
Getting Modern Algorithms into the Hands of
Working Scientists on Modern Hardware

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

Applied and Computational Mathematics seminar
School of Mathematical Sciences, Monash University

Victoria, Australia October 15, 2012

M. Knepley (UC) Libraries Monash 1 / 35

Impact of Computational Mathematics

The main impact of
computational mathematics is in

design/analysis of algorithms
for simulation & data analysis

This is where CS comes in . . .

M. Knepley (UC) Libraries Monash 3 / 35

Impact of Computational Mathematics

The main impact of
computational mathematics is in

design/analysis of algorithms
for simulation & data analysis

This is where CS comes in . . .

M. Knepley (UC) Libraries Monash 3 / 35

Impact of Computational Mathematics

The main impact of
computational mathematics is in

design/analysis of algorithms
for simulation & data analysis

This is where CS comes in . . .

M. Knepley (UC) Libraries Monash 3 / 35

Impact of Computational Mathematics

The main impact of
computational mathematics is in

design/analysis of algorithms
for simulation & data analysis

This is where CS comes in . . .

M. Knepley (UC) Libraries Monash 3 / 35

Computational Science

Outline

1 Computational Science
Linear Algebra
FEM Integration

2 Mathematics

M. Knepley (UC) Libraries Monash 4 / 35

Computational Science

Big Idea

The best way to create robust,
efficient and scalable,
maintainable scientific codes,

is to use libraries.

M. Knepley (UC) Libraries Monash 5 / 35

Computational Science

Big Idea

The best way to create robust,
efficient and scalable,
maintainable scientific codes,

is to use libraries.

M. Knepley (UC) Libraries Monash 5 / 35

Computational Science

Big Idea

The best way to create robust,
efficient and scalable,
maintainable scientific codes,

is to use libraries.

M. Knepley (UC) Libraries Monash 5 / 35

Computational Science

Big Idea

The best way to create robust,
efficient and scalable,
maintainable scientific codes,

is to use libraries.

M. Knepley (UC) Libraries Monash 5 / 35

Computational Science

Why Libraries?

Hides Hardware Details
MPI does for this for machines and networks

Hide Implementation Complexity
PETSc does for this Matrices and Krylov Solvers

Accumulates Best Practices
PETSc defaults to classical Gram-Schmidt orthogonalization with
selective reorthogonalization

M. Knepley (UC) Libraries Monash 6 / 35

http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

Computational Science

Why Libraries?

Hides Hardware Details
MPI does for this for machines and networks

Hide Implementation Complexity
PETSc does for this Matrices and Krylov Solvers

Accumulates Best Practices
PETSc defaults to classical Gram-Schmidt orthogonalization with
selective reorthogonalization

M. Knepley (UC) Libraries Monash 6 / 35

http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

Computational Science

Why Libraries?

Hides Hardware Details
MPI does for this for machines and networks

Hide Implementation Complexity
PETSc does for this Matrices and Krylov Solvers

Accumulates Best Practices
PETSc defaults to classical Gram-Schmidt orthogonalization with
selective reorthogonalization

M. Knepley (UC) Libraries Monash 6 / 35

http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

Computational Science

Why Libraries?

Improvement without code changes
PETSc time integration library has expanded rapidly, e.g. IMEX

Extensiblity
Q: Why is it not just good enough to make a fantastic working code?
A: Extensibility
Users need the ability to change your approach to fit their problem.

PETSc now does Multigrid+Block Solvers

PETSc now does Isogeometric Analysis

M. Knepley (UC) Libraries Monash 6 / 35

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/uploads/cels/papers/P2017-0112.pdf
http://www.mcs.anl.gov/petsc
https://bitbucket.org/dalcinl/petiga

Computational Science

Why Libraries?

Improvement without code changes
PETSc time integration library has expanded rapidly, e.g. IMEX

Extensiblity
Q: Why is it not just good enough to make a fantastic working code?
A: Extensibility
Users need the ability to change your approach to fit their problem.

