Theoretical Foundations

Dmitry Karpeev 2, Matthew Knepley "2, and Robert Kirby 3

"Mathematics and Computer Science Division ~ 2Computation Institute
Argonne National Laboratory University of Chicago
3Department of Computer Science
Texas Tech University

Foundations of Finite Element Computing
Simula Research, Oslo, Norway
August 3-10, 2008

ARGONNE

NATIONAL LABORATORY

M. Knepley (ANL,TTU) Theory Simula’08 1/214

Part |

Introduction

M. Knepley (ANL,TTU) Theory Simula’08 2/214

Scientific Computing

Outline

@ Scientific Computing

M. Knepley (ANL,TTU) Theory Simula’08 4/214

Scientific Computing
Problems

The biggest problem in scientific computing is programmability:
@ Lack of usable implementations of modern algorithms

e Unstructured Multigrid
o Fast Multipole Method

@ Lack of comparison among classes of algorithms

e Meshes
@ Discretizations

M. Knepley (ANL,TTU) Theory Simula’08 5/214

Scientific Computing
Problems

The biggest problem in scientific computing is programmability:
@ Lack of widespread implementations of modern algorithms

e Unstructured Multigrid
o Fast Multipole Method

@ Lack of comparison among classes of algorithms

e Meshes
@ Discretizations

We should reorient thinking from
@ characterizing the solution (FEM)
e “what is the convergence rate (in h) of this finite element?”
to
@ characterizing the computation (FErari)
e “how many digits of accuracy per flop for this finite element?”

M. Knepley (ANL,TTU) Simula '08

Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems

Programming Languages

M. Knepley (ANL,TTU) Theory Simula’08 6/214

Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems
Distributed Computing

Database Systems

Programming Languages

M. Knepley (ANL,TTU) Theory Simula’08 6/214

Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems
Distributed Computing

Database Systems

Datamining

Programming Languages

M. Knepley (ANL,TTU) Theory Simula’08 6/214

Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems
Distributed Computing

Database Systems

Datamining

Programming Languages
Code Generation

M. Knepley (ANL,TTU) Theory Simula’08 6/214

Scientific Computing
Future Compilers

| think compilers are victims of their own success (ala Rob Pike)

@ Efforts to modularize compilers retain the same primtives

e compiling on the fly (JIT)
o Low Level Virtual Machine

@ Raise the level of abstraction

e Fenics Form Compiler (variational form compiler)
e Mython (Domain Specific Language generator)

M. Knepley (ANL,TTU) Theory Simula’08 7/214

http://llvm.org

Scientific Computing

DFT (single precision): on 3 GHz 2 x Core 2 Extreme
performance [Gflop/s]
30

=+=Spiral 5.0 SPMD
Spiral 5.0 sequential
35 ==Intel IPP 5.0
=4=FFTW 3.2 alpha SMP
=w=FFTW 2.2 alpha sequential

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144
input size

@ Spiral Team, http://www.spiral.net
@ Uses an intermediate language, SPL, and then generates C
@ Works by circumscribing the algorithmic domain

M. Knepley (ANL,TTU) Theory Simula’08 8/214

http://www.spiral.net

Scientific Computing

FLAME & FLASH

Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070

T T T T
Algorithm-by-blocks on four T10 processors —+—
1400 CUBLAS sgemm on a single T10 processor -+ - B

MKL sgemm on Intel Xeon QuadCore (4 cores) -+

1200

1000

GFLOPS

600

400

200

.
0 5000 10000 15000 20000
Matrix size

@ Robert van de Geijn, http://www.cs.utexas.edu/users/flame
@ FLAME is an Algorithm-By-Blocks interface
@ FLASH/SuperMatrix is a runtime system

M. Knepley (ANL,TTU) Theory Simula’08 9/214

http://www.cs.utexas.edu/users/flame

Scientific Computing
Representation Hierarchy

Divide the work into levels:
@ Model

@ Algorithm

@ Implementation

M. Knepley (ANL,TTU) Simula '08 10/214

http://www.spiral.net

Scientific Computing
Representation Hierarchy

Divide the work into levels: Spiral Project:

@ Model @ Discrete Fourier Transform (DSP)
@ Algorithm @ Fast Fourier Transform (SPL)
@ Implementation @ C Implementation (SPL Compiler)

M. Knepley (ANL,TTU) Simula '08 10/214

http://www.spiral.net

Scientific Computing
Representation Hierarchy

Divide the work into levels: FLAME Project:

@ Model @ Abstract LA (PME/Invariants)
@ Algorithm @ Basic LA (FLAME/FLASH)
@ Implementation @ Scheduling (SuperMatrix)

M. Knepley (ANL,TTU) Simula '08 10/214

http://www.cs.utexas.edu/users/flame

Scientific Computing
Representation Hierarchy

Divide the work into levels: FEnICS Project:
@ Model @ Navier-Stokes (FFC)
@ Algorithm @ Finite Element (FIAT)
@ Implementation @ Integration/Assembly (FErari)

M. Knepley (ANL,TTU) Simula '08 10/214

http://www.fenics.org

Scientific Computing
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

M. Knepley (ANL,TTU) Simula '08 10/214

Scientific Computing
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

M. Knepley (ANL,TTU) Simula '08 10/214

Hierarchy

Outline

9 Hierarchy

M. Knepley (ANL,TTU) Theory Simula’08 11/214

Hierarchy
Hierarchical Design

Big ldea: Hierarchy
Multilevel Method

@ Solve local problems

@ Stitch together to form a global solution

M. Knepley (ANL,TTU) Theory Simula’08 12/214

Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems
o Locality of operations is key for efficient implementation

@ Stitch together to form a global solution

M. Knepley (ANL,TTU) Theory Simula’08 12/214

Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
@ Should enable reuse of serial implementation

@ Stitch together to form a global solution

M. Knepley (ANL,TTU) Theory Simula’08 12/214

Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
@ Should enable reuse of serial implementation

@ Stitch together to form a global solution
e Manifold or Domain Decomposition idea: local pieces w/ overlap

M. Knepley (ANL,TTU) Theory Simula’08 12/214

Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
@ Should enable reuse of serial implementation

@ Stitch together to form a global solution

e Manifold or Domain Decomposition idea: local pieces w/ overlap
o Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula’08 12/214

Hierarchy

Example: Manifold

Manifolds are locally homeomorphic to R":

Transition maps provide a mechanism to connect the pieces.

M. Knepley (ANL,TTU) Theory Simula’08 13/214

Example: FEM

The Finite Element Method does computation in a local basis:

An un=fu

The operator 7 maps between the local and global bases.

M. Knepley (ANL,TTU) Theory Simula’08 14/214

Hierarchy
Global and Local

Local (analytical) Global (topological)

M. Knepley (ANL,TTU) Simula '08 15/214

Hierarchy
Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions

M. Knepley (ANL,TTU) Theory Simula’08 15/214

Hierarchy
Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions

@ Largely dim dependent
(e.g. quadrature)

M. Knepley (ANL,TTU) Theory Simula’08 15/214

Hierarchy
Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals e Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) @ Mesh hierarchies

M. Knepley (ANL,TTU) Theory Simula’08 15/214

Hierarchy
Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals e Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) @ Mesh hierarchies

@ Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL,TTU) Theory Simula’08 15/214

Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines

M. Knepley (ANL,TTU) Theory Simula’08 16/214

Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
© Processor flops are increasing much faster than bandwidth

M. Knepley (ANL,TTU) Theory Simula’08 16/214

Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

M. Knepley (ANL,TTU) Theory Simula’08 16/214

Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
© Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary

M. Knepley (ANL,TTU) Theory Simula’08 16/214

Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface

M. Knepley (ANL,TTU) Theory Simula’08 16/214

Hierarchy

Why Optimal Algorithms?

@ The more powerful the computer,
the greater the importance of optimality
@ Example:

e Suppose Alg; solves a problem in time CN?, N is the input size
@ Suppose Alg: solves the same problem in time CN
e Suppose Alg; and Alg, are able to use 10,000 processors

@ In constant time compared to serial,

e Alg1 can run a problem 100X larger
@ Alg2 can run a problem 10,000X larger

@ Alternatively, filling the machine’s memory,

o Alg1 requires 100X time
e Alg2 runs in constant time

M. Knepley (ANL,TTU) Theory Simula’08 17/214

Hierarchy
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)

M. Knepley (ANL,TTU) Theory Simula’08 18/214

Hierarchy
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)

@ Single relation, covering, handles all hierarchy
e Rich enough for FEM

M. Knepley (ANL,TTU) Theory Simula’08 18/214

Hierarchy
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)

@ Single relation, covering, handles all hierarchy
e Rich enough for FEM

@ Single operation, completion, for parallelism
e Enforces consistency of the relation

M. Knepley (ANL,TTU) Theory Simula’08 18/214

Doublet Mesh

@ Incidence/covering arrows

M. Knepley (ANL,TTU) Theory Simula’08 19/214

Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,3,4}

M. Knepley (ANL,TTU) Theory Simula’08 19/214

Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,3,4}
@ support(7) = {2,3}

M. Knepley (ANL,TTU) Theory Simula’08 19/214

Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,3,4,7,8,9}

M. Knepley (ANL,TTU) Theory Simula’08 19/214

Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,3,4,7,8,9}
@ star(7) ={7,2,3,0}

M. Knepley (ANL,TTU) Theory Simula’08 19/214

Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}

M. Knepley (ANL,TTU) Theory Simula’08 19/214

Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}
@ join(8,9) = {4}

M. Knepley (ANL,TTU) Theory Simula’08 19/214

Hierarchy
Doublet Section

° o9 o
hdid
*¥00%¢

4 5 0 1

@ Section interface

M. Knepley (ANL,TTU) Theory Simula’08 20/214

Hierarchy
Doublet Section

° o9 o
hdid
*¥00%¢

4 5 0 1

@ Section interface
e restrict(0) = {fv}

M. Knepley (ANL,TTU) Theory Simula’08 20/214

Hierarchy
Doublet Section

° o9 o
hdid
*¥00%¢

4 5 0 1

@ Section interface

e restrict(0) = {fv}
e restrict(2) = {w}

M. Knepley (ANL,TTU) Theory Simula’08 20/214

Hierarchy
Doublet Section

° o9 o
hdid
*¥00%¢

4 5 0 1

@ Section interface

e restrict(0) = {fv}
o restrict(2) = {w}
e restrict(6) = {ep, €1}

M. Knepley (ANL,TTU) Theory Simula’08 20/214

CDoubletSecton
TYY
vl
799911

4 5 0

@ Topological traversals: follow connectivity

M. Knepley (ANL,TTU) Theory Simula’08 20/214

CDoubletSecton
TYY
vl
799911

4 5 0

@ Topological traversals: follow connectivity
o restrictClosure(0) = {fyepeie2e3e465Vp Vi Va}

M. Knepley (ANL,TTU) Theory Simula’08 20/214

CDoubletSecton
TYY
vl
799911

4 5 0

@ Topological traversals: follow connectivity
o restrictClosure(0) = {fyepeie2e3e465Vp Vi Va}
o restrictStar(7) = {vpepeies6s5y }

M. Knepley (ANL,TTU) Theory Simula’08 20/214

Doublet Mesh Distribution

———

M. Knepley (ANL,TTU) Theory Simula’08 21/214

Doublet Mesh Distribution

———

M. Knepley (ANL,TTU) Theory Simula’08 21/214

Doublet Mesh Distribution

———

02 41 @2 .‘ i) 05 @
NN/
\@
000 © O o LY X Eoepe
p

RN }: DR
| 03 69 09 @ @) @ B X X FONTEON) |
| process 0 | i process 1 !

