, rows[], n, cols [], values[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
o Logically dense block of values
@ Two phase assembly allows overlap of communication and
computation
@ MatAssemblyBegin(A, type)
@ MatAssemblyEnd(A, type)
@ type is either MAT_FLUSH_ASSEMBLY Or MAT_FINAL_ASSEMBLY

M. Knepley PETSc UW 11 72/123

Matrix Algebra

One Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
if (rank == 0) {
for(row = 0; row < N; row++) {
cols[0] = row-1; cols[1] = row; cols[2] = row+1;
if (row ==
MatSetValues (A,1,&row,2,&cols[1],&v[1],INSERT_VALUES);
} else if (row == N-1) {
MatSetValues (A,1,&row,2,cols ,v,INSERT_VALUES);
} else {
MatSetValues (A,1,&row,3,cols ,v,INSERT_VALUES);

}

} }
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY);

M. Knepley PETSc UW 11 73/123

Matrix Storage Layout

@ Each process locally owns a submatrix of contiguous global rows
@ Each submatrix consists of diagonal and off-diagonal parts

@ diagonal blocks

proc 0 m offdiagonal blocks

proc 1
proc 2
proc 3

proc 4

proc 5

@ MatGetOwnershipRange (Mat A, int *start,int *end)

start: first locally owned row of global matrix
end-1: last locally owned row of global matrix

M. Knepley PETSc UW 11 74/123

Matrix Algebra

A Better Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
MatGetOwnershipRange (A,& start ,&end);
for(row = start; row < end; row++) {
cols[0] = row-1; cols[1] = row; cols[2] = row+1;
if (row == 0) {
MatSetValues (A,1,&row,2,&cols[1],&v[1],INSERT_VALUES);
} else if (row == N-1) {
MatSetValues (A,1,&row,2,cols ,v,INSERT_VALUES);
} else {
MatSetValues (A,1,&row,3,cols,v,INSERT_VALUES);
}

}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;

MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;

M. Knepley PETSc UW 11 75/123

Why Are PETSc Matrices That Way?

@ No one data structure is appropriate for all problems
o Blocked and diagonal formats provide performance benefits
e PETSc has many formats
o Makes it easy to add new data structures

@ Assembly is difficult enough without worrying about partitioning
o PETSc provides parallel assembly routines
e High performance still requires making most operations local
e However, programs can be incrementally developed.
@ MatPartitioning and MatOrdering can help
o lts better to partition and reorder the underlying grid

@ Matrix decomposition in contiguous chunks is simple

o Makes interoperation with other codes easier
o For other ordering, PETSc provides “Application Orderings” (A0)

M. Knepley PETSc UW 11 76/123

Algebraic Solvers

Outline

© Algebraic Solvers

M. Knepley PETSc UW 11 77/128

Algebraic Solvers
Solver Types

@ Explicit:

o Field variables are updated using local neighbor information
@ Semi-implicit:

e Some subsets of variables are updated with global solves

e Others with direct local updates
@ Implicit:

e Most or all variables are updated in a single global solve

M. Knepley PETSc UW 11 78/123

Algebraic Solvers

Linear Solvers

Krylov Methods

@ Using PETSc linear algebra, just add:

@ KSPSetOperators(ksp, A, M, flag)
@ KSPSolve(ksp, b, x)

@ Can access subobjects
@ KSPGetPC(ksp, &pc)

@ Preconditioners must obey PETSc interface
o Basically just the KSP interface

@ Can change solver dynamically from the command line
@ -ksp_type bicgstab

M. Knepley PETSc UW 11 79/123

Algebraic Solvers
Nonlinear Solvers

@ Using PETSc linear algebra, just add:

@ SNESSetFunction(snes, r, residualFunc, ctx)
@ SNESSetJacobian(snes, A, M, jacFunc, ctx)
@ SNESSolve(snes, b, x)

@ Can access subobjects
@ SNESGetKSP(snes, &ksp)
@ Can customize subobjects from the cmd line
o Set the subdomain preconditioner to ILU with —sub_pc_type ilu

M. Knepley PETSc UW 11 80/123

Algebraic Solvers
Basic Solver Usage

Use SNESSetFromOptions() SO that everything is set dynamically

@ Set the type
@ Use -snes_type (or take the default)

@ Set the preconditioner
@ Use -npc_snes_type (or take the default)

