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Scientific Computing Challenge

How do we create
reusable
implementations which are also
efficient?
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Introduction

Scientific Computing Insight

Structures are conserved,

but tradeoffs change.
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Structure vs. Tradeoffs

This is how PETSc works:
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Structure vs. Tradeoffs

This is how PETSc works:

@ Sparse matrix-vector product has a common structure
@ Different storage formats are chosen based upon

e architecture
e PDE

M. Knepley (UC) GPU Monash 7149


http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

Ax=b
{ b, Ab, A(Ab), A(A(Ab)), ...}

This is how PETSc works:



http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

Ax=b
{ b, Ab, A(Ab), A(A(Ab)), ...}

This is how PETSc works:

@ Krylov solvers have a common structure

M. Knepley (UC) GPU Monash 8/49


http://www.mcs.anl.gov/petsc

Introduction

Structure vs. Tradeoffs

Ax=b
{ b, Ab, A(Ab), A(A(Ab)), ...}

This is how PETSc works:

@ Krylov solvers have a common structure
@ Different solvers are chosen based upon

e problem characteristics
@ architecture
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Introduction

Structure vs. Tradeoffs

This is how treecodes work:

@ Hierarchical algorithms have a common structure
@ Different analytical and geometric decisions depend upon

@ problem configuration
@ accuray requirements
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Introduction

Structure vs. Tradeoffs

Chemist’s View

lon Channels
Proteins with a Hole

Figure by Raimund Dutzler

Chemical Bonds are lines
Surface is Electrical Potential
is negative (acid)
is positive (base)

This is how biology works:
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Structure vs. Tradeoffs

This is how biology works:
@ For ion channels, Nature uses the same

e protein building blocks
e energetic balances
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Introduction

Structure vs. Tradeoffs

This is how biology works:
@ For ion channels, Nature uses the same

e protein building blocks
e energetic balances

@ Different energy terms predominate for different uses
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Introduction
Representation Hierarchy

Divide the work into levels:
@ Model

@ Algorithm

@ Implementation
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Introduction
Representation Hierarchy

Divide the work into levels:  Spiral Project:

@ Model @ Discrete Fourier Transform (DSP)
@ Algorithm @ Fast Fourier Transform (SPL)
@ Implementation @ C Implementation (SPL Compiler)
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Introduction
Representation Hierarchy

Divide the work into levels: FLAME Project:

@ Model @ Abstract LA (PME/Invariants)
@ Algorithm @ Basic LA (FLAME/FLASH)
@ Implementation @ Scheduling (SuperMatrix)
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Introduction
Representation Hierarchy

Divide the work into levels: FEnICS Project:
@ Model @ Navier-Stokes (FFC)
@ Algorithm @ Finite Element (FIAT)
@ Implementation @ Integration/Assembly (FErari)
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Introduction
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

M. Knepley (UC) GPU Monash 11/49



Introduction

DFT (single precision): on 3 GHz 2 x Core 2 Extreme
performance [Gflop/s]
30

=+=Spiral 5.0 SPMD
Spiral 5.0 sequential
35 ==Intel IPP 5.0
=4=FFTW 3.2 alpha SMP
=w=FFTW 2.2 alpha sequential

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144
input size

@ Spiral Team, http://www.spiral.net
@ Uses an intermediate language, SPL, and then generates C
@ Works by circumscribing the algorithmic domain
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Introduction

FLAME & FLASH

Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070

T T T T
Algorithm-by-blocks on four T10 processors —+—
1400 CUBLAS sgemm on a single T10 processor -+ - B

MKL sgemm on Intel Xeon QuadCore (4 cores) -+

1200

1000
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200
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Matrix size

@ Robert van de Geijn, http://www.cs.utexas.edu/users/flame
@ FLAME is an Algorithm-By-Blocks interface
@ FLASH/SuperMatrix is a runtime system
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@ Spatial Decomposition
@ Data Decomposition
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Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
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Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
Advantages
@ Mesh-free
@ O(N) time
@ Distributed and multicore (GPU) parallelism
@ Small memory bandwidth requirement
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Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

O(x) =D K(xi,x)q(x) (1)
J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques
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Short Introduction to FMM
PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

@ Leverages PETSc
@ Same open source license
o Uses Sieve for parallelism
@ Extensible design in C++
o Templated over the kernel
o Templated over traversal for evaluation
@ MPI implementation
o Novel parallel strategy for anisotropic/sparse particle distributions
o PetFMM-A dynamically load-balancing parallel fast multipole library
e 86% efficient strong scaling on 64 procs
@ Example application using the Vortex Method for fluids