PETSc now does Multigrid+Block Solvers

PETSc now does Isogeometric Analysis

M. Knepley (UC) Libraries Monash 6 / 35

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/uploads/cels/papers/P2017-0112.pdf
http://www.mcs.anl.gov/petsc
https://bitbucket.org/dalcinl/petiga

Computational Science

Why Libraries?

Improvement without code changes
PETSc time integration library has expanded rapidly, e.g. IMEX

Extensiblity
Q: Why is it not just good enough to make a fantastic working code?
A: Extensibility
Users need the ability to change your approach to fit their problem.

PETSc now does Multigrid+Block Solvers

PETSc now does Isogeometric Analysis

M. Knepley (UC) Libraries Monash 6 / 35

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/uploads/cels/papers/P2017-0112.pdf
http://www.mcs.anl.gov/petsc
https://bitbucket.org/dalcinl/petiga

Computational Science

Why Libraries?

Improvement without code changes
PETSc time integration library has expanded rapidly, e.g. IMEX

Extensiblity
Q: Why is it not just good enough to make a fantastic working code?
A: Extensibility
Users need the ability to change your approach to fit their problem.

PETSc now does Multigrid+Block Solvers

PETSc now does Isogeometric Analysis

M. Knepley (UC) Libraries Monash 6 / 35

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/uploads/cels/papers/P2017-0112.pdf
http://www.mcs.anl.gov/petsc
https://bitbucket.org/dalcinl/petiga

Computational Science

Why Libraries?

Improvement without code changes
PETSc time integration library has expanded rapidly, e.g. IMEX

Extensiblity
Q: Why is it not just good enough to make a fantastic working code?
A: Extensibility
Users need the ability to change your approach to fit their problem.

PETSc now does Multigrid+Block Solvers

PETSc now does Isogeometric Analysis

M. Knepley (UC) Libraries Monash 6 / 35

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/uploads/cels/papers/P2017-0112.pdf
http://www.mcs.anl.gov/petsc
https://bitbucket.org/dalcinl/petiga

Computational Science

Why Libraries?

Improvement without code changes
PETSc time integration library has expanded rapidly, e.g. IMEX

Extensiblity
Q: Why is it not just good enough to make a fantastic working code?
A: Extensibility
Users need the ability to change your approach to fit their problem.

PETSc now does Multigrid+Block Solvers

PETSc now does Isogeometric Analysis

M. Knepley (UC) Libraries Monash 6 / 35

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/uploads/cels/papers/P2017-0112.pdf
http://www.mcs.anl.gov/petsc
https://bitbucket.org/dalcinl/petiga

Computational Science

Early Numerical Libraries

71 Handbook for Automatic Computation: Linear Algebra,
J. H. Wilkinson and C. Reinch

73 EISPACK, Brian Smith et.al.

79 BLAS, Lawson, Hanson, Kincaid and Krogh

90 LAPACK, many contributors

91 PETSc, Gropp and Smith

All of these packages had their genesis at
Argonne National Laboratory/MCS

M. Knepley (UC) Libraries Monash 7 / 35

http://www.amazon.com/Handbook-Automatic-Computation-Vol-Mathematischen/dp/0387054146
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.mcs.anl.gov/petsc/
http://www.anl.gov
http://www.mcs.anl.gov

Computational Science

Why GPUs?

In the next 10 years, every machine will

M. Knepley (UC) Libraries Monash 8 / 35

Computational Science

Why GPUs?

In the next 10 years, every machine will

at least have multicores, 2–16 cores,

M. Knepley (UC) Libraries Monash 8 / 35

Computational Science

Why GPUs?

In the next 10 years, every machine will

at least have multicores, 2–16 cores,

M. Knepley (UC) Libraries Monash 8 / 35

AMD Interlagos Intel Nehalem Beckton

Computational Science

Why GPUs?

In the next 10 years, every machine will

probably have manycores, 100–1000 cores.

M. Knepley (UC) Libraries Monash 8 / 35

Computational Science

Why GPUs?

In the next 10 years, every machine will

probably have manycores, 100–1000 cores.