M. Knepley (ANL,TTU) Theory Simula’08 21/214

Hierarchy
Restriction

(12.9) @

(411} .. e “e :

90 9.9

@ Localization

o Restrict to patches (here an edge closure)
o Compute locally

M. Knepley (ANL,TTU) Theory Simula’08 22/214

Hierarchy
Delta

e o
O o @
o _© ‘00 . @ ® 0
@" @ Y G 4@ [e | R ée I@'_” @
@' |§<.-?.| @
‘X3
@ Delta

o Restrict further to the overlap
@ Overlap now carries twice the data

M. Knepley (ANL,TTU) Theory Simula’08 22/214

Hierarchy
Fusion

X3

'Y o
o %0 ‘00 0%,
- @" @ 4@ élé _ - é@ I@g. (v
° o0 °

@ Merge/reconcile data on the overlap
o Addition (FEM)
@ Replacement (FD)
e Coordinate transform (Sphere)
e Linear transform (MG)

M. Knepley (ANL,TTU) Theory Simula’08 22/214

Update

'Y *? @
. @ N e
0 ° @9 _ee @:@
® o -_;é - e_ o

@ |x.'-7|. @:
| oo

@ Update
e Update local patch data
@ Completion = restrict — fuse — update, in parallel

M. Knepley (ANL,TTU) Theory Simula’08 22/214

Hierarchy
Uses

Completion has many uses:

M. Knepley (ANL,TTU) Theory Simula’08 23/214

Hierarchy
Uses

Completion has many uses:

FEM accumulating integrals on shared faces

M. Knepley (ANL,TTU) Theory Simula’08 23/214

Hierarchy
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells

M. Knepley (ANL,TTU) Theory Simula’08 23/214

Hierarchy
Uses

Completion has many uses:
FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

M. Knepley (ANL,TTU) Theory Simula’08 23/214

Hierarchy
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

@ distributing mesh entities after partition

M. Knepley (ANL,TTU) Theory Simula’08 23/214

Hierarchy
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices
@ distributing mesh entities after partition
@ redistributing mesh entities and data for load balance

M. Knepley (ANL,TTU) Theory Simula’08 23/214

Hierarchy
Uses

Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
@ distributing mesh entities after partition
@ redistributing mesh entities and data for load balance
@ accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula’08 23/214

Conclusions
Benefits

Better mathematical abstractions
bring concrete benefits

@ Vast reduction in complexity

o Declarative, rather than imperative, specification
e Dimension independent code

@ Opportunites for optimization

e Higher level operations missed by traditional compilers
@ Single communication routine to optimize

@ Expansion of capabilities

e Easy model definition
o Arbitrary elements
o Complex geometries and embedded boundaries

M. Knepley (ANL,TTU) Theory Simula’08 24/214

Part Il

Global Computation: Theory

M. Knepley (ANL,TTU) Theory Simula’08 25/214

Hierarchy

Outline

e Hierarchy

M. Knepley (ANL,TTU) Theory Simula’08 26/214

Hierarchy
Hierarchical Design

Big ldea: Hierarchy
Multilevel Method

@ Solve local problems

@ Stitch together to form a global solution

M. Knepley (ANL,TTU) Theory Simula’08 27/214

Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems
o Locality of operations is key for efficient implementation

@ Stitch together to form a global solution

M. Knepley (ANL,TTU) Theory Simula’08 27/214

Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
@ Should enable reuse of serial implementation

@ Stitch together to form a global solution

M. Knepley (ANL,TTU) Theory Simula’08 27/214

Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
@ Should enable reuse of serial implementation

@ Stitch together to form a global solution
e Manifold or Domain Decomposition idea: local pieces w/ overlap

M. Knepley (ANL,TTU) Theory Simula’08 27/214

Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
@ Should enable reuse of serial implementation

@ Stitch together to form a global solution

e Manifold or Domain Decomposition idea: local pieces w/ overlap
o Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula’08 27/214

Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines

M. Knepley (ANL,TTU) Theory Simula’08 28/214

Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
© Processor flops are increasing much faster than bandwidth

M. Knepley (ANL,TTU) Theory Simula’08 28/214

Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

M. Knepley (ANL,TTU) Theory Simula’08 28/214

Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
© Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary

M. Knepley (ANL,TTU) Theory Simula’08 28/214

Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface

M. Knepley (ANL,TTU) Theory Simula’08 28/214

What Is Optimal?

| will define optimal as an O(N) solution algorithm

These are generally hierarchical, so we need
@ hierarchy generation
@ assembly on subdomains
@ restriction and prolongation

M. Knepley (ANL,TTU) Theory Simula’08 29/214

Hierarchy

Why Optimal Algorithms?

@ The more powerful the computer,
the greater the importance of optimality
@ Example:

e Suppose Alg; solves a problem in time CN?, N is the input size
@ Suppose Alg: solves the same problem in time CN
e Suppose Alg; and Alg, are able to use 10,000 processors

@ In constant time compared to serial,

e Alg1 can run a problem 100X larger
@ Alg2 can run a problem 10,000X larger

@ Alternatively, filling the machine’s memory,

o Alg1 requires 100X time
e Alg2 runs in constant time

M. Knepley (ANL,TTU) Theory Simula’08 30/214

Hierarchy

Example: Manifold

Manifolds are locally homeomorphic to R":

Transition maps provide a mechanism to connect the pieces.

M. Knepley (ANL,TTU) Theory Simula’08 31/214

Example: FEM

The Finite Element Method does computation in a local basis:

An un=fu

The operator 7 maps between the local and global bases.

M. Knepley (ANL,TTU) Theory Simula’08 32/214

Representing Topology
Outline

6 Representing Topology
@ Mesh Distribution

M. Knepley (ANL,TTU) Theory Simula’08 33/214

Representing Topology
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)

M. Knepley (ANL,TTU) Theory Simula’08 34/214

Representing Topology
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)

@ Single relation, covering, handles all hierarchy
e Rich enough for FEM

M. Knepley (ANL,TTU) Theory Simula’08 34/214

Representing Topology
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)

@ Single relation, covering, handles all hierarchy
e Rich enough for FEM

@ Single operation, completion, for parallelism
e Enforces consistency of the relation

M. Knepley (ANL,TTU) Theory Simula’08 34/214

Representing Topology
Basic Operations

We begin with a basic covering operation:

M. Knepley (ANL,TTU) Theory Simula’08 35/214

Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()

M. Knepley (ANL,TTU) Theory Simula’08 35/214

Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual:

M. Knepley (ANL,TTU) Theory Simula’08 35/214

Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual: support ()

M. Knepley (ANL,TTU) Theory Simula’08 35/214

Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual: support ()

followed by the transitive closures:

M. Knepley (ANL,TTU) Theory Simula’08 35/214

Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual: support ()

followed by the transitive closures: closure (), star ()

M. Knepley (ANL,TTU) Theory Simula’08 35/214

Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual: support ()

followed by the transitive closures: closure (), star ()
and finally lattice operations:

M. Knepley (ANL,TTU) Theory Simula’08 35/214

Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual: support ()

followed by the transitive closures: closure (), star ()
and finally lattice operations: meet (), join ()

M. Knepley (ANL,TTU) Theory Simula’08 35/214

Representing Topology
Sieve Definition

Definition

A Sieve consists of points, and arrows.
Each arrow connects a point to another which it covers.

cone(p) sequence of points which cover a given point p
closure(p) | transitive closure of cone

support(p) | sequence of points which are covered by a given point p

star(p) transitive closure of support
meet(p,q) | minimal separator of closure(p) and closure(q)
join(p,q) minimal separator of star(p) and star(q)

M. Knepley (ANL,TTU) Theory Simula’08 36/214

Representing Topology
Doublet Mesh

@ Incidence/covering arrows

M. Knepley (ANL,TTU) Theory Simula’08 37/214

Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,3,4}

M. Knepley (ANL,TTU) Theory Simula’08 37/214

Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,3,4}
@ support(7) = {2,3}

M. Knepley (ANL,TTU) Theory Simula’08 37/214

Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,3,4,7,8,9}

M. Knepley (ANL,TTU) Theory Simula’08 37/214

Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,3,4,7,8,9}
@ star(7) ={7,2,3,0}

M. Knepley (ANL,TTU) Theory Simula’08 37/214

Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}

M. Knepley (ANL,TTU) Theory Simula’08 37/214

Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}
@ join(8,9) = {4}

M. Knepley (ANL,TTU) Theory Simula’08 37/214

Representing Topology

The Mesh Dual

M. Knepley (ANL,TTU) Simula '08 38/214

Representing Topology Mesh Distribution

Outline

e Representing Topology
@ Mesh Distribution

M. Knepley (ANL,TTU) Theory Simula’08 39/214

Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means

M. Knepley (ANL,TTU) Simula '08 40/214

Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
@ distributing the topology (Sieve)

M. Knepley (ANL,TTU) Simula '08 40/214

Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
@ distributing the topology (Sieve)

@ distributing data (Section)

M. Knepley (ANL,TTU)

Simula '08

40/214

Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
@ distributing the topology (Sieve)

@ distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

M. Knepley (ANL,TTU) Simula '08 40/214

Representing Topology Mesh Distribution

Mesh Partition

@ 3rd party packages construct a vertex partition
@ For FEM, partition dual graph vertices
@ For FVM, construct hyperpgraph dual with faces as vertices

@ Assign closure (v) and star (v) to same partition

M. Knepley (ANL,TTU) Theory Simula’08 41/214

Representing Topology Mesh Distribution

Doublet Mesh Distribution

———

I
process 1 !

M. Knepley (ANL,TTU) Theory Simula’08 42/214

Representing Topology Mesh Distribution

Doublet Mesh Distribution

RSN
\ooooooo

I
]
| process 0 T . process 1 |

M. Knepley (ANL,TTU) Theory Simula’08 42/214

Representing Topology Mesh Distribution

Doublet Mesh Distribution

———

(DRORE) .‘) @
NRVH
\@
L. Proessl |
000 © O o LY X Eoepe
!

DRI | AR
| 03 69 09 39 & @ P (N N JORDINDN) |
| process 0 | ! process 1 !

M. Knepley (ANL,TTU) Theory Simula’08 42/214

Representing Topology Mesh Distribution

Section Distribution

Section distribution consists of

@ Creation of the local Section
@ Distribution of the Atlas (layout Section)

@ Completion of the Section

M. Knepley (ANL,TTU) Theory Simula’08 43/214

Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition

M. Knepley (ANL,TTU) Theory Simula’08 44/214

Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition
@ Construct partition overlap

M. Knepley (ANL,TTU) Theory Simula’08 44/214

Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition

@ Construct partition overlap
© complete () the partition section
e This distributes the cells

M. Knepley (ANL,TTU) Theory Simula’08 44/214

Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition

@ Construct partition overlap
© complete () the partition section
e This distributes the cells

© Update Overlap with new points

M. Knepley (ANL,TTU) Theory

Simula '08

44 /214

Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition

@ Construct partition overlap
© complete () the partition section
o This distributes the cells
© Update Overlap with new points
@ complete () the cone section
o This distributes the remaining sieve points

M. Knepley (ANL,TTU) Theory Simula’08 44/214

Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition

@ Construct partition overlap
© complete () the partition section
o This distributes the cells
© Update Overlap with new points
@ complete () the cone section
o This distributes the remaining sieve points

Q Update local Sieves

M. Knepley (ANL,TTU) Theory Simula’08 44/214

Representing Topology Mesh Distribution

2D Example

A simple triangular mesh

14 15 16
6 7
4 5
9 11 13
1 3
0 2
10 8 12

M. Knepley (ANL,TTU) Simula '08 45/214

Representing Topology Mesh Distribution

2D Example

Sieve for the mesh

000000090

dcdo\ovoo

M. Knepley (ANL,TTU) Theory Simula’08 45/214

Representing Topology Mesh Distribution

2D Example

Local sieve on process 0

000 000 000 009

M. Knepley (ANL,TTU) Theory Simula’08 45/214

Mesh Distribution

>
>
o
[}
s
2
=)
=
=
[}
7}
@
I3
o}
o

2D Example

Partition Overlap

45/214

Simula '08

M. Knepley (ANL,TTU)

Representing Topology Mesh Distribution

2D Example

Partition Section

M. Knepley (ANL,TTU) Theory Simula’08 45/214

Representing Topology Mesh Distribution

2D Example

Updated Sieve Overlap

M. Knepley (ANL,TTU) Simula '08 45/214

Representing Topology Mesh Distribution

2D Example

Cone Section

M. Knepley (ANL,TTU) Simula '08 45/214

Representing Topology Mesh Distribution

2D Example

Distributed Sieve

oty W i 1 i i 1

Process (0

1y N

\ ___.‘) .__. ;

Process 1

M. Knepley (ANL,TTU) Simula’08 45/214

Representing Topology Mesh Distribution

2D Example

Coordinate Section

o 00 00 o5 I oo oo o5 o5 I 1o oo B 1o o5 Moo o o5 1o [0 o]