@ (coming soon) GPU implementation
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Short Introduction to FMM

PetFMM CPU Performance

Strong Scaling
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Short Introduction to FMM

PetFMM CPU Performance

Strong Scaling
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Short Introduction to FMM Spatial Decomposition

Spatial Decomposition

Pairs of boxes are divided into near and far:
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Short Introduction to FMM Spatial Decomposition

Spatial Decomposition

Pairs of boxes are divided into near and far:

are treated as very near.
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Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
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Short Introduction to FMM Spatial Decomposition
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Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

e o
]
I @ Completion moves data for
I o Neighbors
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Short Introduction to FMM Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List
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Outline

9 Short Introduction to FMM

@ Data Decomposition
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Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
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FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
e Box centers, Neighbors
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Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
e Box centers, Neighbors

@ box + neighbors
o Blobs

@ box + interaction list

o Interaction list cells and values
e Multipole and local coefficients

Notice this is multiscale since data is divided at each level
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Serial Implementation
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e Serial Implementation
@ Control Flow
@ Interface
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Serial Implementation Control Flow

Outline

e Serial Implementation
@ Control Flow
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Serial Implementation Control Flow

FMM Control Flow

<.. {}x{\> Create Multipole Expansions Evaluate Local Expansions.
SNV
—> P2M —> M2M ----> M2L ----> L2L ----> L2P

Kernel operations will map to GPU tasks.
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Serial Implementation Control Flow

FMM Control Flow

Parallel Operation

<+——» M2Mand L2L translations <« ---p M2Ltransformation e Local domain

Root tree

Level k

Kernel operations will map to GPU tasks.
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Serial Implementation Interface
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e Serial Implementation

@ Interface
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Serial Implementation Interface

Evaluator Interface

@ initializeExpansions (tree, blobInfo)

o Generate multipole expansions on the lowest level
e Requires loop over cells
e O(p)

@ upwardSweep (tree)

e Translate multipole expansions to intermediate levels
e Requires loop over cells and children (support)
° O(p%)

@ downwardSweep (tree)

e Convert multipole to local expansions and translate local
expansions on intermediate levels

o Requires loop over cells and parent (cone)

o O(p?)
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Serial Implementation Interface

Evaluator Interface

@ evaluateBlobs (tree, blobInfo)
e Evaluate direct and local field interactions on lowest level
e Requires loop over cells and neighbors (in section)
o O(p?)
@ evaluate(tree, blobs, blobInfo)
o Calculate the complete interaction (multipole + direct)
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Serial Implementation Interface

Kernel Interface

Method Description

P2M(t) Multipole expansion coefficients
L2P (t) Local expansion coefficients
M2M (t) Multipole-to-multipole translation
M21T, (t) Multipole-to-local translation
L2L(t) Local-to-local translation
evaluate (blobs) | Direct interaction

@ Evaluator is templated over Kernel
@ There are alternative kernel-independent methods
o kifmm3d
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Parallel FMM

Outline

© Parallel FMM

M. Knepley (UC) GPU Monash 31/49



Parallel FMM
Parallel Tree Implementation

@ Divide tree into a root and local trees
@ Distribute local trees among processes

@ Provide communication pattern for local sections (overlap)
e Both neighbor and interaction list overlaps

o Sieve generates MPI from high level description
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Parallel FMM

Parallel Tree Implementation

How should we distribute trees?

@ Multiple local trees per process allows good load balance
@ Partition weighted graph

@ Minimize load imbalance and communication

o Computation estimate:

Leaf Nijp (P2M) + nip? (M2L) + N;p (L2P) + 39N? (P2P)
Interior ngp? (M2M) + mp? (M2L) + nep? (L2L)

e Communication estimate:
Diagonal nc(L—k—1)

Lateral 2"% for incidence dimesion m
@ Leverage existing work on graph partitioning
e ParMetis
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Parallel FMM

Parallel Tree Implementation

Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

@ Good partitions exist for non-uniform distributions
2D O (v/n(log n)3/?) edgecut
3D O (n?/3(log n)*) edgecut

@ As scalable as regular grids

@ As efficient as uniform distributions

@ ParMetis will find a nearly optimal partition
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Parallel FMM

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

@ Good partitions exist for non-uniform distributions

2D C; = 1.24’:Co for random matching
3D C; =1.21'Cy?? for random matching

@ 3D proof needs assurance that averge degree does not increase

@ Efficient in practice
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Parallel FMM

Parallel Tree Implementation

Advantages

e Simplicity
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Parallel FMM

Parallel Tree Implementation

Advantages

e Simplicity
e Complete serial code reuse

e Provably good performance and scalability
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Distributing Local Trees

The interaction of locals trees is represented by a weighted graph.