M. Knepley (UC) Libraries Monash 8 / 35

NVidia C2070 Intel MIC

Computational Science Linear Algebra

Outline

1 Computational Science
Linear Algebra
FEM Integration

M. Knepley (UC) Libraries Monash 9 / 35

Computational Science Linear Algebra

VECCUDA

Strategy: Define a new Vec implementation

Uses Thrust for data storage and operations on GPU

Supports full PETSc Vec interface

Inherits PETSc scalar type

Can be activated at runtime, -vec_type cuda

PETSc provides memory coherence mechanism

M. Knepley (UC) Libraries Monash 10 / 35

http://code.google.com/p/thrust/

Computational Science Linear Algebra

MATAIJCUDA

Also define new Mat implementations

Uses Cusp for data storage and operations on GPU

Supports full PETSc Mat interface, some ops on CPU

Can be activated at runtime, -mat_type aijcuda

Notice that parallel matvec necessitates off-GPU data transfer

M. Knepley (UC) Libraries Monash 11 / 35

http://code.google.com/p/cusp-library/

Computational Science Linear Algebra

Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,

Minden, Smith, Knepley, 2010

All linear algebra types work with solvers

Entire solve can take place on the GPU
Only communicate scalars back to CPU

GPU communication cost could be amortized over several solves

Preconditioners are a problem
Cusp has a promising AMG

M. Knepley (UC) Libraries Monash 12 / 35

http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf

Computational Science Linear Algebra

Example
PFLOTRAN

Flow Solver
32 × 32 × 32 grid

Routine Time (s) MFlops MFlops/s
CPU
KSPSolve 8.3167 4370 526
MatMult 1.5031 769 512
GPU
KSPSolve 1.6382 4500 2745
MatMult 0.3554 830 2337

P. Lichtner, G. Hammond,
R. Mills, B. Phillip

M. Knepley (UC) Libraries Monash 13 / 35

Computational Science Linear Algebra

Example
Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
-da_mat_type aijcusp -mat_no_inode # Setup types
-da_grid_x 100 -da_grid_y 100 # Set grid size
-pc_type none -pc_mg_levels 1 # Setup solver
-preload off -cuda_synchronize # Setup run
-log_summary

M. Knepley (UC) Libraries Monash 14 / 35

Computational Science FEM Integration

Outline

1 Computational Science
Linear Algebra
FEM Integration

M. Knepley (UC) Libraries Monash 15 / 35

Computational Science FEM Integration

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) Libraries Monash 16 / 35

Computational Science FEM Integration

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) Libraries Monash 16 / 35

Computational Science FEM Integration

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) Libraries Monash 16 / 35

Computational Science FEM Integration

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) Libraries Monash 16 / 35

Computational Science FEM Integration

FEM Integration Model
Proposed by Jed Brown

We consider weak forms dependent only on fields and gradients,∫
Ω
ϕ · f0(u,∇u) +∇ϕ : f⃗1(u,∇u) = 0. (1)

Discretizing we have

∑
e

ET
e

[
BT W qf0(uq,∇uq) +

∑
k

DT
k W q f⃗ k

1 (u
q,∇uq)

]
= 0 (2)

fn pointwise physics functions
uq field at a quad point
W q diagonal matrix of quad weights
B,D basis function matrices which

reduce over quad points
E assembly operator

M. Knepley (UC) Libraries Monash 17 / 35

Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

User provides point-wise physics functions
Loops are done in batches, remainder cells handled by CPU
One batch integration method with compile-time sizes

CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example
M. Knepley (UC) Libraries Monash 18 / 35

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

User provides point-wise physics functions
Loops are done in batches, remainder cells handled by CPU
One batch integration method with compile-time sizes

CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example
M. Knepley (UC) Libraries Monash 18 / 35

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

User provides point-wise physics functions
Loops are done in batches, remainder cells handled by CPU
One batch integration method with compile-time sizes

CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example
M. Knepley (UC) Libraries Monash 18 / 35

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

User provides point-wise physics functions
Loops are done in batches, remainder cells handled by CPU
One batch integration method with compile-time sizes

CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example
M. Knepley (UC) Libraries Monash 18 / 35

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

User provides point-wise physics functions
Loops are done in batches, remainder cells handled by CPU
One batch integration method with compile-time sizes

CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example
M. Knepley (UC) Libraries Monash 18 / 35