@ Override the tolerances
@ Use -snes_rtol and —snes_atol

@ View the solver to make sure you have the one you expect
o Use -snes_view

@ For debugging, monitor the residual decrease

@ Use —snes_monitor
o Use —ksp_monitor to see the underlying linear solver

M. Knepley PETSc UW 11 81/123

3rd Party Solvers in PETSc

Complete table of solvers
@ Sequential LU
o ESSL (IBM)
SuperLU (Sherry Li, LBNL)
Suitesparse (Tim Davis, U. of Florida)
o LUSOL (MINOS, Michael Saunders, Stanford)
PILUT (Hypre, David Hysom, LLNL)

@ Parallel LU

o Elemental/Clique (Jack Poulson, Google)

o MUMPS (Patrick Amestoy, IRIT)

SuperLU_Dist (Jim Demmel and Sherry Li, LBNL)
e Pardiso (MKL, Intel)

o STRUMPACK (Pieter Ghysels, LBNL)

@ Parallel Cholesky

o Elemental (Jack Poulson, Google)
e DSCPACK (Padma Raghavan, Penn. State)
o MUMPS (Patrick Amestoy, Toulouse)

M. Knepley PETSc UW 11 82/123

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

3rd Party Preconditioners in PETSc

Complete table of solvers
@ Parallel Algebraic Multigrid

o GAMG (Mark Adams, LBNL)
o BoomerAMG (Hypre, LLNL)
o ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)

@ Parallel BDDC (Stefano Zampini, KAUST)
@ Parallel ILU, PaStiX (Faverge Mathieu, INRIA)

@ Parallel Redistribution (Dave May, Oxford and Patrick Sanan, USI)
@ Parallel Sparse Approximate Inverse

o Parasails (Hypre, Edmund Chow, LLNL)
e SPAI 3.0 (Marcus Grote and Barnard, NYU)

M. Knepley PETSc UW 11 82/123

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

SNES
Outline

Q@ sNEs

M. Knepley PETSc UW 11 83/123

Flow Control for a PETSc Application

Main Routine

Timestepping Solvers (TS)

v

Nonlinear Solvers (SNES)

v

Linear Solvers (KSP)]

v

Preconditioners (PC)]

Application Function Jacobian

Initialization Evaluation Evaluation | Postprocessing

M. Knepley PETSc UW 11 84/123

SNES Paradigm

The SNES interface is based upon callback functions
@ FormFunction(), S€t Dy SNESSetFunction()

@ FormJacobian(), Set by SNESSetJacobian()
When PETSc needs to evaluate the nonlinear residual F(x),

@ Solver calls the user’s function

@ User function gets application state through the ctx variable
e PETSc never sees application data

M. Knepley PETSc UW 11 85/123

Topology Abstractions

@ DMDA

o Abstracts Cartesian grids in any dimension
@ Supports stencils, communication, reordering
o Nice for simple finite differences

@ DMMesh

e Abstracts general topology in any dimension
o Also supports partitioning, distribution, and global orders
o Allows aribtrary element shapes and discretizations

M. Knepley PETSc UW 11 86/123

Assembly Abstractions

@ DM

@ Abstracts the logic of multilevel (multiphysics) methods
o Manages allocation and assembly of local and global structures
o Interfaces to PCMG solver

@ PetscSection

e Abstracts functions over a topology
@ Manages allocation and assembly of local and global structures
o Will merge with bM somehow

M. Knepley PETSc UW 11 87/123

SNES Function

User provided function calculates the nonlinear residual:

PetscErrorCode (*func)(SNES snes,Vec x,Vec r,void =ctx)

x: The current solution

r: The residual
ctx: The user context passed to SNESSetFunction()
o Use this to pass application information, e.g. physical constants

M. Knepley PETSc UW 11 88/123

SNES Jacobian

User provided function calculates the Jacobian:

PetscErrorCode (xfunc)(SNES snes, Vec x, Mat «J, Mat «M, void =ctx)

x: The current solution
J: The Jacobian

M: The Jacobian preconditioning matrix (possibly J itself)
ctx: The user context passed to SNESSetJacobian()
e Use this to pass application information, e.g. physical constants

Alternatively, you can use
@ matrix-free finite difference approximation, -snes_mf
@ finite difference approximation with coloring, -snes_fd