This graph is partitioned, and trees assigned to processes.
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Parallel FMM
Parallel Data Movement

@ Complete neighbor section

© Upward sweep

@ Upward sweep on local trees
@ Gather to root tree
© Upward sweep on root tree

© Complete interaction list section

© Downward sweep

@ Downward sweep on root tree
@ Scatter to local trees
© Downward sweep on local trees
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Parallel FMM

PetFMM Load Balance

0.8

NG
'\“\“/.

0.2
uniform 4ML8R5 —8—
uniform 10ML9R5 —e—
spiral IML8R5 —x—
0 ‘ spiral w/space-filling IML8RS —=—
2 4 8 16 32 64 128 256
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Local Tree Distribution
Here local trees are assigned to processes for a spiral distribution
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Here local trees are assigned to processes for a spiral distribution:
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(d) 16 cores

(c) 8 cores
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Here local trees are assigned to processes for a spiral distribution:

(f) 64 cores

(e) 32 cores
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Multicore FMM
Ouitline

e Multicore FMM
@ GPU Hardware
@ PetFMM
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e Multicore FMM
@ GPU Hardware
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Multicore FMM GPU Hardware

GPU vs. CPU

A GPU looks like a big CPU with no virtual memory:
@ Many more hardware threads encourage concurrency
@ Makes bandwidth limitations even more acute
@ Shared memory is really a user-managed cache
@ Texture memory is also a specialized cache
@ User also manages a very small code segment
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GPU vs. CPU

Multicore FMM

Power usage can be very different:

GPU Hardware

Platform TF KW | GB/s Price ($) | GF/$ | GF/W
IBM BG/P 14 | 40.00 | 57.0* 1,800,000 | 0.008 0.35
IBM BlueGene | 280 | 5000 ??? | 350,000,000 | 0.0008 | 0.55
NVIDIA C1060 1 0.19 | 102.0 1,475 | 0.680 5.35
ATI 9250 1| 012 | 635 840 | 1.220 | 8.33

Table: Comparison of Supercomputing Hardware.

M. Knepley (UC)

Monash
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Multicore FMM PetFMM

Outline

e Multicore FMM

@ PetFMM
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Multicore FMM PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N
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GPU Performance
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@ Port to C++ is underway

@ We can now achieve 500 GF on the NVIDIA Tesla
@ Previous best performance we found was 100 GF
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Multicore FMM PetFMM

GPU Performance

@ In our C++ code on a CPU, M2L transforms take 85% of the time
e This does vary depending on N

@ New M2L design was implemented using PyCUDA
@ Port to C++ is underway

@ We can now achieve 500 GF on the NVIDIA Tesla
@ Previous best performance we found was 100 GF

@ We will release PetFMM-GPU in the new year
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Multicore FMM PetFMM

Tripolar Vortex
t=000
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Tripolar Vortex
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Tripolar Vortex
t =200
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Tripolar Vortex
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Tripolar Vortex
t =400
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Multicore FMM PetFMM

Tripolar Vortex
t =500
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Multicore FMM PetFMM

Tripolar Vortex
t =600
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Multicore FMM PetFMM

Tripolar Vortex
t=700
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Multicore FMM PetFMM

Tripolar Vortex
t =800
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Multicore FMM PetFMM

GPU Interaction

Since our parallelism is hierarchical
@ Local (serial) tree interface is preserved

@ GPU code can be reused locally without change

@ Multiple GPUs per node can also be used
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What’s Important?

Interface improvements bring concrete benefits

@ Facilitated code reuse

o Serial code was largely reused
e Test infrastructure completely reused

@ Opportunites for performance improvement
e Optimization using existing tools
o Leverage GPU hardware

@ Expansion of capabilities

e Could now combine distributed and multicore implementations
e Could replace local expansions with cheaper alternatives

M. Knepley (UC) GPU Monash 49/ 49
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