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

2D P1 Laplacian Performance

Reaches 100 GF/s by 100K elements
M. Knepley (UC) Libraries Monash 19 / 35

Computational Science FEM Integration

2D P1 Laplacian Performance

Linear scaling for both GPU and CPU integration
M. Knepley (UC) Libraries Monash 20 / 35

Computational Science FEM Integration

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) Libraries Monash 21 / 35

Computational Science FEM Integration

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) Libraries Monash 21 / 35

Computational Science FEM Integration

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) Libraries Monash 21 / 35

Computational Science FEM Integration

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) Libraries Monash 21 / 35

Computational Science FEM Integration

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) Libraries Monash 21 / 35

Computational Science FEM Integration

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) Libraries Monash 21 / 35

Computational Science FEM Integration

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) Libraries Monash 21 / 35

Computational Science FEM Integration

2D P1 Laplacian Performance
Running the example

$PETSC_DIR/src/benchmarks/benchmarkExample.py
--daemon --num 52 DMComplex
--events IntegBatchCPU IntegBatchGPU IntegGPUOnly
--refine 0.0625 0.00625 0.000625 0.0000625 0.00003125
0.000015625 0.0000078125 0.00000390625
--order=1 --blockExp 4
CPU=’dm_view show_residual=0 compute_function batch’
GPU=’dm_view show_residual=0 compute_function batch gpu
gpu_batches=8’

M. Knepley (UC) Libraries Monash 22 / 35

Computational Science FEM Integration

2D P1 Rate-of-Strain Performance

Reaches 100 GF/s by 100K elements

M. Knepley (UC) Libraries Monash 23 / 35

Computational Science FEM Integration

2D P1 Rate-of-Strain Performance
Running the example

$PETSC_DIR/src/benchmarks/benchmarkExample.py
--daemon --num 52 DMComplex
--events IntegBatchCPU IntegBatchGPU IntegGPUOnly
--refine 0.0625 0.00625 0.000625 0.0000625 0.00003125
0.000015625 0.0000078125 0.00000390625
--operator=elasticity --order=1 --blockExp 4
CPU=’dm_view op_type=elasticity show_residual=0
compute_function batch’
GPU=’dm_view op_type=elasticity show_residual=0
compute_function batch gpu gpu_batches=8’

M. Knepley (UC) Libraries Monash 24 / 35

Computational Science FEM Integration

General Strategy

Vectorize

Overdecompose

Cover memory latency with computation
Multiple cycles of writes in the kernel

User must relinquish control of the layout

Finite Element Integration on GPUs, ACM TOMS,
Andy Terrel and Matthew Knepley.

Finite Element Integration with Quadrature on the GPU, to SISC,
Robert Kirby, Matthew Knepley, Andreas Klöckner, and Andy Terrel.

M. Knepley (UC) Libraries Monash 25 / 35

http://arxiv.org/abs/1103.0066

Mathematics

Outline

1 Computational Science

2 Mathematics

M. Knepley (UC) Libraries Monash 26 / 35

Mathematics

Composable System for Scalable Preconditioners
Stokes and KKT

The saddle-point matrix is a canonical form for handling constraints:
Incompressibility
Contact
Multi-constituent phase-field models
Optimal control
PDE constrained optimization

z

y x

(b)

(a)

300 km
200 km

10
0

km

2
4

6
8

10
12

kg yr -1

M. Knepley (UC) Libraries Monash 27 / 35

Courtesy R. F. Katz

Courtesy M.

Spiegelman

Mathematics

Composable System for Scalable Preconditioners
Stokes and KKT

There are many approaches for saddle-point problems:
Block preconditioners

Schur complement methods

Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in
a hierarchical manner. For instance we might want,

M. Knepley (UC) Libraries Monash 28 / 35

 F B M
BT 0 0
N 0 K

u
p
T

 =

 f
0
q



Mathematics

Composable System for Scalable Preconditioners
Stokes and KKT

There are many approaches for saddle-point problems:
Block preconditioners

Schur complement methods

Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in
a hierarchical manner. For instance we might want,

M. Knepley (UC) Libraries Monash 28 / 35

 F B M
BT 0 0
N 0 K

u
p
T

 =

 f
0
q



Mathematics

Composable System for Scalable Preconditioners
Stokes and KKT

There are many approaches for saddle-point problems:
Block preconditioners

Schur complement methods

Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in
a hierarchical manner. For instance we might want,

a Gauss-Siedel iteration between blocks of (u,p) and T ,
and a full Schur complement factorization for u and p.