M. Knepley PETSc UW 11 89/123

SNES Variants

e Picard iteration

e Line search/Trust region strategies
e Quasi-Newton

e Nonlinear CG/GMRES

e Nonlinear GS/ASM

e Nonlinear Multigrid (FAS)

e Variational inequality approaches

M. Knepley PETSc UW 11 90/123

Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD
@ Dense

o Activated by -snes_fd
o Computed by SNESDefaultComputeJacobian()

@ Sparse via colorings (default)

@ Coloring is created by MatFDColoringCreate()
o Computed by SNESDefaultComputeJacobianColor()

Can also use Matrix-free Newton-Krylov via 1st-order FD

@ Activated by —snes_mf without preconditioning

@ Activated by -snes_mf_operator with user-defined
preconditioning

o Uses preconditioning matrix from SNESSetJacobian()

M. Knepley PETSc UW 11 91/123

SNES Example

Driven Cavity

Solution Components

.
»
-
velocity: u velocity: v @ Velocity-vorticity formulation
@ Flow driven by lid and/or bouyancy
- @ Logically regular grid
o Parallelized with bMDA
@ Finite difference discretization
vorticity: temperature: T @ Authored by David Keyes

$PETSC_DIR/src/snes/examples/tutorials/ex19.c

M. Knepley PETSc UW 11 92/123

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

SNES

Driven Cavity Application Context

typedef struct {
[———— basic application data -—-———- */
PetscReal lid_velocity;
PetscReal prandtl
PetscReal grashof;
PetscBool draw_contours;
} AppCtx;

$PETSC_DIR/src/snes/examples/tutorials/ex19.c

M. Knepley PETSc UW 11 93/123

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

SNES

Driven Cavity Residual Evaluation

Residual (SNES snes, Vec X, Vec F, void =«ptr) {

AppCix ~user = (AppCtx =) ptr;

/= local starting and ending grid points =/
Petscint istart , iend, jstart, jend;
PetscScalar «f; /+ local vector data «/
PetscReal grashof = user->grashof;
PetscReal prandtl = user—>prandtl;

PetscErrorCode ierr;

/+ Code to communicate nonlocal ghost point data «/
VecGetArray (F, &f);

/+ Code to compute local function components =/
VecRestoreArray (F, &f);

return O;

SPETSC_DIR/src/snes/examples/tutorials/ex19.c

M. Knepley PETSc UW 11 94/123

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

SNES

Better Driven Cavity Residual Evaluation

ResLocal (DMDALocallnfo =info ,
PetscScalar «xx, PetscScalar «+f, void =+ctx)

{
for(j = info->ys; j < info->ys+info->ym; ++j) {
for(i = info->xs; i < info->xs+info->xm; ++i) {
u =x[jlli];
uxx = (2.0+«u — x[j][i=-1] = x[j1[i+1])~hydhx;
uyy = (2.0=u - x[j-1][i] = x[j+1][i])~hxdhy;
fIil1[i].-u = uxx + uyy — .5«(x[j+1][i].omega-x[j—1][i].omega)=hx
fLj1[i].-v = uxx + uyy + .5«(x[j][i+1].omega—x[j][i—-1].omega)=«hy;
fl[jlli].omega = uxx + uyy +
(vxp*(u — x[j][i-1].omega) + vxm=(x[j][i+1].omega — u))«hy +
(vyp*(u — x[j—=1][i].omega) + vym=(x[j+1][i].omega — u))~hx -
0.5+grashof«(x[j][i+1].temp — x[j][i-1].temp)«hy
fl[jl[i].temp = uxx + uyy + prandtl=«
((vxp*(u = x[j][i-1].temp) + vxm=«(x[j][i+1].temp - u))=hy +
m (vyp=(u — x[j-1][i].temp) + vym«(x[j+1][i].temp - u))=~hx);

$PETSC_DIR/src/snes/examples/tutorials/ex19.c

M. Knepley PETSc UW 11 95/123

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Outline

@ DA

M. Knepley PETSc UW 11 96/123

What is a DMDA?

