Tree-based methods on GPUs

Felipe Cruz' and Matthew Knepley?-3

"Department of Mathematics
University of Bristol

2Computation Institute
University of Chicago

SDepartment of Molecular Biology and Physiology
Rush University Medical Center

School of Mathematical Sciences, Monash University
Clayton, VIC Mar 3, 2010

/7 RUSH UNIVERSITY
A7 MENICAT CENTER
M. Knepley (UC) GPU Monash 1/49

Introduction

Outline

° Introduction

M. Knepley (UC) GPU Monash 2/49

Scientific Computing Challenge

How do we create
reusable
implementations which are also
efficient?

M. Knepley (UC) GPU Monash 5/49

Introduction

Scientific Computing Insight

Structures are conserved,

but tradeoffs change.

M. Knepley (UC) GPU Monash 6/49

Introduction

Structure vs. Tradeoffs

This is how PETSc works:

M. Knepley (UC)

Monash

7/49

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

This is how PETSc works:

@ Sparse matrix-vector product has a common structure

M. Knepley (UC) GPU Monash 7149

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

This is how PETSc works:

@ Sparse matrix-vector product has a common structure
@ Different storage formats are chosen based upon

e architecture
e PDE

M. Knepley (UC) GPU Monash 7149

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

Ax=b
{ b, Ab, A(Ab), A(A(Ab)), ...}

This is how PETSc works:

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

Ax=b
{ b, Ab, A(Ab), A(A(Ab)), ...}

This is how PETSc works:

@ Krylov solvers have a common structure

M. Knepley (UC) GPU Monash 8/49

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

Ax=b
{ b, Ab, A(Ab), A(A(Ab)), ...}

This is how PETSc works:

@ Krylov solvers have a common structure
@ Different solvers are chosen based upon

e problem characteristics
@ architecture

M. Knepley (UC) GPU Monash 8/49

http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

This is how treecodes work:

M. Knepley (UC) GPU Monash 9/49

Introduction

Structure vs. Tradeoffs

This is how treecodes work:
@ Hierarchical algorithms have a common structure

M. Knepley (UC) GPU Monash 9/49

Introduction

Structure vs. Tradeoffs

This is how treecodes work:

@ Hierarchical algorithms have a common structure
@ Different analytical and geometric decisions depend upon

@ problem configuration
@ accuray requirements

M. Knepley (UC) GPU Monash 9/49

Introduction

Structure vs. Tradeoffs

Chemist’s View

lon Channels
Proteins with a Hole

Figure by Raimund Dutzler

Chemical Bonds are lines
Surface is Electrical Potential
is negative (acid)
is positive (base)

This is how biology works:

M. Knepley (UC) GPU

Monash

10/49

Introduction

Structure vs. Tradeoffs

This is how biology works:
@ For ion channels, Nature uses the same

e protein building blocks
e energetic balances

M. Knepley (UC) GPU Monash 10/49

Introduction

Structure vs. Tradeoffs

This is how biology works:
@ For ion channels, Nature uses the same

e protein building blocks
e energetic balances

@ Different energy terms predominate for different uses

M. Knepley (UC) GPU Monash 10/49

Introduction
Representation Hierarchy

Divide the work into levels:
@ Model

@ Algorithm

@ Implementation

M. Knepley (UC) GPU Monash 11/49

http://www.spiral.net

Introduction
Representation Hierarchy

Divide the work into levels: Spiral Project:

@ Model @ Discrete Fourier Transform (DSP)
@ Algorithm @ Fast Fourier Transform (SPL)
@ Implementation @ C Implementation (SPL Compiler)

M. Knepley (UC) GPU Monash 11/49

http://www.spiral.net

Introduction
Representation Hierarchy

Divide the work into levels: FLAME Project:

@ Model @ Abstract LA (PME/Invariants)
@ Algorithm @ Basic LA (FLAME/FLASH)
@ Implementation @ Scheduling (SuperMatrix)

M. Knepley (UC) GPU Monash 11/49

http://www.cs.utexas.edu/users/flame

Introduction
Representation Hierarchy

Divide the work into levels: FEnICS Project:
@ Model @ Navier-Stokes (FFC)
@ Algorithm @ Finite Element (FIAT)
@ Implementation @ Integration/Assembly (FErari)