M. Knepley (UC) Libraries Monash 28 / 35

 F B M
BT 0 0
N 0 K

u
p
T

 =

 f
0
q



Mathematics

Composable System for Scalable Preconditioners
Stokes and KKT

There are many approaches for saddle-point problems:
Block preconditioners

Schur complement methods

Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in
a hierarchical manner. For instance we might want,

an upper triangular Schur complement factorization for u and p,
and geometric multigrid for the u block.

M. Knepley (UC) Libraries Monash 28 / 35

 F B M
BT 0 0
N 0 K

u
p
T

 =

 f
0
q



Mathematics

Composable System for Scalable Preconditioners
Stokes and KKT

There are many approaches for saddle-point problems:
Block preconditioners

Schur complement methods

Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in
a hierarchical manner. For instance we might want,

algebraic multigrid for the full (u,p) system,
using a block triangular Gauss-Siedel smoother on each level,
and use identity for the (p,p) block.

M. Knepley (UC) Libraries Monash 28 / 35

 F B M
BT 0 0
N 0 K

u
p
T

 =

 f
0
q



Mathematics

Approach for efficient, robust, scalable linear solvers

Need solvers to be:

Composable: separately developed solvers may be easily combined, by
non-experts, to form a more powerful solver

Nested: outer solvers call inner solvers

Hierarchical: outer solvers may iterate over all variables for a global problem,
while nested inner solvers handle smaller subsets of physics, smaller physical
subdomains, or coarser meshes

Extensible: users can easily customize/extend

Composable Linear Solvers for Multiphysics, IPDPS, 2012,
J. Brown, M. G. Knepley, D. A. May, L. C. McInnes and B. F. Smith.

M. Knepley (UC) Libraries Monash 29 / 35

http://www.mcs.anl.gov/uploads/cels/papers/P2017-0112.pdf

Mathematics

Stokes example

The common block preconditioners for Stokes require only options:

The Stokes System
(

A B
BT 0

)

M. Knepley (UC) Libraries Monash 30 / 35

Mathematics

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type additive

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type jacobi

-fieldsplit_1_ksp_type preonly

PC(
Â 0
0 I

)
Cohouet & Chabard, Some fast 3D finite element solvers for the generalized Stokes problem,
1988.

M. Knepley (UC) Libraries Monash 30 / 35

Mathematics

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type multiplic

-fieldsplit_0_pc_type hypre

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type jacobi

-fieldsplit_1_ksp_type preonly

PC(
Â B
0 I

)
Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.

M. Knepley (UC) Libraries Monash 30 / 35

Mathematics

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type gamg

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type none

-fieldsplit_1_ksp_type minres

PC(
Â 0
0 −Ŝ

)
-pc_fieldsplit_schur_factorization_type diag

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.
Olshanskii, Peters, and Reusken, Uniform preconditioners for a parameter dependent saddle point
problem with application to generalized Stokes interface equations, 2006.

M. Knepley (UC) Libraries Monash 30 / 35

Mathematics

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type gamg

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type none

-fieldsplit_1_ksp_type minres

PC(
Â 0

BT Ŝ

)
-pc_fieldsplit_schur_factorization_type lower

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

M. Knepley (UC) Libraries Monash 30 / 35

Mathematics

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type gamg

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type none

-fieldsplit_1_ksp_type minres

PC(
Â B
0 Ŝ

)
-pc_fieldsplit_schur_factorization_type upper

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

M. Knepley (UC) Libraries Monash 30 / 35

Mathematics

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type gamg

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type lsc

-fieldsplit_1_ksp_type minres

PC(
Â B
0 ŜLSC

)
-pc_fieldsplit_schur_factorization_type upper

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.
Kay, Loghin and Wathen, A Preconditioner for the Steady-State N-S Equations, 2002.
Elman, Howle, Shadid, Shuttleworth, and Tuminaro, Block preconditioners based on approximate
commutators, 2006.