DMDA is a topology interface on structured grids

@ Handles parallel data layout
@ Handles local and global indices
o DMDAGetGloballndices() and DMDAGetAO()
@ Provides local and global vectors
o DMGetGlobalVector() and DMGetLocalVector()
@ Handles ghost values coherence
o DMGilobalToLocalBegin/End() and DMLocalToGlobalBegin/End()

M. Knepley PETSc UW 11 97/123

Residual Evaluation

The DM interface is based upon local callback functions
@ FormFunctionLocal()

@ FormdJacobianLocal()
Callbacks are registered using
@ SNESSetDM(), TSSetDM()
@ DMSNESSetFunctionLocal(), DMTSSetJacobianLocal()

When PETSc needs to evaluate the nonlinear residual F(x),
@ Each process evaluates the local residual

@ PETSc assembles the global residual automatically
o Uses DMLocalToGlobal() method

M. Knepley PETSc UW 11

98/123

Ghost Values

To evaluate a local function f(x), each process requires
@ its local portion of the vector x
@ its ghost values, bordering portions of x owned by neighboring

processes

M. Knepley

PETSc

® Local Node
@® Ghost Node

UW 11

99/123

DA

DMDA Global Numberings

Proc 2 Proc 3 Proc 2 Proc 3
25 26 27|28 29 21 22 23|28 29
20 21 22|23 24 18 19 20 | 26 27
15 16 17 |18 19 15 16 17 |24 25
10 11 12 (13 14 6 7 8 |13 14
5 6 7|8 9 3 4 5 |11 12
0 1 2|1 3 4 0o 1 219 10

Proc 0 Proc 1 Proc 0 Proc 1

Natural numbering

M. Knepley

PETSc

PETSc numbering

UW 11

100/123

DA

DMDA Gilobal vs. Local Numbering

@ Global: Each vertex has a unique id belongs on a unique process

@ Local: Numbering includes vertices from neighboring processes
e These are called ghost vertices

Proc 2 Proc 3 Proc 2 Proc 3

X X X | X X 21 22 23|28 29
X X X | X X 18 19 20|26 27
12 13 14115 X 15 16 17 |24 25
8 9 10|11 X 6 7 8 |13 14
4 5 6|7 X 3 4 5 |11 12
0o 1 2 13 X 0o 1 219 10
Proc 0 Proc 1 Proc 0 Proc 1
Local numbering Global numbering

M. Knepley PETSc UW 11 101/123

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(= If)(DMDALOocallnfo «info, PetscScalars*x, PetscScalar+r, void =ctx)

info: All layout and numbering information
x: The current solution (a multidimensional array)
r: The residual
ctx: The user context passed to DMDASNESSetFunctionLocal()
The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, Ifunc, &ctx)

M. Knepley PETSc UW 11

102/123

DA

Bratu Residual Evaluation

Au+xe'=0
ResLocal (DMDALocallnfo «info, PetscScalar =»x, PetscScalar ==f, void =ctx)
for(j = info—>ys; j < info->ys+info->ym; ++j) {
for(i = info->xs; i < info->xs+info->xm; ++i) {
u=x[jllil;
if (i==0 || j==0 [] i =M || j ==N) {

fli1[i] = 2.0+(hydhx+hxdhy)«u; continue;

U_XX = (2.0+«u — x[j][i=-1] = x[j][i+1])~hydhx;
ulyy = (2.0%u = x[j-1][i] - x[j+1][i])=hxdhy;
fljl1[i] = u_xx + u_yy — hxshyslambda=exp(u);
}
$PETSC_DIR/src/snes/examples/tutorials/ex5.c
M. Knepley PETSc

UW 11 103/123

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(» ljac)(DMDALocallnfo «info, PetscScalar«+x, MatJ, void =ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian
ctx: The user context passed to DASetLocalJacobian()
The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)

M. Knepley PETSc UW 11 104/123

DA

Bratu Jacobian Evaluation

JacLocal (DMDALocallnfo =info,PetscScalar =*x,Mat jac,void =ctx) {

for(j = info->ys; | < info->ys + info->ym; j++) {
for(i = info->xs; i < info->xs + info->xm; i++) {
row.j = j; row.i = i;
if (i ==0 | j==01[1i==m-11]] | ==my-1) {
v[0] = 1.0;
MatSetValuesStencil (jac,1,&row,1,&row,v,INSERT_VALUES);
} else {
v[0] = —-(hx/hy); col[0].j = j-1; col[0].i = i;
v[1] = —(hy/hx); col[1].j = j; col[1].i = i-1;
v[2] = 2.0=«(hy/hx+hx/hy)
— hxxhy=«lambda+PetscExpScalar(x[j]1[i]);
v[3] = —(hy/hx); col[3].] = j; col[3].i = i+1;
v[4] = —(hx/hy); col[4].] = j+1; col[4].i = i;