000000O0OO0O

M. Knepley (ANL,TTU)

Simula '08

45/214

Representing Topology Mesh Distribution

2D Example

Distributed Coordinate Section

05 00

6606‘0

Process 0

-m-m-

006030

Process |

M. Knepley (ANL,TTU) Simula '08 45/214

Representing Topology Mesh Distribution

2D Example

Distributed Mesh

M. Knepley (ANL,TTU) Simula '08 45/214

Representing Topology Mesh Distribution

3D Example

A simple hexahedral mesh

2 Bl B0
23 7] o1
m T s . 12
3
3 m o
4 25 2o
15 16 5 1
4
0 1
26 27 28
17 18 19
3 9 10

M. Knepley (ANL,TTU) Theory Simula’08 46/214

Representing Topology Mesh Distribution

3D Example

Sieve for the mesh

gl s
100000

W ————

==

00000000

Its complicated!
M. Knepley (ANL,TTU) Theory Simula 08 46 /214

Representing Topology Mesh Distribution

3D Example

Sieve for the mesh

gl s
100000

W ————

==

00000000

Its complicated!
M. Knepley (ANL,TTU) Theory Simula 08 46 /214

Mesh Distribution

>
>
o
[}
s
2
=)
=
=
[}
7}
@
I3
o}
o

3D Example

Partition Overlap

46 /214

Simula '08

Theory

M. Knepley (ANL,TTU)

Representing Topology Mesh Distribution

3D Example

Partition Section

M. Knepley (ANL,TTU) Theory Simula '08 46 /214

Representing Topology Mesh Distribution

3D Example

Distributed Mesh

Notice cells are ghosted

M. Knepley (ANL,TTU) Theory Simula’08 46/214

Representing Functions

Outline

@ Representing Functions

M. Knepley (ANL,TTU) Theory Simula’08 47/214

Representing Functions
Sections

Sections associate data to submeshes

@ Name comes from section of a fiber bundle
o Generalizes linear algebra paradigm

@ Define restrict (),update ()

@ Define complete ()
@ Assembly routines take a Sieve and several Sections
o Thisis called a Bundle

M. Knepley (ANL,TTU) Theory Simula’08 48/214

Representing Functions
Basic Operations

We begin with a simple mapping operation:

M. Knepley (ANL,TTU) Theory Simula’08 49/214

Representing Functions
Basic Operations

We begin with a simple mapping operation: restrictPoint ()

M. Knepley (ANL,TTU) Theory Simula’08 49/214

Representing Functions
Basic Operations

We begin with a simple mapping operation: restrictPoint ()
and then add its converse:

M. Knepley (ANL,TTU) Theory Simula’08 49/214

Representing Functions
Basic Operations

We begin with a simple mapping operation: restrictPoint ()
and then add its converse: updatePoint ()

M. Knepley (ANL,TTU) Theory Simula’08 49/214

Representing Functions
Basic Operations

We begin with a simple mapping operation: restrictPoint ()
and then add its converse: updatePoint ()
followed by topological versions:
which appear as dual to covering,

M. Knepley (ANL,TTU) Theory Simula’08 49/214

Representing Functions
Basic Operations

We begin with a simple mapping operation: restrictPoint ()
and then add its converse: updatePoint ()
followed by topological versions: restrictClosure ()
which appear as dual to covering, = updateClosure ()

M. Knepley (ANL,TTU) Theory Simula’08 49/214

Representing Functions
Basic Operations

We begin with a simple mapping operation: restrictPoint ()
and then add its converse: updatePoint ()
followed by topological versions: restrictClosure ()
which appear as dual to covering, = updateClosure ()
and finally a consistency operation:

M. Knepley (ANL,TTU) Theory Simula’08 49/214

Representing Functions
Basic Operations

We begin with a simple mapping operation:
and then add its converse:
followed by topological versions:
which appear as dual to covering,
and finally a consistency operation:

M. Knepley (ANL,TTU)

Theory

restrictPoint ()
updatePoint ()
restrictClosure ()
updateClosure ()
complete ()

Simula '08 49/214

Representing Functions
Duality

@ Need picture of sieve (graph) <—> mesh (picture) maybe doublet

@ Show both traversals (closure and restriction), perhaps an
animated FEM integral

M. Knepley (ANL,TTU) Simula '08 50/214

Representing Functions
Doublet Section

° o9 o
hdid
*¥00%¢

4 5 0 1

@ Section interface

M. Knepley (ANL,TTU) Theory Simula’08 51/214

Representing Functions
Doublet Section

° o9 o
hdid
*¥00%¢

4 5 0 1

@ Section interface
e restrict(0) = {fv}

M. Knepley (ANL,TTU) Theory Simula’08 51/214

Representing Functions
Doublet Section

° o9 o
hdid
*¥00%¢

4 5 0 1

@ Section interface

e restrict(0) = {fv}
e restrict(2) = {w}

M. Knepley (ANL,TTU) Theory Simula’08 51/214

Representing Functions
Doublet Section

° o9 o
hdid
*¥00%¢

4 5 0 1

@ Section interface

e restrict(0) = {fv}
o restrict(2) = {w}
e restrict(6) = {ep, €1}

M. Knepley (ANL,TTU) Theory Simula’08 51/214

s
P
°w'er
299999

4 5 0

@ Topological traversals: follow connectivity

M. Knepley (ANL,TTU) Theory Simula’08 51/214

s
P
°w'er
299999

4 5 0

@ Topological traversals: follow connectivity
o restrictClosure(0) = {fyepeie2e3e465Vp Vi Va}

M. Knepley (ANL,TTU) Theory Simula’08 51/214

s
P
°w'er
299999

4 5 0

@ Topological traversals: follow connectivity
o restrictClosure(0) = {fyepeie2e3e465Vp Vi Va}
o restrictStar(7) = {vpepeies6s5y }

M. Knepley (ANL,TTU) Theory Simula’08 51/214

Mapping Interpretation

Outline

e Mapping Interpretation

M. Knepley (ANL,TTU) Theory Simula’08 52/214

Mapping Interpretation
Mapping

Since we have a single relation,

we can see all our objects merely as mappings:
@ Section
@ point — real

@ Sieve
@ point of S — {points of S}

@ Overlap
e point of S — {points of S’}

M. Knepley (ANL,TTU) Theory Simula’08 53/214

Mapping Interpretation
Composition

We may compose mappings to generate
@ restrictClosure ()
@ closure () orestrictPoint ()

@ updateMeet ()
@ meet () oupdatePoint ()

and can even compose across an Overlap
@ complete () looks like a

restriction to the overlap

copy between adjacent sieves

fusion of values in the overlap sections
update to original section

M. Knepley (ANL,TTU) Theory Simula’08 54/214

Connecting Sieves

Outline

0 Connecting Sieves

M. Knepley (ANL,TTU) Theory Simula’08 55/214

Connecting Sieves
Sieves of Sieves

@ We can connect two sieves by identifying points
e This can be seen as nonlocal covering

@ This relation is then encapsulated in an overlap,
e which is just another sieve.

@ Sections may be defined over the Overlap
e Data movement follows the arrows

@ Enforcing consistency across an Overlap gives completion ()

M. Knepley (ANL,TTU) Theory Simula’08 56/214

Connecting Sieves
Restriction

(12,9) @

(411} .. e “e :

90 9.9

@ Localization

o Restrict to patches (here an edge closure)
o Compute locally

M. Knepley (ANL,TTU) Theory Simula’08 57/214

Connecting Sieves
Delta

°e o
‘00 e
[| =S '“@ : !
e® ~ o 0O

(%-T) | @
Xy

90 9.9

@ Delta

o Restrict further to the overlap
@ Overlap now carries twice the data

M. Knepley (ANL,TTU) Theory Simula’08 57/214

Connecting Sieves
Fusion

X3

'Y o
o %0 ‘00 0%,
- @" @ 4@ élé _ - é@ I@g. (v
° o0 °

@ Merge/reconcile data on the overlap
o Addition (FEM)
@ Replacement (FD)
e Coordinate transform (Sphere)
e Linear transform (MG)

M. Knepley (ANL,TTU) Theory Simula’08 57/214

Connecting Sieves
Update

° bt °
. ® py-Y
0 ° @@ _ee @: o

@ |§<.-?.| | @:
| oo |

@ Update
e Update local patch data
@ Completion = restrict — fuse — update, in parallel

M. Knepley (ANL,TTU) Theory Simula’08 57/214

Connecting Sieves
Completion

X3

o @.- :4@ | ?o; S @:@ o
%0 e ~ o 0

@ A ubiquitous parallel form of restrict — fuse — update
@ Operates on Sections

o Sieves can be "downcast" to Sections
@ Based on two operations

e Data exchange through overlap

o Fusion of shared data
M. Knepley (ANL,TTU) Theory Simula’'08 58/214

Connecting Sieves
Uses

Completion has many uses:

M. Knepley (ANL,TTU) Theory Simula’08 59/214

Connecting Sieves
Uses

Completion has many uses:

FEM accumulating integrals on shared faces

M. Knepley (ANL,TTU) Theory Simula’08 59/214

Connecting Sieves
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells

M. Knepley (ANL,TTU) Theory Simula’08 59/214

Connecting Sieves
Uses

Completion has many uses:
FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

M. Knepley (ANL,TTU) Theory Simula’08 59/214

Connecting Sieves
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

@ distributing mesh entities after partition

M. Knepley (ANL,TTU) Theory Simula’08 59/214

Connecting Sieves
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices
@ distributing mesh entities after partition
@ redistributing mesh entities and data for load balance

M. Knepley (ANL,TTU) Theory Simula’08 59/214

Connecting Sieves
Uses

Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
@ distributing mesh entities after partition
@ redistributing mesh entities and data for load balance
@ accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula’08 59/214

Part

Global Computation: Implementation

M. Knepley (ANL,TTU) Theory Simula’08 60/214

Interfaces

Outline

e Interfaces

M. Knepley (ANL,TTU) Theory Simula’08 61/214

Interfaces
Hierarchical Interfaces

Global/Local Dichotomy is the Heart of DD

Software interfaces do not adequately reflect this

@ PETSc DA is too specialized

o Basically 1D methods applied to Cartesian products
@ PETSc Index Sets and VecScatters are too fine

o User “does everything”, no abstraction
@ PETSc Linear Algebra (Vec & Mat) is too coarse

@ No access to the underlying connectivity structure

M. Knepley (ANL,TTU) Theory Simula’08 62/214

Interfaces

Unstructured Interface (before)

@ Explicit references to element type

e getVertices(edgelD), getVertices(facelD)
e getAdjacency(edgelD, VERTEX)
o getAdjacency(edgelD, dim = 0)

M. Knepley (ANL,TTU) Theory Simula’08 63/214

Interfaces

Unstructured Interface (before)

@ Explicit references to element type
e getVertices(edgelD), getVertices(facelD)
e getAdjacency(edgelD, VERTEX)
o getAdjacency(edgelD, dim = 0)
@ No interface for transitive closure
o Awkward nested loops to handle different dimensions

M. Knepley (ANL,TTU) Theory Simula’08 63/214

Interfaces

Unstructured Interface (before)

@ Explicit references to element type

e getVertices(edgelD), getVertices(facelD)

e getAdjacency(edgelD, VERTEX)

o getAdjacency(edgelD, dim = 0)
@ No interface for transitive closure

o Awkward nested loops to handle different dimensions
@ Have to recode for meshes with different

@ dimension
e shapes

M. Knepley (ANL,TTU) Theory Simula’08 63/214

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

M. Knepley (ANL,TTU) Theory Simula’08 64/214

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

@ Abstract to a relation, covering, on sieve points

e Points can represent any mesh element
e Covering can be thought of as adjacency
o Relation can be expressed in a DAG (Hasse Diagram)

M. Knepley (ANL,TTU) Theory Simula’08 64/214

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

@ Abstract to a relation, covering, on sieve points

e Points can represent any mesh element

e Covering can be thought of as adjacency

o Relation can be expressed in a DAG (Hasse Diagram)
@ Simple query set:

e provides a general API for geometric algorithms

o leads to simpler implementations

@ can be more easily optimized

M. Knepley (ANL,TTU) Theory Simula’08 64/214

Interfaces

Unstructured Interface (after)

@ NO explicit references to element type

e A point may be any mesh element
e getCone(point): adjacent (d-1)-elements
@ getSupport(point): adjacent (d+1)-elements

M. Knepley (ANL,TTU) Theory Simula’08 65/214

Interfaces

Unstructured Interface (after)

@ NO explicit references to element type

e A point may be any mesh element
e getCone(point): adjacent (d-1)-elements
@ getSupport(point): adjacent (d+1)-elements

@ Transitive closure
o closure(cell): The computational unit for FEM

M. Knepley (ANL,TTU) Theory Simula’08 65/214

Interfaces

Unstructured Interface (after)

@ NO explicit references to element type

e A point may be any mesh element

o getCone(point): adjacent (d-1)-elements

o getSupport(point): adjacent (d+1)-elements
@ Transitive closure

o closure(cell): The computational unit for FEM
@ Algorithms independent of mesh

e dimension
shape (even hybrid)
global topology
data layout

M. Knepley (ANL,TTU) Theory Simula’08 65/214

Interfaces
Hierarchy Abstractions

@ Generalize to a set of linear spaces

@ Sieve provides topology, can also model Mat
@ Section generalizes vec
e Spaces interact through an Overlap (justa Sieve)

@ Basic operations

o Restriction to finer subspaces, restrict () /update ()
e Assembly to the subdomain, complete ()