M. Knepley (UC) Libraries Monash 30 / 35

Mathematics

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-pc_fieldsplit_schur_factorization_type full

PC(
I 0

BT A−1 I

)(
Â 0
0 Ŝ

)(
I A−1B
0 I

)
M. Knepley (UC) Libraries Monash 30 / 35

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D
constant mobility
triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres
-mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp
-mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly
-mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5
-mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin
-snes_vi_monitor -ksp_monitor_true_residual -snes_atol 1.e-11
-mg_levels_ksp_monitor -mg_levels_fieldsplit_ksp_monitor
-mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5

M. Knepley (UC) Libraries Monash 31 / 35

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

M. Knepley (UC) Libraries Monash 32 / 35

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

M. Knepley (UC) Libraries Monash 32 / 35

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

M. Knepley (UC) Libraries Monash 32 / 35

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

M. Knepley (UC) Libraries Monash 32 / 35

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

A00 inverse action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

M. Knepley (UC) Libraries Monash 33 / 35

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

A00 inverse action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

M. Knepley (UC) Libraries Monash 33 / 35

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

A00 inverse action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

M. Knepley (UC) Libraries Monash 33 / 35

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

A00 inverse action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

M. Knepley (UC) Libraries Monash 33 / 35

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Composability

Composable interfaces allow the nested, hierarchical
interaction of different components,

analysis (discretization)

topology (mesh)

algebra (solver)
so that non-experts can produce powerful simulations
with modern algorithms.

Jed Brown discusses this interplay
in the context of multilevel solvers

M. Knepley (UC) Libraries Monash 34 / 35

http://59a2.org/research/

Mathematics

Composability

Composable interfaces allow the nested, hierarchical
interaction of different components,

analysis (discretization)

topology (mesh)

algebra (solver)
so that non-experts can produce powerful simulations
with modern algorithms.

Jed Brown discusses this interplay
in the context of multilevel solvers

M. Knepley (UC) Libraries Monash 34 / 35

http://59a2.org/research/

Mathematics

Composability

Composable interfaces allow the nested, hierarchical
interaction of different components,

analysis (discretization)

topology (mesh)

algebra (solver)
so that non-experts can produce powerful simulations
with modern algorithms.

Jed Brown discusses this interplay
in the context of multilevel solvers

M. Knepley (UC) Libraries Monash 34 / 35

http://59a2.org/research/

Mathematics

Composability

Composable interfaces allow the nested, hierarchical
interaction of different components,

analysis (discretization)

topology (mesh)

algebra (solver)
so that non-experts can produce powerful simulations
with modern algorithms.

Jed Brown discusses this interplay
in the context of multilevel solvers

M. Knepley (UC) Libraries Monash 34 / 35

http://59a2.org/research/

Conclusions

Main Points

Libraries encapsulate the Mathematics
Users will give up more Control

Multiphysics demands Composable Solvers
Each piece will have to be Optimal

Change alone is unchanging
— Heraclitus, 544–483 BC

M. Knepley (UC) Libraries Monash 35 / 35

Conclusions

Main Points

Libraries encapsulate the Mathematics
Users will give up more Control

Multiphysics demands Composable Solvers
Each piece will have to be Optimal

Change alone is unchanging
— Heraclitus, 544–483 BC

M. Knepley (UC) Libraries Monash 35 / 35

Conclusions

Main Points

Libraries encapsulate the Mathematics
Users will give up more Control

Multiphysics demands Composable Solvers
Each piece will have to be Optimal

Change alone is unchanging
— Heraclitus, 544–483 BC

M. Knepley (UC) Libraries Monash 35 / 35

Conclusions

Main Points

Libraries encapsulate the Mathematics
Users will give up more Control

Multiphysics demands Composable Solvers
Each piece will have to be Optimal

Change alone is unchanging
— Heraclitus, 544–483 BC

M. Knepley (UC) Libraries Monash 35 / 35

	Computational Science
	Linear Algebra
	FEM Integration

	Mathematics
	Conclusions