MatSetValuesStencil (jac,1,&row,5,col,v,INSERT_VALUES);

$PETSC_DIR/src/snes/examples/tutorials/ex5.c

M. Knepley

PETSc

UW 11 105/123

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html

DMDA Vectors

@ The DMDA object contains only layout (topology) information
o All field data is contained in PETSc Vecs
@ Global vectors are parallel

e Each process stores a unique local portion
o DMCreateGlobalVector(DM da, Vec =gvec)

@ Local vectors are sequential (and usually temporary)

e Each process stores its local portion plus ghost values
o DMCreateLocalVector(DM da, Vec =lvec)
e includes ghost and boundary values!

M. Knepley PETSc UW 11 106/123

Updating Ghosts

Two-step process enables overlapping
computation and communication

@ DMGilobalToLocalBegin(da, gvec, mode, Ivec)

@ gvec provides the data
@ mode is either INSERT_VALUES or ADD_VALUES
@ Ivec holds the local and ghost values

@ DMGlobalToLocalEnd(da, gvec, mode, Ivec)
e Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End()

M. Knepley PETSc

UW 11

107/123

DMDA Stencils

Both the box stencil and star stencil are available.

proc 0 | proc 1 proc 0 | proc 1

Box Stencil Star Stencil

M. Knepley PETSc UW 11 108/123

DA

Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil (Mat A, m, MatStencil idxm[], n, MatStencil idxn[],
PetscScalar values[], InsertMode mode)

@ Each row or column is actually a MatStencil

e This specifies grid coordinates and a component if necessary
e Can imagine for unstructured grids, they are vertices

@ The values are the same logically dense block in row/col

M. Knepley PETSc UW 11 109/123

Creating a DMDA

DMDACreate2d(comm, bdX, bdY, type, M, N, m, n, dof, s, Im[], In[], DMDA «da)

bd:

_ype:

M/N:
m/n:
dof:
: The stencil width

lm/n:

Specifies boundary behavior

@ DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, or
DM_BOUNDARY_PERIODIC

Specifies stencil
@ DMDA_STENCIL_BOX Or DMDA_STENCIL_STAR

Number of grid points in x/y-direction
Number of processes in x/y-direction
Degrees of freedom per node

Alternative array of local sizes
@ Use NULL for the default

M. Knepley PETSc UW 11

110/123

PCFieldSplit

Outline

L] D P P= [N H
M. Knepley PETSc UW 11 111/123

MultiPhysics Paradigm

The PCFieldSplit interface

@ extracts functions/operators corresponding to each physics
@ VecScatter and MatGetSubMatrix () for efficiency

@ assemble functions/operators over all physics
o Generalizes LocalToGlobal () mapping

@ is composable with ANY PETSc solver and preconditioner
e This can be done recursively

M. Knepley PETSc UW 11 112/123

MultiPhysics Paradigm

The PCFieldSplit interface

@ extracts functions/operators corresponding to each physics
@ VecScatter and MatGetSubMatrix () for efficiency

@ assemble functions/operators over all physics
o Generalizes LocalToGlobal () mapping

@ is composable with ANY PETSc solver and preconditioner
e This can be done recursively

FieldSplit provides the buildings blocks
for multiphysics preconditioning.

M. Knepley PETSc UW 11 112/123

MultiPhysics Paradigm

The PCFieldSplit interface

@ extracts functions/operators corresponding to each physics
o VecScatter and MatGetSubMatrix () for efficiency

@ assemble functions/operators over all physics
o Generalizes LocalToGlobal () mapping

@ is composable with ANY PETSc solver and preconditioner
e This can be done recursively

Notice that this works in exactly the same manner as
@ multiple resolutions (MG, FMM, Wavelets)
@ multiple domains (Domain Decomposition)
@ multiple dimensions (ADI)

M. Knepley PETSc UW 11 112/123

PCFieldSplit
Preconditioning

Several varieties of preconditioners can be supported:
@ Block Jacobi or Block Gauss-Siedel
@ Schur complement
@ Block ILU (approximate coupling and Schur complement)
@ Dave May’s implementation of EIman-Wathen type PCs
which only require actions of individual operator blocks