@ Allow reuse of geometric and multilevel algorithms

M. Knepley (ANL,TTU) Theory Simula’08 66/214

Interfaces
FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations

M. Knepley (ANL,TTU) Theory Simula’08 67/214

Interfaces
FMM in Sieve

o | o | o | o | | o @ The Quadtree is a Sieve

| o o | e | | -| e with optimized operations

o | | e | o @ Multipoles are stored in sections
| o | | | |

o | | | |

|| e e {

o | | o e | o

o o | o |

M. Knepley (ANL,TTU) Theory Simula’08 67/214

Interfaces
FMM in Sieve

M. Knepley (ANL,TTU)

@ The Quadtiree is a Sieve
o with optimized operations

@ Multipoles are stored in sections
@ Two Overlaps are defined

Theory Simula '08 67 /214

Interfaces
FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined
o

M. Knepley (ANL,TTU) Theory Simula’08 67/214

Interfaces
FMM in Sieve

M. Knepley (ANL,TTU)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

Theory Simula '08 67 /214

Interfaces
FMM in Sieve

M. Knepley (ANL,TTU)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

@ Completion moves data for
o Neighbors

Theory Simula '08 67 /214

Interfaces
FMM in Sieve

M. Knepley (ANL,TTU)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List

Theory Simula '08 67 /214

Interfaces
Multigrid in Sieve

/ /
[=

// TTT7] déew

]101

/ /
[T:1] /

@ Sieves represent coarse and fine meshes
@ Sections represent coarse and fine fields

@ An Overlap matches coarse and fine cells
@ Interpolation and restriction are completion over the overlap
e Fusion is a linear transformation

M. Knepley (ANL,TTU) Theory Simula’08 68/214

Mapping

Outline

e Mapping

M. Knepley (ANL,TTU) Theory Simula’08 69/214

Mapping
Traversal

Sequences:
@ http://en.wikipedia.org/wiki/lterator_pattern
@ State is held by the iterator
@ Special classes are unnecessary

const sequence& cells = mesh.heightStratum(0);

for (sequence::iterator c_iter = cells.begin();
c_iter != cells.end(); ++c_iter) {
point_type p = *c_iter;

M. Knepley (ANL,TTU) Simula '08 70/214

http://en.wikipedia.org/wiki/Iterator_pattern

Mapping
Traversal

Visitors:
@ http://en.wikipedia.org/wiki/Visitor_pattern
@ State is split between sieve and visitor
@ User controls allocation

PrintVisitor pV;

sieve.cone (p, pV);

M. Knepley (ANL,TTU) Theory Simula’08 71/214

http://en.wikipedia.org/wiki/Visitor_pattern

Mapping
Visitor Composition

@ Visitors can be composed by chaining visit () calls
e Final template parameter is child visitor type

@ closure () is accomplished by composition
o Oriented traversal uses the variant visit (point, orient)

@ Composition can also proceed by slicing
o Discussed later by Dmitry

M. Knepley (ANL,TTU) Theory Simula’08 72/214

Completion

Outline

@ Completion

M. Knepley (ANL,TTU) Theory Simula’08 73/214

Section Distribution

Section distribution consists of

@ Creation of the local Section
@ Distribution of the Atlas (layout Section)

@ Completion of the Section

M. Knepley (ANL,TTU) Theory Simula’08 74/214

Completion
Section Completion

Completion can be broken into 4 phases:
@ restrict () to an overlap section
© copy () data to the remote overlap section
© fuse () data with existing point data
© update () remote section with fused overlap section data

It is common to combine phases 1 & 2, and also 3 & 4

@ Data is moved directly between communication buffers and
storage

M. Knepley (ANL,TTU) Theory Simula’08 75/214

Completion
Section Completion

Process 0 Process 1

Mesh Overlap
®

Tor

M. Knepley (ANL,TTU) Theory Simula’08 76/214

Completion
Section Completion

Process 0 ‘ Process 1

Mesh Overlap
®

M. Knepley (ANL,TTU) Theory Simula’08 76/214

Completion
Section Completion

2 2] i)
—’

Process 0 Process 1
Mesh Overlap
© @
2
O
aﬂ
Sler o
> f

©) @

M. Knepley (ANL,TTU) Theory Simula’08 76/214

Completion
Section Completion

Process 1

Process 0

Mesh Overlap
@

D

M. Knepley (ANL,TTU) Theory Simula’08 76/214

Completion
Section Completion

Process 0 Process 1

Mesh Overlap
®

3

M. Knepley (ANL,TTU) Theory Simula’08 76/214

Completion
Section Hierarchy

We have a hierarchy of section types of increasing complexity
@ GeneralSection
@ An arbitrary number of values for each domain point
e Constrain arbitrary values
o Atlasisa UniformSection
@ UniformSection
o A fixed number of values for each domain point
o Atlasis a ConstantSection
@ ConstantSection
e The same single value for all domain points
@ Only the domain must be completed

M. Knepley (ANL,TTU) Theory Simula’08 77/214

Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,

M. Knepley (ANL,TTU) Theory Simula’08 78/214

Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
o like a power-law (small world) graph,

M. Knepley (ANL,TTU) Theory Simula’08 78/214

Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
o like a power-law (small world) graph,
@ MatMult () can be very unbalanced

M. Knepley (ANL,TTU) Theory Simula’08 78/214

Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
o like a power-law (small world) graph,
@ MatMult () can be very unbalanced
e since all edges for a vertex must be on one process.

M. Knepley (ANL,TTU) Theory Simula’08 78/214

Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,

o like a power-law (small world) graph,
@ MatMult () can be very unbalanced

e since all edges for a vertex must be on one process.
@ We can balance edges in local matrices

M. Knepley (ANL,TTU) Theory Simula’08 78/214

Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,

o like a power-law (small world) graph,
@ MatMult () can be very unbalanced

e since all edges for a vertex must be on one process.
@ We can balance edges in local matrices

e by leaving the partition boundary unassembled.

M. Knepley (ANL,TTU) Theory Simula’08 78/214

Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
o like a power-law (small world) graph,
@ MatMult () can be very unbalanced
e since all edges for a vertex must be on one process.
@ We can balance edges in local matrices
e by leaving the partition boundary unassembled.
@ We need only complete () the output section

M. Knepley (ANL,TTU) Theory Simula’08 78/214

Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
o like a power-law (small world) graph,
@ MatMult () can be very unbalanced
e since all edges for a vertex must be on one process.
@ We can balance edges in local matrices
e by leaving the partition boundary unassembled.
@ We need only complete () the output section
@ due to the linearity of the operation

M. Knepley (ANL,TTU) Theory Simula’08 78/214

Optimization and the Sieve Programming Model

Outline

0 Optimization and the Sieve Programming Model
@ Automation
@ Parallelism
@ Completion
@ Interval Sieves

M. Knepley (ANL,TTU) Theory Simula’08 79/214

Optimization and the Sieve Programming Model Automation

Outline

Q Optimization and the Sieve Programming Model
@ Automation

M. Knepley (ANL,TTU) Simula '08 80/214

Optimization and the Sieve Programming Model Automation

Kernels Approach

Reducing operations to kernels is widespread in scientific computing:
@ Facilitates code reuse
@ Reduces code complexity
@ Reduces work of optimization (?)
@ Needs correct abstractions

M. Knepley (ANL,TTU) Theory Simula’08 81/214

Optimization and the Sieve Programming Model Automation

Kernels Approach

Reducing operations to kernels is widespread in scientific computing:
@ Facilitates code reuse
@ Reduces code complexity
@ Reduces work of optimization (?)
@ Needs correct abstractions
Dual to introducing common software structures
@ Kernels operate on common structures

M. Knepley (ANL,TTU) Theory Simula’08 81/214

Optimization and the Sieve Programming Model Automation

Kernels Approach

Reducing operations to kernels is widespread in scientific computing:
@ Facilitates code reuse
@ Reduces code complexity
@ Reduces work of optimization (?)
@ Needs correct abstractions
Dual to introducing common software structures
@ Kernels operate on common structures

Must enable automatic selection of algorithmic variants

M. Knepley (ANL,TTU) Theory Simula’08 81/214

Optimization and the Sieve Programming Model Automation

Dense Linear Algebra

Dense linear algebra is too rich:
@ Rich structure allow many different organizations
@ BLAS/LAPACK chooses certain kernel operations
o Consider only reuse, not optimization

@ LAPACK choose a single variant of each algorithm

@ LAPACK fixes the structure implementation in the interface
FLAME allows new kernels to be created

@ Abstracts among implementations (layouts)

M. Knepley (ANL,TTU) Theory Simula’08 82/214

Optimization and the Sieve Programming Model Automation

DFT

Spiral allows both reuse and optimization:
@ Abstract model from algorithms
@ Allows different implementations for common structures
@ Automates algorithm selection
@ Incorporates performance feedback

M. Knepley (ANL,TTU) Theory Simula’08 83/214

Optimization and the Sieve Programming Model Automation

DFT

Spiral allows both reuse and optimization:
@ Abstract model from algorithms
@ Allows different implementations for common structures
@ Automates algorithm selection
@ Incorporates performance feedback

Unfortunately, DFT is simpler than our common operations.

M. Knepley (ANL,TTU) Theory Simula’08 83/214

Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):

M. Knepley (ANL,TTU) Theory Simula’08 84/214

Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
@ Don’t specify our algorithms at the FLAME level
e Without a PME, cannot move between variants automatically

M. Knepley (ANL,TTU) Theory Simula '08

84/214

Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
@ Don’t specify our algorithms at the FLAME level
e Without a PME, cannot move between variants automatically
@ Can be built from Sieve completion operations

o Completion of operator gives assembled matrix
o Completion of output gives matrix-free application

M. Knepley (ANL,TTU) Theory Simula’08 84/214

Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
@ Don’t specify our algorithms at the FLAME level
e Without a PME, cannot move between variants automatically
@ Can be built from Sieve completion operations

o Completion of operator gives assembled matrix
o Completion of output gives matrix-free application

@ VecScatter should be generalized to an Overlap

M. Knepley (ANL,TTU) Theory Simula’08 84/214

Optimization and the Sieve Programming Model Automation

Performance Insights

There are two key insights for automatic performance tuning:

@ Memory layout controls performance (Goto)
e Must be able to switch layouts for different algorithmic variants
@ Bad LAPACK interface truncates ATLAS search space
o Example: GEPP kernel for DGEMM

M. Knepley (ANL,TTU) Theory Simula’08 85/214

Optimization and the Sieve Programming Model Automation

Performance Insights

There are two key insights for automatic performance tuning:
@ Memory layout controls performance (Goto)
e Must be able to switch layouts for different algorithmic variants
@ Bad LAPACK interface truncates ATLAS search space
o Example: GEPP kernel for DGEMM
© Must understand data dependencies

@ OpenMP cannot express this
e Can be encapsulated in a DAG

@ SuperMatrix
@ Sieve

e Enables variants switching (loop fusion)

M. Knepley (ANL,TTU) Theory Simula’08 85/214

Optimization and the Sieve Programming Model Automation

Sieve and Overlap

Sieve and Overlap can structure computation by expression of
@ Hierarchy
e Reduces complexity and enables code reuse with

@ common components (sieve)
@ operations (completion)

o Separates global and local concerns
o Maps well to multiresolution algorithms

M. Knepley (ANL,TTU) Theory Simula’08 86/214

Optimization and the Sieve Programming Model Automation

Sieve and Overlap

Sieve and Overlap can structure computation by expression of
@ Hierarchy
e Reduces complexity and enables code reuse with

@ common components (sieve)
@ operations (completion)

o Separates global and local concerns
o Maps well to multiresolution algorithms
@ Dependency

@ Allows tranformation between different algorithmic variants
o Applies at many levels

@ algorithm selection
@ serial scheduling
@ parallel coordination

o Key advance over Map-Reduce paradigm

M. Knepley (ANL,TTU) Theory Simula’08 86/214

Optimization and the Sieve Programming Model Parallelism

Outline

Q Optimization and the Sieve Programming Model

@ Parallelism

M. Knepley (ANL,TTU) Theory Simula’08 87/214

Optimization and the Sieve Programming Model Parallelism

MPICH-G2

Early Attempt at Hierarchy

@ Communicator hierarchy, topology depth

M. Knepley (ANL,TTU) Theory Simula’08 88/214

Optimization and the Sieve Programming Model Parallelism

MPICH-G2

Early Attempt at Hierarchy

@ Communicator hierarchy, topology depth

@ Only exposed to the user through Comm attributes
o Still have to support flat model

M. Knepley (ANL,TTU) Theory Simula’08 88/214

Optimization and the Sieve Programming Model Parallelism

MPICH-G2

Early Attempt at Hierarchy

@ Communicator hierarchy, topology depth

@ Only exposed to the user through Comm attributes
o Still have to support flat model

@ Hierarchy information is buried too deep
@ Only really accessible in the implementation (collectives)