M. Knepley (UC) GPU Monash 11/49

http://www.fenics.org

Introduction
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

M. Knepley (UC) GPU Monash 11/49

Introduction
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

M. Knepley (UC) GPU Monash 11/49

Introduction

DFT (single precision): on 3 GHz 2 x Core 2 Extreme
performance [Gflop/s]
30

=+=Spiral 5.0 SPMD
Spiral 5.0 sequential
35 ==Intel IPP 5.0
=4=FFTW 3.2 alpha SMP
=w=FFTW 2.2 alpha sequential

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144
input size

@ Spiral Team, http://www.spiral.net
@ Uses an intermediate language, SPL, and then generates C
@ Works by circumscribing the algorithmic domain

M. Knepley (UC) GPU Monash 12/49

http://www.spiral.net

Introduction

FLAME & FLASH

Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070

T T T T
Algorithm-by-blocks on four T10 processors —+—
1400 CUBLAS sgemm on a single T10 processor -+ - B

MKL sgemm on Intel Xeon QuadCore (4 cores) -+

1200

1000

GFLOPS

600

400

200

.
0 5000 10000 15000 20000
Matrix size

@ Robert van de Geijn, http://www.cs.utexas.edu/users/flame
@ FLAME is an Algorithm-By-Blocks interface
@ FLASH/SuperMatrix is a runtime system

M. Knepley (UC) GPU Monash 13/49

http://www.cs.utexas.edu/users/flame

Short Introduction to FMM
Outline

e Short Introduction to FMM
@ Spatial Decomposition
@ Data Decomposition

M. Knepley (UC) GPU Monash 14/49

Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity

M. Knepley (UC) GPU Monash 15/49

Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
Advantages
@ Mesh-free
@ O(N) time
@ Distributed and multicore (GPU) parallelism
@ Small memory bandwidth requirement

M. Knepley (UC) GPU Monash 15/49

Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

O(x) =D K(xi,x)q(x) (1)
J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques

M. Knepley (UC) GPU Monash 16/49

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques

M. Knepley (UC) GPU Monash 16/49

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

Short Introduction to FMM
PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

@ Leverages PETSc
@ Same open source license
o Uses Sieve for parallelism
@ Extensible design in C++
o Templated over the kernel
o Templated over traversal for evaluation
@ MPI implementation
o Novel parallel strategy for anisotropic/sparse particle distributions
o PetFMM-A dynamically load-balancing parallel fast multipole library
e 86% efficient strong scaling on 64 procs
@ Example application using the Vortex Method for fluids

@ (coming soon) GPU implementation

M. Knepley (UC) GPU Monash ax

http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/0905.2637
http://onlinelibrary.wiley.com/doi/10.1002/nme.2972/abstract

Short Introduction to FMM

PetFMM CPU Performance

Strong Scaling

256

128

Speedup

./ uniform 4ML8R5 —&—
s uniform 10ML9R5 —e—

2 ¥ spiral IMLBR5 —>»— |
spiral w/ space-filling IML8R5 —&—
1)) Perfect Speedup - - - - -
2 4 8 16 32 64 128 256

M. Knepley (UC) GPU Monash 18/49

Short Introduction to FMM

PetFMM CPU Performance

Strong Scaling

10 \ MEinitigligxtioﬁ R
pwar eep —x—
\:Qg\ Downwglci‘l ﬁgnegg i
10? < Load balancing stage —e—
\’Q)\é Total time —8—
_ 10" \))\\é\b\ﬂ
o E
: 10° \"\ -
10 ' / — T~ \)1\
K
1021
2 4 8 16 32 64 128 256

M. Knepley (UC) GPU Monash 18/49

Short Introduction to FMM Spatial Decomposition

Outline

9 Short Introduction to FMM
@ Spatial Decomposition

M. Knepley (UC) GPU Monash 19/49

Short Introduction to FMM Spatial Decomposition

Spatial Decomposition

Pairs of boxes are divided into near and far:

M. Knepley (UC) GPU Monash 20/49

Short Introduction to FMM Spatial Decomposition

Spatial Decomposition

Pairs of boxes are divided into near and far:

are treated as very near.