Notice also that we may have any combination of

@ “canned” PCs (ILU, AMG)

@ PCs needing special information (MG, FMM)

@ custom PCs (physics-based preconditioning, Born approximation)
since we have access to an algebraic interface

M. Knepley PETSc UW 11 113/123

PETSc-GPU

Outline

M. Knepley PETSc UW 11 114/123

PETSc-GPU
Thrust

Thrust is a CUDA library of parallel algorithms

@ Interface similar to C++ Standard Template Library

@ Containers (vector) on both host and device

@ Algorithms: sort, reduce, scan

@ Freely available, part of PETSc configure (-with-thrust-dir)

@ Included as part of CUDA 4.0 installation

M. Knepley PETSc UW 11 115/123

http://code.google.com/p/thrust/

PETSc-GPU
Cusp

Cusp is a CUDA library for
sparse linear algebra and graph computations

@ Builds on data structures in Thrust
@ Provides sparse matrices in several formats (CSR, Hybrid)
@ Includes some preliminary preconditioners (Jacobi, SA-AMG)

@ Freely available, part of PETSc configure (-with-cusp—-dir)

M. Knepley PETSc UW 11 116/123

http://code.google.com/p/cusp-library/

VECCUDA

Strategy: Define a new Vec implementation

@ Uses Thrust for data storage and operations on GPU
@ Supports full PETSc Vec interface

@ Inherits PETSc scalar type

@ Can be activated at runtime, —vec_type cuda

@ PETSc provides memory coherence mechanism

M. Knepley PETSc UW 11 117/123

http://code.google.com/p/thrust/

PETSc-GPU

Memory Coherence

PETSc Objects now hold a coherence flag

PETSC_CUDA_UNALLOCATED | No allocation on the GPU

PETSC_CUDA_GPU Values on GPU are current
PETSC_CUDA_CPU Values on CPU are current
PETSC_CUDA BOTH Values on both are current

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.

M. Knepley PETSc UW 11 118/123

MATAIJCUDA

Also define new Mat implementations

@ Uses Cusp for data storage and operations on GPU
@ Supports full PETSc Mat interface, some ops on CPU
@ Can be activated at runtime, -mat_type aijcuda

@ Notice that parallel matvec necessitates off-GPU data transfer

M. Knepley PETSc UW 11 119/123

http://code.google.com/p/cusp-library/

PETSc-GPU
Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,
Minden, Smith, Knepley, 2010

@ All linear algebra types work with solvers
@ Entire solve can take place on the GPU
e Only communicate scalars back to CPU
@ GPU communication cost could be amortized over several solves

@ Preconditioners are a problem
@ Cusp has a promising AMG

M. Knepley PETSc UW 11 120/123

http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf

PETSc-GPU

Installation

PETSc only needs

Turn on CUDA

--with-cuda

Specify the CUDA compiler
—-with-cudac='nvcc,_,—m64’

Indicate the location of packages

——download-+ will also work soon
——with-thrust-dir=/PETSc3/multicore/thrust
--with-cusp-dir=/PETSc3/multicore/cusp

Can also use double precision
--with-precision=single

M. Knepley PETSc UW 11 121/123

PETSc-GPU

Example

Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
—-da_mat_type aijcusp -mat_no_inode
-da_grid_x 100 -da_grid_y 100
—-pc_type none -pc_mg_levels 1
-preload off -cuda_synchronize
-log_summary

Setup types
Set grid size
Setup solver
Setup run

M. Knepley PETSc UW 11 122/123

PETSc-GPU

Example

PFLOTRAN

Flow Solver S s 005 025 043 05 038
32 x 32 x 32 grid

Routine | Time (s) | MFlops | MFlops/s

CPU

KSPSolve | 8.3167 4370 526

MatMult 1.5031 769 512 e
KSPSolve 1.6382 4500 2745 | P Lichtner, G. Hammond,
MatMult 0.3554 830 2337 | R. Mills, B. Phillip

M. Knepley PETSc UW 11 123/123

	Introduction
	Who uses and develops PETSc?
	Stuff for Windows
	How can I get PETSc?
	How do I Configure PETSc?
	How do I Build PETSc?
	How do I run an example?
	How do I get more help?

	Version Control
	Vector Algebra
	Matrix Algebra
	Algebraic Solvers
	SNES
	DA
	PCFieldSplit
	PETSc-GPU