M. Knepley (ANL,TTU) Theory Simula’08 88/214

Optimization and the Sieve Programming Model Parallelism

Hierarchy in MPI

MPI communicator should be imbued with hierarchy:
@ Single relation is easy to add
o Could be implemented using attributes
@ Can easily code hierarchical algorithms
o FMM, MG, ...
@ Can express data dependencies

e Communicator could represent a thread group
@ Scheduling could be done inside MPI interface (SuperMatrix)

@ Enables large and small scale parallelism

@ Domain decomposition
o Master-slave

@ Could be proposed in MPI-3

M. Knepley (ANL,TTU) Theory Simula’08 89/214

Optimization and the Sieve Programming Model Completion

Outline

Q Optimization and the Sieve Programming Model

@ Completion

M. Knepley (ANL,TTU) Theory Simula’08 90/214

Optimization and the Sieve Programming Model Completion

Completion Optimization

A section with unchanged structure need not recomplete its Atlas
@ The overlap could store the packing information and buffers
e AvecScatter could be created between buffers

@ For simple fusers, the Overlap maps directly to section storage
o AvecScatter could be created between the arrays

M. Knepley (ANL,TTU) Theory Simula’08 91/214

Optimization and the Sieve Programming Model Interval Sieves

Outline

Q Optimization and the Sieve Programming Model

@ Interval Sieves

M. Knepley (ANL,TTU) Theory Simula’08 92/214

Optimization and the Sieve Programming Model Interval Sieves

Interval Sieves and Sections

We can demand that our chart be an interval:
@ Membership is O(1)
@ cone () isO(1)
@ restrict () is O(1)

Formerly, all point queries were O(log n)

Moreover, no storage is needed for a search structure:
@ STL sets require 20 bytes/int

We can always achieve this in a static setting with local renumbering

M. Knepley (ANL,TTU) Theory Simula’08 93/214

Optimization and the Sieve Programming Model Interval Sieves

ISieve

ISieve

@ Separate AlJ structures for cones and supports
Also store AlJ orientations
Must call allocate () before setting cones

Some support for dynamic insertion
Cones and supports unconnected
@ Use symmetrize () to automate arrow reversal

Has converter from standard Sieve
Visitors for all traversals

M. Knepley (ANL,TTU) Theory Simula’08 94/214

Optimization and the Sieve Programming Model Interval Sieves

ISection

ISection
@ AlJ structure for values
@ Same allocate () call before setting values
@ Some support for dynamic insertion

@ Completion must still send chart explicitly
e Can amortize across similar completions

M. Knepley (ANL,TTU) Theory Simula’08 95/214

Finite Elements

Outline

@ Finite Elements

M. Knepley (ANL,TTU) Theory Simula’08 96/214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula'08 97/214

Finite Elements
Integration

cells = mesh->heightStratum(0);

for(c = cells->begin(); c != cells->end(); ++c) {
coords = mesh->restrict (coordinates, c);
v0, J, invd, detJ = computeGeometry (coords);

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++qg) {
<Transform coordinates
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]xdetdJ;

}

<Update output vector>

M. Knepley (ANL,TTU) Theory Simula’08 97/214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula'08 97/214

Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
inputVec = mesh->restrict (U, c);
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula'08 97/214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula'08 97/214

Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
realCoords = J*xrefCoords|[qg] + vO0;
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula’08 97/214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula'08 97/214

Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
elemVec[f] += basis[qg, f]*rhsFunc(realCoords);
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula'08 97/214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula'08 97/214

Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
for(d = 0; d < dim; ++d)
for(e) testDerReal[d] += invJl[e,d]xbasisDer|q,
for(g = 0; g < numBasisFuncs; ++g) {
for(d = 0; d < dim; ++d)
for (e) basisDerReal[d] += invJ[e,d]*basisDer
elemMat [f,g] += testDerReal [d]xbasisDerReal |
elemVec[f] += elemMat[f,g]xinputVeclg]l;
}

M. Knepley (ANL,TTU) Theory Simula’08 97/214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula'08 97/214

Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
elemVec[f] += basis[qg, f]*lambda*exp (inputVec[£f])
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>

<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula’08 97/214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula'08 97/214

Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
mesh->updateAdd (F, c, elemVec);
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula’08 97/214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
M. Knepley (ANL,TTU) Theory Simula'08 97/214

Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>

}

Distribution<Mesh>::completeSection (mesh, F);
M. Knepley (ANL,TTU) Theory Simula’08 97/214

Boundary Conditions

Outline

@ Boundary Conditions

M. Knepley (ANL,TTU) Theory Simula’08 98/214

Boundary Conditions
Boundary Conditions

Dirichlet conditions may be expressed as
ur=g

and implemented by constraints on dofs in a Section
@ The user provides a function.

Neumann conditions may be expressed as
Vu- ﬁ|r =h

and implemented by explicit integration along the boundary
@ The user provides a weak form.

M. Knepley (ANL,TTU) Theory Simula’08 99/214

Boundary Conditions
Dual Basis Application

We would like the action of a dual basis vector (functional)

</\/,-,f>:/ Ni(x)F(x)dV
ref

@ Projection onto P
@ Code is generated from FIAT specification
e Python code generation package inside PETSc

@ Common interface for all elements

M. Knepley (ANL,TTU) Theory Simula’08 100/214

Boundary Conditions

Assembly with Dirichlet Conditions

The original equation may be partitioned into
@ unknowns in the interior (1)
@ unknowns on the boundary (I

so that we obtain
<A// A/r><U/>:<f/)
Ari Arr ur fr

However ur is known, so we may reduce this to
Ajup = fj— Arrur

We will show that our scheme automatically constructs this extra term.

M. Knepley (ANL,TTU) Theory Simula’08 101/214

Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

M. Knepley (ANL,TTU) Simula '08 102/214

Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

u | 5|13 |7
f 1 5/0(010
Restrict

M. Knepley (ANL,TTU) Simula '08 102/214

Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

u 5|13 |7

f 1 5(0/00
Compute

05 00 (05 || 5 1

0.0 (05 +05 1

|
1
[

M. Knepley (ANL,TTU)

Simula '08 102/214

Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

u 5|1/ 317
f 1 5/0(0 0
Compute
AIT AFI 5 1
1 | = |-1 This piece containsrhs
Apr Ay |]
3 0

M. Knepley (ANL,TTU)

Simula '08 102/214

Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

M. Knepley (ANL,TTU)

Simula '08 102/214

Boundary Conditions
Dirichlet Values

@ Topological boundary is marked during generation
@ Cells bordering boundary are marked using
markBoundaryCells ()
@ To set values:
@ Loop over boundary cells
@ Loop over the element closure
@ For each boundary point /, apply the functional N; to the function g
@ The functionals are generated with the quadrature information
@ Section allocation applies Dirichlet conditions automatically

@ Values are stored in the Section
@ restrict () behaves normally, update () ignores constraints

M. Knepley (ANL,TTU) Theory Simula’08 103/214

Boundary Conditions
Complex BC

We may want to constrain a dof not in the global basis:

when the global basis follows the coordinate directions.

M. Knepley (ANL,TTU) Theory Simula’08 104/214

Boundary Conditions
Complex BC

@ In order to constrain the value we

e rotate the storage coordinates to the n — = frame
e project out the normal coordinate (freeze the value)

@ This rotation is also needed for restriction
@ and any action accessing section storage
@ In general, we need

e a transformation to BC coordinates
@ a projection onto free variables (trivial)

@ Transformation might involve all element variables
@ which would be an action on the closure

M. Knepley (ANL,TTU) Simula’08 105/214

Part IV

Local Computation: Theory

M. Knepley (ANL,TTU) Theory Simula’08 106/214

Outline

Q@ FiaT

M. Knepley (ANL,TTU) Simula '08 107 /214

Models of Local Computation

Outline

@ Models of Local Computation

M. Knepley (ANL,TTU) Simula '08 108/214

Models of Local Computation
Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

S Voi(x) - V(x)dx ™)
— - 32;(()() J¢;(x)dx B
= fntBak 8227 |J|dx 3)
= el I, 83'55 249 gx @
= GM(TKS, (5)

Coefficients are also put into the geometric part.

M. Knepley (ANL,TTU) Theory Simula’08 109/214

Models of Local Computation
Form Decomposition

Additional fields give rise to multilinear forms.

J70i(%) - (o(X)Ve5(x)) @A ©)
= Jroi <¢a(x) %% (x)> dA (7)
= L 035 2 A @)
S QLAY)
= GY(T)Ka, (10)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.

M. Knepley (ANL,TTU) Theory Simula’08 110/214

http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

Models of Local Computation
Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

J7 V8i(x) - Vj(x)dA (11)
- 7 B e dA (12)
= Jnooe WY 8‘”‘5 J|dA (13)
= Wz Jf“aﬁg;)¢J7“a¢'()dA (14)
= N S, ok 25 (15)
= Gy (T)KY (16)

A different space could also be used for Jacobians

M. Knepley (ANL,TTU) Theory Simula’08 111/214

Dof Kinds

Outline

@ Dof Kinds

M. Knepley (ANL,TTU) Theory Simula’08 112/214

Boundary Conditions

Outline

@ Boundary Conditions

M. Knepley (ANL,TTU) Theory Simula’08 113/214

Boundary Conditions

Assembly with Dirichlet Conditions

The original equation may be partitioned into
@ unknowns in the interior (1)
@ unknowns on the boundary (I

so that we obtain
<A// A/r><U/>:<f/)
Ari Arr ur fr

However ur is known, so we may reduce this to
Ajup = fj— Arrur

We will show that our scheme automatically constructs this extra term.

M. Knepley (ANL,TTU) Theory Simula’08 114/214

Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

M. Knepley (ANL,TTU) Theory Simula’08 115/214

Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

u | 5|13 |7
f 1 5/0(010
Restrict
5
1
3

M. Knepley (ANL,TTU) Theory Simula’08 115/214

Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

u 5|13 |7

f 1 5(0/00
Compute

05 00 (05 || 5 1

0.0 (05 +05 1 | = | -1

0.5 0.5 (1.0 3 0

M. Knepley (ANL,TTU) Theory Simula’08 115/214

Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

u 5|1/ 317
f 1 5/0(0 0
Compute
AIT AFI 5 1
1 | = |-1 This piece containsrhs
Apr Ay |]
3 0

M. Knepley (ANL,TTU) Theory Simula’08 115/214

Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

M. Knepley (ANL,TTU)

Simula '08 115/214

Boundary Conditions
Dirichlet Values

@ Topological boundary is marked during generation
@ Cells bordering boundary are marked using
markBoundaryCells ()
@ To set values:
@ Loop over boundary cells
@ Loop over the element closure
@ For each boundary point /, apply the functional N; to the function g
@ The functionals are generated with the quadrature information
@ Section allocation applies Dirichlet conditions automatically

@ Values are stored in the Section
@ restrict () behaves normally, update () ignores constraints

M. Knepley (ANL,TTU) Theory Simula’08 116/214

Boundary Conditions
Complex BC

We may want to constrain a dof not in the global basis:

when the global basis follows the coordinate directions.