M. Knepley (UC) GPU)

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations

M. Knepley (UC) GPU Monash 21/49

FMM in Sieve

Short Introduction to FMM Spatial Decomposition

M. Knepley (UC)

@ The Quadtree is a Sieve

o with optimized operations
@ Multipoles are stored in sections

Monash

21/49

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

M. Knepley (UC) GPU Monash 21/49

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined
o

M. Knepley (UC) GPU Monash 21/49

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

M. Knepley (UC) GPU Monash 21/49

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

e o
]
I @ Completion moves data for
I o Neighbors

M. Knepley (UC) GPU Monash 21/49

Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List

M. Knepley (UC) GPU Monash 21/49

Short Introduction to FMM Data Decomposition

Outline

9 Short Introduction to FMM

@ Data Decomposition

M. Knepley (UC) GPU Monash 22/49

Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:

M. Knepley (UC) GPU Monash 23/49

Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
e Box centers, Neighbors

M. Knepley (UC) GPU Monash 23/49

Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
e Box centers, Neighbors

@ box + neighbors
o Blobs

M. Knepley (UC) GPU Monash 23/49

Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
e Box centers, Neighbors

@ box + neighbors
o Blobs

@ box + interaction list

o Interaction list cells and values
e Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (UC) GPU Monash 23/49

Serial Implementation
Outline

e Serial Implementation
@ Control Flow
@ Interface

M. Knepley (UC) GPU Monash 24 /49

Serial Implementation Control Flow

Outline

e Serial Implementation
@ Control Flow

M. Knepley (UC) GPU Monash 25/49

Serial Implementation Control Flow

FMM Control Flow

<.. {}x{\> Create Multipole Expansions Evaluate Local Expansions.
SNV
—> P2M —> M2M ----> M2L ----> L2L ----> L2P

Kernel operations will map to GPU tasks.

M. Knepley (UC) GPU Monash 26 /49

Serial Implementation Control Flow

FMM Control Flow

Parallel Operation

<+——» M2Mand L2L translations <« ---p M2Ltransformation e Local domain

Root tree

Level k

Kernel operations will map to GPU tasks.

M. Knepley (UC) GPU Monash 26 /49

Serial Implementation Interface

Outline

e Serial Implementation

@ Interface

M. Knepley (UC) GPU Monash 27 /49

Serial Implementation Interface

Evaluator Interface

@ initializeExpansions (tree, blobInfo)

o Generate multipole expansions on the lowest level
e Requires loop over cells
e O(p)

@ upwardSweep (tree)

e Translate multipole expansions to intermediate levels
e Requires loop over cells and children (support)
° O(p%)

@ downwardSweep (tree)

e Convert multipole to local expansions and translate local
expansions on intermediate levels

o Requires loop over cells and parent (cone)

o O(p?)

M. Knepley (UC) GPU Monash 28/49

Serial Implementation Interface

Evaluator Interface

@ evaluateBlobs (tree, blobInfo)
e Evaluate direct and local field interactions on lowest level
e Requires loop over cells and neighbors (in section)
o O(p?)
@ evaluate(tree, blobs, blobInfo)
o Calculate the complete interaction (multipole + direct)

M. Knepley (UC) GPU Monash 29/49

Serial Implementation Interface

Kernel Interface

Method Description

P2M(t) Multipole expansion coefficients
L2P (t) Local expansion coefficients
M2M (t) Multipole-to-multipole translation
M21T, (t) Multipole-to-local translation
L2L(t) Local-to-local translation
evaluate (blobs) | Direct interaction

@ Evaluator is templated over Kernel
@ There are alternative kernel-independent methods
o kifmm3d

M. Knepley (UC) GPU Monash 30/49

http://www.mrl.nyu.edu/~harper/kifmm3d

Parallel FMM

Outline

© Parallel FMM

M. Knepley (UC) GPU Monash 31/49

Parallel FMM
Parallel Tree Implementation

@ Divide tree into a root and local trees
@ Distribute local trees among processes

@ Provide communication pattern for local sections (overlap)
e Both neighbor and interaction list overlaps

o Sieve generates MPI from high level description

M. Knepley (UC) GPU Monash 32/49

Parallel FMM

Parallel Tree Implementation

How should we distribute trees?