M. Knepley (ANL,TTU) Theory Simula’08 117/214

Boundary Conditions
Complex BC

@ In order to constrain the value we

e rotate the storage coordinates to the n — = frame
e project out the normal coordinate (freeze the value)

@ This rotation is also needed for restriction
@ and any action accessing section storage
@ In general, we need

e a transformation to BC coordinates
@ a projection onto free variables (trivial)

@ Transformation might involve all element variables
@ which would be an action on the closure

M. Knepley (ANL,TTU) Theory Simula’08 118/214

Weak Form Languages

Outline

@ Weak Form Languages

M. Knepley (ANL,TTU) Theory Simula’08 119/214

Weak Form Languages

FFC is a compiler for variational forms by Anders Logg.
Here is a mixed-form Poisson equation:
a((r,w), (o,u)) = L((1,w)) V(r,w)e V
where

a((r,w),(o,u)) = /QTU—V-TU—l—WV-UdX

L((m,w)) = /wadx

M. Knepley (ANL,TTU) Theory Simula’08 120/214

Weak Form Languages

FFC

Mixed Poisson

shape = "triangle"

BDM1 = FiniteElement("Brezzi—Douglas—Marini" ,shape,1)
DGO = FiniteElement("Discontinuous Lagrange", shape,0)
element = BDM1 + DGO

(tau, w) = TestFunctions(element)

(sigma, u) = TrialFunctions (element)

a = (dot(tau, sigma) — div(tau)+u + w=div(sigma))~dx

f = Function (DGO)
L = wxf«dx

M. Knepley (ANL,TTU) Theory Simula’08 121/214

Weak Form Languages

FFC

Here is a discontinuous Galerkin formulation of the Poisson equation:
alv,uy=»Lv) VveV
where

a(v,u) = /QVU-VvdX
T Z/ — < Vv > [u]]n = [[Vl]]n»- < VU > —(a/h)vu dS
5 /s

b [Vvl - (- V- (/B ds
o

Lv) = /Qvfdx

M. Knepley (ANL,TTU) Theory Simula’08 122/214

Weak Form Languages

FFC

DG Poisson

DG1 = FiniteElement("Discontinuous Lagrange" , shape,1)
TestFunctions (DG1)

TrialFunctions (DG1)

Function (DG1)

Function (DG1)

FacetNormal("triangle")
MeshSize("triangle")

dot(grad(v), grad(u))=dx
dot(avg(grad(v)), jump(u, n))=dS
dot(jump(v, n), avg(grad(u)))=«dS
alpha/h«dot(jump(v, n) + jump(u, n))=dS
dot(grad(v), jump(u, n))=«ds

dot(jump(v, n), grad(u))=ds
gamma/h=«v=ux~ds

v« fxdx + v«g«ds

»TSQ +~C <
(TR T

+

o+ |

M. Knepley (ANL,TTU) Theory Simula’08 123/214

Part V

Local Computation: Implementation

M. Knepley (ANL,TTU) Theory Simula’08 124/214

Serial Performance

Outline

@ Serial Performance

M. Knepley (ANL,TTU) Theory Simula’08 125/214

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

@ Protoypical operation is Triad (WAXPY): w =y + ax

@ Measures the memory bandwidth bottleneck (much below peak)
@ Datasets outstrip cache

Machine Peak (MF/s) | Triad (MB/s) | MF/MW Eqg. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 | 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 | 8500.0 (0.8%)

Table: Bandwidth limited machine performance

M. Knepley (ANL,TTU)

http://www.cs.virginia.edu/stream/

Theory

Simula '08 126/214

http://www.cs.virginia.edu/stream/

Serial Performance

Analysis of Sparse Matvec (SpMV)

Assumptions
@ No cache misses
@ No waits on memory references
Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V' Number of vectors to multiply
We can look at bandwidth needed for peak performance

2\ m 6
<8 + V> ey byte/flop (17)
or achieveable performance given a bandwith BW
Vnz
BV 2)m+ enz oV Milop/s (18)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.

M. Knepley (ANL,TTU) Theory Simula’08 127/214

http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf
http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf

Serial Performance
Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

—— bytes/flop(1122.4 MB/s) = 151 MFlops/s, 19
(8+2)%+6y/p(/3) ps/ (19)

which is a dismal 8.8% of peak.

Can improve performance by
@ Blocking
@ Multiple vectors
but operation issue limitations take over.

M. Knepley (ANL,TTU) Theory Simula’08 128/214

Serial Performance
Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most
1
—— bytes/flop(1122.4 MB/s) = 151 MFlops/s, 19
(8+2)%+6y/p(/s) ps/ (19)
which is a dismal 8.8% of peak.

Better approaches:
@ Unassembled operator application (Spectral elements, FMM)

e N data, N° computation
@ Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

e N data, Nk computation

M. Knepley (ANL,TTU) Theory Simula’08 128/214

Serial Performance
Performance Tradeoffs

We must balance storage, bandwidth, and cycles

@ Assembled Operator Action
o Trades cycles and storage for bandwidth in application
@ Unassembled Operator Action

e Trades bandwidth and storage for cycles in application

e For high orders, storage is impossible

e Can make use of FErari decomposition to save calculation
o Could storage element matrices to save cycles

@ Partial assembly gives even finer control over tradeoffs
@ Also allows introduction of parallel costs (load balance, ...)

M. Knepley (ANL,TTU) Theory Simula’08 129/214

FIAT
Outline

@ FIAT

@ Implementation
@ Optimization

M. Knepley (ANL,TTU) Theory Simula’08 130/214

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
Can build arbitrary elements by specifying the Ciarlet triple (K, P, P’)

M. Knepley (ANL,TTU) Theory Simula’08 131/214

http://fenicsproject.org/about/components.html

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
Can build arbitrary elements by specifying the Ciarlet triple (K, P, P’)

FIAT is part of the FEniCS project

M. Knepley (ANL,TTU) Theory Simula’08 131/214

http://fenicsproject.org/about/components.html

FIAT Integration

The quadrature. fiat file contains:

@ An element (usually a family and degree) defined by FIAT
@ A quadrature rule

It is run

@ automatically by make, or
@ independently by the user

It can take arguments
@ —element_family and —element_order, Or
@ make takes variables ELEMENT and ORDER

Then make produces quadrature.h with:
@ Quadrature points and weights
@ Basis function and derivative evaluations at the quadrature points
@ Integration against dual basis functions over the cell
@ Local dofs for Section allocation

M. Knepley (ANL,TTU) Theory Simula’08 132/214

FIAT Implementation

Outline

@ FIAT

@ Implementation

M. Knepley (ANL,TTU) Theory Simula’08 133/214

FIAT Optimization

Outline

@ FIAT

@ Optimization

M. Knepley (ANL,TTU) Theory Simula’08 134/214

FErari
Ouitline

@ FErari

@ Problem Statement

@ Plan of Attack

@ Results

@ Mixed Integer Linear Programming

M. Knepley (ANL,TTU) Theory Simula’08 135/214

FErari
FErari

Finite Element rearragement to automaically reduce instructions

@ Open source implementation http://www.fenics.org/wiki/FErari
@ Build tensor blocks K,’#’m, as vectors using FIAT

@ Discover dependencies

o Represented as a DAG
e Can also use hypergraph model

@ Use minimal spanning tree to construct computation

M. Knepley (ANL,TTU) Theory Simula’08 136/214

http://www.fenics.org/wiki/FErari
http://www.fenics.org/wiki/FIAT

FErari Problem Statement

Outline

@ FErari

@ Problem Statement

M. Knepley (ANL,TTU) Theory Simula’08 137/214

FErari Problem Statement

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

J7 V6i(X) - Vj(x)0x (20)
- 7 e e dx 21)
= Jr PR 8227 [J]cx (22)
= By, 83'55 25 dx (23)
= GM(T)K3, (24)

Coefficients are also put into the geometric part.

M. Knepley (ANL,TTU) Theory Simula’08 138/214

FErari Problem Statement

Form Decomposition

Additional fields give rise to multilinear forms.

J70i(%) - (o(X)Ve5(x)) @A (25)
= [<¢a(x) %% (x)> dA (26)
S AL AGE IV @)
S QLAY 28)
- GM(T)K% (29)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.

M. Knepley (ANL,TTU) Theory Simula’08 139/214

http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

FErari Problem Statement

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

J7 Vi(X) - Vj(x)dA (30)
- 7 B e dA (31)
= o s e ok 8‘”‘5 |J|0A (32)
= M, o B 0 J7“a¢'()dA (33)
= N S, ok 25 (34)
= Gy ()KL (35)

A different space could also be used for Jacobians

M. Knepley (ANL,TTU) Theory Simula’08 140/214

FErari Problem Statement

Element Matrix Formation

@ Element matrix K is now made up of small tensors
@ Contract all tensor elements with each the geometry tensor G(7")

3 0 0 -1 1 1 -4 -4 0 4 0 0
0 0 0 O 0 0 0 O 0 0 0 0
0 O 0 0 0 0 0 0 0 0 0 O
-1 0 0 3 1 1 0 0 4 0 -4 -4
1 0 0 1 3 3 -4 0 0 O 0 -4
1 0 0 1 3 3 -4 0 0 O 0 -4
-4 0 0 O -4 -4 8 4 0 -4 0 4
-4 0 0 O 0 O 4 8 -4 -8 4 0
0 0 0 4 0 O 0 -4 8 4 -8 4
4 0 0 0 0 0 -4 -8 4 8 -4 0
0 0 0 -4 0 O 0 4 -8 -4 8 4
0 O 0 -4 -4 -4 4 0 -4 0 4 8

M. Knepley (ANL,TTU) Theory Simula’08 141/214

FErari Problem Statement

Element Matrix Computation

@ Element matrix K can be precomputed

e FFC
o SyFi

@ Can be extended to nonlinearities and curved geometry

@ Many redundancies among tensor elements of K
e Could try to optimize the tensor contraction. ..

M. Knepley (ANL,TTU) Theory Simula’08 142/214

http://www.fenics.org/wiki/SyFi
http://www.fenics.org/wiki/FFC

FErari Problem Statement

Abstract Problem

Given vectors v; € R™, minimize flops(vTg) for arbitrary g € R

@ The set v; is not at all random
@ Not a traditional compiler optimization

@ How to formulate as an optimization problem?

M. Knepley (ANL,TTU) Theory Simula’08 143/214

FErari Plan of Attack

Outline

@ FErari

@ Plan of Attack

M. Knepley (ANL,TTU) Theory Simula’08 144/214

FErari Plan of Attack

Complexity Reducing Relations

If v/ g is known, is flops(v] g) <2m — 17

We can use binary relations among the vectors:
@ Equality
o If v; = v;, then flops(v/ g) = 0
@ Colinearity
o If v = av;, then flops(v/ g) = 1
@ Hamming distance
o If disty(v;, vi) = k, then flops(v]g) = 2k

M. Knepley (ANL,TTU) Theory Simula’08 145/214

FErari Plan of Attack

Algorithm for Binary Relations

@ Construct a weighted graph on v;
o The weight w(i,j) is flops(v]g) given v/ g
e With the above relations, the graph is symmetric

@ Find a minimum spanning tree
e Use Prim or Kruskal for worst case O(n? log n)

@ Traverse the MST, using the appropriate calculation for each edge
e Roots require a full dot product

M. Knepley (ANL,TTU) Theory Simula’08 146/214

FErari Plan of Attack

Coplanarity

@ Ternary relation
o If vk = av; + Bv;, then flops(v] g) = 3
e Does not fit our undirected graph paradigm

@ SVD for vector triples is expensive
e Use a randomized projection into a few R3s

@ Use a hypergraph?
o MST algorithm available

@ Appeal to geometry?
@ Incidence structures

M. Knepley (ANL,TTU) Theory Simula’08 147/214

FErari Results

Outline

@ FErari

@ Results

M. Knepley (ANL,TTU) Theory Simula’08 148/214

Preliminary Results

FErari Results

Order | Entries | Base MAPs | FErari MAPs
1 6 24 7
2 21 84 15
3 55 220 45
4 120 480 176
5 231 924 443
6 406 1624 867

M. Knepley (ANL,TTU)

Theory

Simula '08

149/214

FErari Mixed Integer Linear Programming

Outline

@ FErari

@ Mixed Integer Linear Programming

M. Knepley (ANL,TTU) Simula '08 150/214

FErari Mixed Integer Linear Programming

Modeling the Problem

@ Obijective is cost of dot products (tensor contractions in FEM)
e Set of vectors V with a given arbitrary vector g

@ The original MINLP has a nonconvex, nonlinear objective

@ Reformulate to obtain a MILP using auxiliary binary variables

M. Knepley (ANL,TTU) Theory Simula’08 151/214

FErari Mixed Integer Linear Programming

Modeling the Problem

Variables

ajj = Basis expansion coefficients

yi = Binary variable indicating membership in the basis

s;j = Binary variable indicating nonzero coefficient «;;

z; = Binary variable linearizes the objective function (equivalent to y;y;)
U = Upper bound on coefficients

Constraints

) : Basis expansion
) : Exclude nonbasis vector from the expansion

Eq. (36d) : Remove offdiagonal coefficients for basis vectors
) : Exclude vanishing coefficients from cost

M. Knepley (ANL,TTU) Simula’08 151/214

FErari Mixed Integer Linear Programming

Original Formulation

MINLP Model
n
minimize Z yim—-1)+(1-y)|2 Z yi—1 (36a)
i=1 J=1,j#i
n
subjectto v =Y a;y i=1,...,n
(36b)
— Uy < a; < Uy i,j=1,...,n
(36¢)
_U(1_yl)§al_/SU(1_yl) ivj:17"'7n7
(36d)
yi € {0,1} i=1,....n
(36€)

M. Knepley (ANL,TTU) Theory Simula’08 152/214

FErari Mixed Integer Linear Programming

Original Formulation

Equivalent MILP Model: z; = y; - y;

minimize 2m Z yi+2 Z Z - Zj) — (36a)

i=1 j=1,j#i

subject to v;:Za,-jvj i=1,...,n
(36b)

— Uy < a; < Uy, ILj=1,...,n
(36¢)
_U(1_y/)§OéUSU(1_y/) i?j:17"'7n7i7éj
(36d)

zi <V, zZj<Yy, zj=zyi+y—1, ihj=1,....n
(36€)

yi€{0,1}, z;€{0,1} ij=1,...,n

M. Knepley (ANL,TTU) Simula '08 152/214

FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

@ Take advantage of sparsity of «;; coefficient
@ Introduce binary variables s; to model existence of «;