@ Multiple local trees per process allows good load balance
@ Partition weighted graph

@ Minimize load imbalance and communication

o Computation estimate:

Leaf Nijp (P2M) + nip? (M2L) + N;p (L2P) + 39N? (P2P)
Interior ngp? (M2M) + mp? (M2L) + nep? (L2L)

e Communication estimate:
Diagonal nc(L—k—1)

Lateral 2"% for incidence dimesion m
@ Leverage existing work on graph partitioning
e ParMetis

M. Knepley (UC) GPU Monash 33/49

http://www.cs.umn.edu/parmetis

Parallel FMM

Parallel Tree Implementation

Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

@ Good partitions exist for non-uniform distributions
2D O (v/n(log n)3/?) edgecut
3D O (n?/3(log n)*) edgecut

@ As scalable as regular grids

@ As efficient as uniform distributions

@ ParMetis will find a nearly optimal partition

M. Knepley (UC) GPU Monash 34 /49

http://portal.acm.org/citation.cfm?id=289842
http://portal.acm.org/citation.cfm?id=289842

Parallel FMM

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

@ Good partitions exist for non-uniform distributions

2D C; = 1.24’:Co for random matching
3D C; =1.21'Cy?? for random matching

@ 3D proof needs assurance that averge degree does not increase

@ Efficient in practice

M. Knepley (UC) GPU Monash 35/49

http://glaros.dtc.umn.edu/gkhome/node/79
http://glaros.dtc.umn.edu/gkhome/node/79

Parallel FMM

Parallel Tree Implementation

Advantages

e Simplicity

M. Knepley (UC) GPU Monash 36/49

Parallel FMM

Parallel Tree Implementation

Advantages

e Simplicity

e Complete serial code reuse

M. Knepley (UC) GPU Monash 36/49

Parallel FMM

Parallel Tree Implementation

Advantages

e Simplicity
e Complete serial code reuse

e Provably good performance and scalability

M. Knepley (UC) GPU Monash 36/49

Distributing Local Trees

The interaction of locals trees is represented by a weighted graph.

This graph is partitioned, and trees assigned to processes.

M. Knepley (UC) GPU Monash 37/49

=
=
[
°
I
c
o

istribution
Here local trees are assigned to processes:

Local Tree D

hhhhhhhhhhhhhhhhhHh
hhhhhhhhhhhhhhhhHh

38/49

Monash

GPU

M. Knepley (UC)

Parallel FMM
Parallel Data Movement

@ Complete neighbor section

© Upward sweep

@ Upward sweep on local trees
@ Gather to root tree
© Upward sweep on root tree

© Complete interaction list section

© Downward sweep

@ Downward sweep on root tree
@ Scatter to local trees
© Downward sweep on local trees

M. Knepley (UC) GPU Monash 39/49

Parallel FMM

PetFMM Load Balance

0.8

NG
'\“\“/.

0.2
uniform 4ML8R5 —8—
uniform 10ML9R5 —e—
spiral IML8R5 —x—
0 ‘ spiral w/space-filling IML8RS —=—
2 4 8 16 32 64 128 256

M. Knepley (UC) Monash

[%]
)
—
Q
[&]
<
g

=

=

[T

]

=

o

o
[%2]
)
=
o
[&]
oV}
s

o
2
>
2
[o%
@
C
=
=

Local Tree Distribution
Here local trees are assigned to processes for a spiral distribution

=
=
[
°
I
c
o

=
9
p—
-]
O
o
p—
§
o
()
o
T
©
o
(@)
—l

Here local trees are assigned to processes for a spiral distribution:

NESESTESE |

|

aaaaaal
aaaaaal

Kkkkkkkkaaa
kkkkkkkkkaaaaa

(d) 16 cores

(c) 8 cores

41/49

Monash

GPU

M. Knepley (UC)

=
=
[
°
s
<4
a

=
9
p—
-]
O
o
p—
§
o
()
o
T
©
o
(@)
—l

Here local trees are assigned to processes for a spiral distribution:

(f) 64 cores

(e) 32 cores

41/49

Monash

GPU

M. Knepley (UC)

Multicore FMM
Ouitline

e Multicore FMM
@ GPU Hardware
@ PetFMM

M. Knepley (UC) GPU Monash 42 /49

Multicore FMM GPU Hardware

Outline

e Multicore FMM
@ GPU Hardware

M. Knepley (UC) GPU Monash 43 /49

Multicore FMM GPU Hardware

GPU vs. CPU

A GPU looks like a big CPU with no virtual memory:
@ Many more hardware threads encourage concurrency
@ Makes bandwidth limitations even more acute
@ Shared memory is really a user-managed cache
@ Texture memory is also a specialized cache
@ User also manages a very small code segment

M. Knepley (UC) GPU Monash 44/ 49

GPU vs. CPU

Multicore FMM

Power usage can be very different:

GPU Hardware

Platform TF KW | GB/s Price ($) | GF/$ | GF/W
IBM BG/P 14 | 40.00 | 57.0* 1,800,000 | 0.008 0.35
IBM BlueGene | 280 | 5000 ??? | 350,000,000 | 0.0008 | 0.55
NVIDIA C1060 1 0.19 | 102.0 1,475 | 0.680 5.35
ATI 9250 1| 012 | 635 840 | 1.220 | 8.33

Table: Comparison of Supercomputing Hardware.

M. Knepley (UC)

Monash

44/49

Multicore FMM PetFMM

Outline

e Multicore FMM

@ PetFMM

M. Knepley (UC) GPU Monash 45/ 49

Multicore FMM PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N

M. Knepley (UC) GPU Monash 46/ 49

http://www.pycuda.org

Multicore FMM PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N

@ New M2L design was implemented using PyCUDA
@ Port to C++ is underway

M. Knepley (UC) GPU Monash 46 / 49

http://www.pycuda.org

Multicore FMM PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N

@ New M2L design was implemented using PyCUDA
@ Port to C++ is underway

@ We can now achieve 500 GF on the NVIDIA Tesla
@ Previous best performance we found was 100 GF

M. Knepley (UC) GPU Monash 46/ 49

http://www.pycuda.org

Multicore FMM PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N

@ New M2L design was implemented using PyCUDA
@ Port to C++ is underway

@ We can now achieve 500 GF on the NVIDIA Tesla
@ Previous best performance we found was 100 GF

@ We will release PetFMM-GPU in the new year

M. Knepley (UC) GPU Monash 46/ 49

http://www.pycuda.org

Multicore FMM PetFMM

Tripolar Vortex
t=000

M. Knepley (UC) GPU Monash 47/49

Multicore FMM PetFMM

Tripolar Vortex
t=100

M. Knepley (UC) GPU Monash 47/49

Multicore FMM PetFMM

Tripolar Vortex
t =200

M. Knepley (UC) GPU Monash 47/49

Multicore FMM PetFMM

Tripolar Vortex
t =300

M. Knepley (UC) GPU Monash 47/49

Multicore FMM PetFMM

Tripolar Vortex
t =400

M. Knepley (UC) GPU Monash 47/49

Multicore FMM PetFMM

Tripolar Vortex
t =500

M. Knepley (UC) GPU Monash 47/49

Multicore FMM PetFMM

Tripolar Vortex
t =600

M. Knepley (UC) GPU Monash 47/49

Multicore FMM PetFMM

Tripolar Vortex
t=700

M. Knepley (UC) GPU Monash 47/49

Multicore FMM PetFMM

Tripolar Vortex
t =800

M. Knepley (UC) GPU Monash 47/49

Multicore FMM PetFMM

GPU Interaction

Since our parallelism is hierarchical
@ Local (serial) tree interface is preserved

@ GPU code can be reused locally without change

@ Multiple GPUs per node can also be used

M. Knepley (UC) GPU Monash 48 /49

What’s Important?

Interface improvements bring concrete benefits

@ Facilitated code reuse

o Serial code was largely reused
e Test infrastructure completely reused

@ Opportunites for performance improvement
e Optimization using existing tools
o Leverage GPU hardware

@ Expansion of capabilities

e Could now combine distributed and multicore implementations
e Could replace local expansions with cheaper alternatives

M. Knepley (UC) GPU Monash 49/ 49

	Introduction
	Short Introduction to FMM
	Spatial Decomposition
	Data Decomposition

	Serial Implementation
	Control Flow
	Interface

	Parallel FMM
	Multicore FMM
	GPU Hardware
	PetFMM