@ Add constraints —Us;; < a;; < Us;;

M. Knepley (ANL,TTU) Theory Simula’08 153/214

FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

MINLP Model
n
minimize Z yim-1)+(1-y) |2 Z Sjj — (37a)
i=1 J=1,j#i
subjectto v, = ayy; i=1,...,n
(37b)
—US,'jSOz,'jSUS,'j ihj=1,...,n
(37c)
—U(1 —yi) <o < U1~ i) ij=1,....n
(37d)
Si <Y ihj=1,....n
(37¢)
yi€{0,1}, s;€{0,1} ij=1,....n

M. Knepley (ANL,TTU) Theory Simula’08 153/ 214

FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

Equivalent MILP Model

minimize 2mZy,+22 Z Sjj — Zj) — (37a)
i=1 j=1,j#i
subject to V,':ZOZI'/'V/' i=1,...,n
(37b)
— Usj < aj < Us; ij=1,...,n
(37¢)
—U(1—y,-)§o<,-j§U(1—y,-) ihj=1,....n i#
(37d)
ZijS}’ia legslja ZUZyI+SU_17 i?j:1)"'7n
(37€)

yie{0,1}, ze{0,1}, s;€{0,1} ij=1,....n

M. Knepley (ANL,TTU) Theory Simula’08 153/214

Results

FErari

Mixed Integer Linear Programming

Initial Formulation

@ Initial formulation only had sparsity in the «;;
@ MINTO was not able to produce some optimal solutions
o Report results after 36000 seconds

Default MILP Sparse Coef. MILP
Element | Flops | Flops LPs CPU | Flops LPs CPU
P; 2D 42 42 33 0.10 34 187 0.43
P> 2D 147 147 2577 37.12 67 6030501 36000
P; 3D 170 166 79 049 146 727 3.97
P, 3D 935 | 935 25283 36000 | 829 33200 36000

M. Knepley (ANL,TTU)

Simula '08

154 /214

FErari Mixed Integer Linear Programming

Results

Formulation with Sparse Basis

@ We can also take account of the sparsity in the basis vectors
@ Count only the flops for nonzero entries
e Significantly decreases the flop count

Sparse Coefficient | Sparse Basis
Elements Flops Flops
P; 2D 34 12
Py 3D 146 26

M. Knepley (ANL,TTU) Theory Simula’08 154/214

Scheduling and Asynchronous Computation
Outline

@ Scheduling and Asynchronous Computation

M. Knepley (ANL,TTU) Theory Simula’08 155/214

Part VI

Fast Methods

M. Knepley (ANL,TTU) Theory Simula’08 156/214

The Fast Multipole Method
Outline

@ The Fast Multipole Method
@ Spatial Decomposition
@ Data Decomposition
@ Serial Implementation
@ Parallel Spatial Decomposition
@ Parallel Performance

M. Knepley (ANL,TTU) Simula '08 157 /214

The Fast Multipole Method Spatial Decomposition

Outline

@ The Fast Multipole Method
@ Spatial Decomposition

M. Knepley (ANL,TTU) Theory Simula’08 158/214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations

M. Knepley (ANL,TTU) Theory Simula’08 159/214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

o | o | o | o | | o @ The Quadtree is a Sieve

| o o | e | | -| e with optimized operations

o | | e | o @ Multipoles are stored in sections
| o | | | |

o | | | |

|| e e {

o | | o e | o

o o | o |

M. Knepley (ANL,TTU) Theory Simula’08 159/214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

M. Knepley (ANL,TTU) Theory Simula’08 159/214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined
o

M. Knepley (ANL,TTU) Theory Simula’08 159/214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

M. Knepley (ANL,TTU) Theory Simula’08 159/214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

e o
]
I @ Completion moves data for
I o Neighbors

M. Knepley (ANL,TTU) Theory Simula’08 159/214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List

M. Knepley (ANL,TTU) Theory Simula’08 159/214

The Fast Multipole Method Spatial Decomposition

Quadtree Implementation

@ We use binary scheme to label cells (or vertices)

@ Relevant relations can be determined implicitly

@ cone ()
@ neighbors

e parent

@ interaction list

@ When vertices are not used, we can directly connect cells
@ cone () becomes neighbor method

M. Knepley (ANL,TTU) Simula '08 160/214

The Fast Multipole Method Spatial Decomposition

Tree Interface

@ locateBlob (blob)
o Locate point in the tree
@ fillNeighbors()
o Compute the neighbor section
@ findInteractionList ()
o Compute the interaction list cell section, allocate value section
@ fillInteractionList (level)
o Compute the interaction list value section
@ fill (blobs)
o Compute the blob section
@ dump ()
e Produces a verifiable repesentation of the tree

M. Knepley (ANL,TTU) Theory Simula’08 161/214

The Fast Multipole Method Data Decomposition

Outline

@ The Fast Multipole Method

@ Data Decomposition

M. Knepley (ANL,TTU) Theory Simula’08 162/214

The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:

M. Knepley (ANL,TTU) Theory Simula’08 163/214

The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
o Box centers, Neighbors

M. Knepley (ANL,TTU) Theory Simula’08 163/214

The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
o Box centers, Neighbors

@ box + neighbors
o Blobs

M. Knepley (ANL,TTU) Theory Simula’08 163/214

The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
o Box centers, Neighbors

@ box + neighbors
o Blobs

@ box + interaction list

o Interaction list cells and values
e Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (ANL,TTU) Theory Simula’08 163/214

The Fast Multipole Method Serial Implementation

Outline

@ The Fast Multipole Method

@ Serial Implementation

M. Knepley (ANL,TTU) Theory Simula’08 164/214

The Fast Multipole Method Serial Implementation

Evaluator Interface

@ initializeExpansions (tree, blobInfo)
o Generate multipole expansions on the lowest level
e Requires loop over cells
e O(p)
@ upwardSweep (tree)
e Translate multipole expansions to intermediate levels
e Requires loop over cells and children (support)
° O(p%)
@ downwardSweep (tree)
o Convert multipole to local expansions and translate local
expansions on intermediate levels
@ Requires loop over cells and parent (cone)
o O(p?)

M. Knepley (ANL,TTU) Theory Simula’08 165/214

The Fast Multipole Method Serial Implementation

Evaluator Interface

@ evaluateBlobs (tree, blobInfo)
e Evaluate direct and local field interactions on lowest level
@ Requires loop over cells and neighbors (in section)
o O(p?)
@ evaluate(tree, blobs, blobInfo)
o Calculate the complete interaction (multipole + direct)

M. Knepley (ANL,TTU) Theory Simula’08 166/214

The Fast Multipole Method Serial Implementation

Kernel Interface

Method Description

P2M(t) Multipole expansion coefficients
L2P (t) Local expansion coefficients
M2M (t) Multipole-to-multipole translation
M21T, (t) Multipole-to-local translation
L2L(t) Local-to-local translation
evaluate (blobs) | Direct interaction

@ Evaluator is templated over Kernel
@ There are alternative kernel-independent methods
o kifmm3d

M. Knepley (ANL,TTU) Theory Simula’08 167/214

http://www.mrl.nyu.edu/~harper/kifmm3d

The Fast Multipole Method Parallel Spatial Decomposition

Outline

@ The Fast Multipole Method

@ Parallel Spatial Decomposition

M. Knepley (ANL,TTU) Theory Simula’08 168/214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

@ Divide tree into a root and local trees
@ Distribute local trees among processes

@ Provide communication pattern for local sections (overlap)
e Both neighbor and interaction list overlaps

o Sieve generates MPI from high level description

M. Knepley (ANL,TTU) Theory Simula’08 169/214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

How should we distribute trees?

@ Multiple local trees per process allows good load balance
@ Partition weighted graph

@ Minimize load imbalance and communication

o Computation estimate:

Leaf Nijp (P2M) + np? (M2L) + N;p (L2P) + 39N? (P2P)
Interior ngp? (M2M) + mp? (M2L) + nep? (L2L)

e Communication estimate:
Diagonal nc(L—k—1)

Lateral 2"% for incidence dimesion m
@ Leverage existing work on graph partitioning
e ParMetis

M. Knepley (ANL,TTU) Theory Simula’08 170/214

http://www.cs.umn.edu/parmetis

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

@ Good partitions exist for non-uniform distributions
2D O (v/n(log n)3/2) edgecut
3D O (n?/3(log n)*/) edgecut

@ As scalable as regular grids

@ As efficient as uniform distributions

@ ParMetis will find a nearly optimal partition

M. Knepley (ANL,TTU) Theory Simula’08 171/214

http://portal.acm.org/citation.cfm?id=289842
http://portal.acm.org/citation.cfm?id=289842

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

@ Good partitions exist for non-uniform distributions

2D C; = 1.24’:Co for random matching
3D C; =1.21'Cy?? for random matching

@ 3D proof needs assurance that averge degree does not increase

@ Efficient in practice

M. Knepley (ANL,TTU) Theory Simula’08 172/214

http://glaros.dtc.umn.edu/gkhome/node/79
http://glaros.dtc.umn.edu/gkhome/node/79

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

Advantages

e Simplicity

M. Knepley (ANL,TTU) Theory Simula’08 173/214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

Advantages

e Simplicity

e Complete serial code reuse

M. Knepley (ANL,TTU) Theory Simula’08 173/214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

Advantages

e Simplicity
e Complete serial code reuse

e Provably good performance and scalability

M. Knepley (ANL,TTU) Theory Simula’08 173/214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Interface

@ fillNeighbors()

o Compute neighbor overlap, and send neighbors
@ findInteractionList ()

o Compute the interaction list overlap
@ fillInteractionList (level)

o Complete and copy into local interaction sections
@ £fill (blobs)

o Now must scatter blobs to local trees
@ Uses scatterBlobs () and gatherBlobs ()

M. Knepley (ANL,TTU) Theory Simula’08 174/214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Data Movement

@ Complete neighbor section

© Upward sweep

@ Upward sweep on local trees
@ Gather to root tree
© Upward sweep on root tree

© Complete interaction list section

© Downward sweep

@ Downward sweep on root tree
@ Scatter to local trees
© Downward sweep on local trees

M. Knepley (ANL,TTU) Theory Simula’08 175/214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Evaluator Interface

@ initializeExpansions (local trees, blobInfo)
e Evaluate each local tree

@ upwardSweep (local trees, partition, root tree)
e Evaluate each local tree and then gather to root tree

@ downwardSweep (local trees, partition, root tree)
o Scatter from root tree and then evaluate each local tree

@ evaluateBlobs (local trees, blobInfo)
e Evaluate on all local trees

@ evaluate (tree, blobs, blobInfo)
o I|dentical

M. Knepley (ANL,TTU) Theory Simula’08 176/214

The Fast Multipole Method Parallel Performance

Outline

@ The Fast Multipole Method

@ Parallel Performance

M. Knepley (ANL,TTU) Theory Simula’08 177/214

The Fast Multipole Method Parallel Performance

Recursive Parallel

@ For large problems, a single root can be a bottleneck

@ We can recursively assign roots to subtrees

e Bandwidth to root is controlled
e What about utilization?

@ Root computation is similar to MG coarse solve

M. Knepley (ANL,TTU) Theory Simula’08 178/214

Multigrid
Ouitline

@ Muttigrid
@ Structured
@ Unstructured

M. Knepley (ANL,TTU) Theory Simula’08 179/214

Multigrid Structured

Outline

@ Muttigrid
@ Structured

M. Knepley (ANL,TTU) Simula '08 180/214

Multigrid Structured

A DMDA is more than a Mesh

A DMDA contains topology, geometry, and (sometimes) an implicit Q1
discretization.

It is used as a template to create
@ Vectors (functions)
@ Matrices (linear operators)

M. Knepley (ANL,TTU) Simula '08 181/214

Multigrid Structured

DMDA Gilobal vs. Local Numbering

@ Global: Each vertex has a unique id belongs on a unique process
@ Local: Numbering includes vertices from neighboring processes
e These are called ghost vertices

Proc 2 Proc 3 Proc 2 Proc 3
X X X | X X 21 22 23|28 29
X X X | X X 18 19 20 |26 27
12 13 14|15 X 15 16 17 |24 25
8 9 10|11 X 6 7 8 |13 14
4 5 6|7 X 3 4 5 |11 12
o 1 2|3 X o 1 2|9 10

Proc O Proc 1 Proc O Proc 1

Local numbering Global numbering

M. Knepley (ANL,TTU) Theory Simula’08 182/214

Multigrid Structured

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)
(= If)(DMDALocallnfo =info, PetscScalar=+x, PetscScalarr, void «ctx)
info: All layout and numbering information
x: The current solution (a multidimensional array)

r: The residual
ctx: The user context passed to DMDASNESSetFunctionLocal ()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, Ifunc, &ctx)

M. Knepley (ANL,TTU) Theory Simula’08 183/214

Multigrid Structured

Bratu Residual Evaluation

Au+2Xe'!=0
ResLocal (DMDALocallnfo =info, PetscScalar s+«x, PetscScalar «=f, void =ctx)
for(j = info—>ys; j < info—ys+info—ym; ++j) {
for(| = info—>xs; i < info—>xs+info—>xm; ++i) {
= x[j][1];
if (i==0 || j==0 || i ==M[] j ==N) {
fl[jl[i] = 2.0«(hydhx+hxdhy)~u; continue;
}
u_XX = (2.0«u — x[j1[i—=1]1 — x[j1[i+1])*hydhx;
u_yy = (2.0xu — x[j=1][1] = x[j+1][i])=hxdhy;
fljl[i] = u_xx + u_yy — hx+hy«lambda«exp(u);

$PETSC_DIR/src/snes/examples/tutorials/ex5.c

M. Knepley (ANL,TTU) Theory Simula’08 184/214

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html

Multigrid Structured

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(= liac)(DMDALocallnfo =info, PetscScalar++x, MatJ, void «ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian
ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)

M. Knepley (ANL,TTU) Theory Simula’08 185/214

Multigrid Structured

Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil (Mat A, m, MatStencil idxm[], n, MatStencil idxn][],
PetscScalar values[], InsertMode mode)

@ Each row or column is actually a MatStencil

e This specifies grid coordinates and a component if necessary
e Can imagine for unstructured grids, they are vertices

@ The values are the same logically dense block in row/col

M. Knepley (ANL,TTU) Theory Simula’08 186/214

Multigrid Structured

Updating Ghosts

Two-step process enables overlapping
computation and communication

@ DMGiobalToLocalBegin(da, gvec, mode, lvec)

e gvec provides the data
@ mode is either INSERT_VALUES or ADD_VALUES
@ lvec holds the local and ghost values

@ DMGiobalToLocalEnd(da, gvec, mode, Ivec)
o Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().

M. Knepley (ANL,TTU) Theory Simula’08 187/214

Multigrid Structured

DM Integration with SNES

@ DM supplies global residual and Jacobian to SNES

o User supplies local version to DM
@ The Rhs_x* () and Jac_~ () functions in the example

@ Allows automatic parallelism
@ Allows grid hierarchy
e Enables multigrid once interpolation/restriction is defined
@ Paradigm is developed in unstructured work
@ Solve needs scatter into contiguous global vectors (initial guess)

@ Handle Neumann BC using KSPSetNullSpace ()

M. Knepley (ANL,TTU) Theory Simula’08 188/214

Multigrid Structured

Multigrid with DM

Allows multigrid with some simple command line options

-pc_type mg, —-pc_mg_levels
-pc_mg_type, —pc_mg_cycle_type, -pc_mg_galerkin

o
o
@ —mg_levels_1_ksp_type, -mg_levels_1_pc_type
@ -mg_coarse_ksp_type, -mg_coarse_pc_type

o

—da_refine, ~ksp_view

Interface also works with GAMG and 3rd party packages like ML

M. Knepley (ANL,TTU) Theory Simula’08 189/214

Multigrid Unstructured

Outline

@ Muttigrid

@ Unstructured

M. Knepley (ANL,TTU) Theory Simula’08 190/214

Multigrid Unstructured

Unstructured Meshes

Same DMMG options as the structured case
Mesh refinement

@ Ruppert algorithm in Triangle and TetGen
Mesh coarsening

o Talmor-Miller algorithm in PETSc
@ More advanced options
@ —dmmg_refine

@ -dmmg_hierarchy

@ Current version only works for linear elements

M. Knepley (ANL,TTU) Theory Simula’08 191/214

Unstructured

Multigrid

A Priori refinement

For the Poisson problem, meshes with reentrant corners have a
length-scale requirement in order to maintain accuracy:

C/OWI'1_M <h< Ch,'ghlj_u

VAU
STERK
SRR
o avany A%
SRR
SSERDER
I s
SRR
SERERRERRM
SRR
RESCONNS vavi
LR D
SEAOERSAH IANRAEH
Qa0 KNP
g RO
KRR RS AR
KA S S
R R
SRRSO PRAD
RO
R
LR RS

Simula '08 192/214

Theory

Knepley (Al

Multigrid Unstructured

The Folly of Uniform Refinement

uniform refinement may fail to eliminate error

Reentrant Cormner Error

L2 Error

T
Uniform Pacman s

Graded Pacman s

M. Knepley (ANL,TTU)

1000

10000 100000

Mesh Size (Vertices)

Theory

Simula '08

193/214

Multigrid

Geometric Multigrid

@ We allow the user to
refine for fidelity

@ Coarse grids are created
automatically

@ Could make use of AMG
interpolation schemes

M. Knepley (ANL,TTU)

Theory

Unstructured

X

Simula '08

194 /214

Multigrid Unstructured

Requirements of Geometric Multigrid

@ Sufficient conditions for optimal-order convergence:

o |M;| < 2|M| in terms of cells
e any cell in M, overlaps a bounded # of cells in M;
@ monotonic increase in cell length-scale

M. Knepley (ANL,TTU) Theory Simula’08 195/214

Multigrid Unstructured

Requirements of Geometric Multigrid

@ Sufficient conditions for optimal-order convergence:

o |[M.| < 2|Mg| in terms of cells
e any cell in M, overlaps a bounded # of cells in M;
@ monotonic increase in cell length-scale

@ Each M satisfies the quasi-uniformity condition:

Cihg < hg < Copi

@ hy is the length-scale (longest edge) of any cell K
@ hy is the maximum length-scale in the mesh M
@ pk is the diameter of the inscribed ball in K

M. Knepley (ANL,TTU) Theory Simula’08 195/214

Multigrid Unstructured

Function Based Coarsening

@ (Miller, Talmor, Teng; 1997)
@ triangulated planar graphs = disk-packings (Koebe; 1934)
@ define a spacing function S() over the vertices

@ obvious one: S(v) = w

M. Knepley (ANL,TTU) Theory Simula’08 196/214

Multigrid Unstructured

Function Based Coarsening

@ pick a subset of the vertices such that 5(S(v) + S(w)) > dist(v, w)
o forallv,w e M, with 8 > 1

@ dimension independent

@ provides guarantees on the size/quality of the resulting meshes

M. Knepley (ANL,TTU) Theory Simula’08 197/214

Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh

M. Knepley (ANL,TTU) Theory Simula’08 198/214

Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices

@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh

M. Knepley (ANL,TTU) Theory Simula’08 198/214

Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices

@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices

M. Knepley (ANL,TTU) Theory Simula’08 198/214

Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh
remove colliding adjacent vertices from the mesh
remesh links of removed vertices
repeat until no vertices are removed.

M. Knepley (ANL,TTU) Theory Simula’08 198/214

Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices

repeat until no vertices are removed.

@ Eventually we have that

e every vertex is either included or removed
e bounded degree mesh = O(n) time

M. Knepley (ANL,TTU) Theory Simula’08 198/214

Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices
repeat until no vertices are removed.
@ Eventually we have that
e every vertex is either included or removed
e bounded degree mesh = O(n) time
@ Remeshing may be performed either during or after coarsening

o local Delaunay remeshing can be done in 2D and 3D
o faster to connect edges and remesh later

M. Knepley (ANL,TTU) Theory Simula’08 198/214

Multigrid Unstructured

Implementation in Sieve
Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v
@ vertex link: closure(star(v)) \ star(closure(v))

M. Knepley (ANL,TTU) Theory Simula’08 199/214

Multigrid Unstructured

Implementation in Sieve
Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v
@ vertex link: closure(star(v)) \ star(closure(v))
@ connectivity graph induced by limiting sieve depth

M. Knepley (ANL,TTU) Theory Simula’08 199/214

Multigrid Unstructured

Implementation in Sieve
Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v

@ vertex link: closure(star(v)) \ star(closure(v))

@ connectivity graph induced by limiting sieve depth

@ remeshing can be handled as local modifications on the sieve
@ meshing operations, such as cone construction easy

M. Knepley (ANL,TTU) Theory Simula’08 199/214

Multigrid Unstructured

3D Test Problem

@ Reentrant corner

e —Au=f

@ f(x,y,z)=3sin(x+y+2)

@ Exact Solution: u(x,y,z) =sin(x +y + z)

M. Knepley (ANL,TTU) Theory Simula '08 200/214

Multigrid Unstructured

GMG Performance

Linear solver iterates are nearly as system size increases:

KSP Iterates on Reentrant Domains
10 —— S S

Pacman s
Fichera e

KSP Iterates
1

0 L i il — | L — i
1000 10000 100000 le+06

Mesh Size (Vertices)

Simula '08 201/214

M. Knepley (ANL,TTU)

Multigrid Unstructured

GMG Performance

Coarsening work is nearly constant as system size increases:

Vertex Comparisons on Reentrant Domains

20 T —TT ———T
Pacman s
Fichera e
><
3] 5 .
& 15
3]
=
3
8 K‘/K
g 10- -
=]
1221
‘g
]
=9
E
5 -
Q
0 L M | " M| L MR A
1000 10000 100000 le+b

Mesh Size (Vertices)

M. Knepley (ANL,TTU) Simula '08 201/214

Multigrid Unstructured

Quality Experiments

Table: Hierarchy quality metrics - 2D

Pacman Mesh, 5 = 1.45

level | cells | vertices) max % | min(h) | max. overlap
0 || 19927 10149 | 0.020451 | 4.134135 | 0.001305 -
1 5297 2731 | 0.016971 | 4.435928 | 0.002094 23
2 3028 1572 | 0.014506 | 4.295703 | 0.002603 14
3 1628 856 | 0.014797 | 5.295322 | 0.003339 14
4 863 464 | 0.011375 | 6.403574 | 0.003339 14
5 449 250 | 0.022317 | 6.330512 | 0.007979 13

M. Knepley (ANL,TTU) Simula’08 202/214

Part VII

Sample Application: Fault Mechanics

M. Knepley (ANL,TTU) Theory Simula’08 203/214

Formulation

Outline

@ Formulation

M. Knepley (ANL,TTU) Simula '08 204 /214

Formulation

Reverse-slip Benchmark

M. Knepley (ANL,TTU) Theory Simula '08 205/214

Mesh Handling

Outline

@ Mesh Handling

M. Knepley (ANL,TTU) Simula '08 206 /214

Mesh Handling

Multiple Mesh Types

-
Triangular ‘ Tetrahedral

Dhplacement m) Oaplacement (m)
08 .0

Rectangular E P ‘ Hexahedral
'’

AN

owplacement m) Daplacement am)
04 08

M. Knepley (ANL,TTU) Theory Simula’08 207/214

Parallelism

Outline

@ Parallelism

M. Knepley (ANL,TTU) Simula '08 208 /214

Parallelism
Parallelism

@ Function and Operator Assembly
o Parallel element integration over multiple materials/models
@ Assembly uses completion for functions and PETSc Mat for
operators
@ Algebraic sovlers
o Use MUMPS for small problems
e PETSc ASM/ILU for large problems
@ Hope to use unstructured MG when fault support is implemented
@ Parallel data movement routines do not change for
Different dimension
Different element shapes
Different discretization
Fault inclusion

M. Knepley (ANL,TTU) Theory Simula’08 209/214

Fault Handling

Outline

@ Fault Handling

M. Knepley (ANL,TTU) Theory Simula’08 210/214

Fault Handling
Cohesive Cells

Originaél Mesh5 Mesh with Coheswe Cell
1

3 7

0 2 4 0 2 6 4
1 33 5 1 3377 5
0 22 4 0 2266 4

Exploded view of meshes

M. Knepley (ANL,TTU) Theory Simula’08 211/214

Fault Handling
Cohesive Cells

Cohesive cells are used to enforce slip conditions on a fault
@ Demand complex mesh manipulation

o We allow specification of only fault vertices
o Must “sew” together on output

@ Use Lagrange multipliers to enforce constraints
e Forces illuminate physics
@ Allow different fault constitutive models

e Simplest is enforced slip
@ Now have fault constitutive models

M. Knepley (ANL,TTU) Theory Simula’08 212/214

Splitting the Mesh

@ In order to create a fault, the generator provides
e a set of fault vertices, or

M. Knepley (ANL,TTU) Theory Simula’08 213/214

Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

M. Knepley (ANL,TTU) Theory Simula’08 213/214

Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be
e combined into faces on a fault mesh, and

M. Knepley (ANL,TTU) Theory Simula’08 213/214

Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be

e combined into faces on a fault mesh, and
@ oriented

M. Knepley (ANL,TTU) Theory Simula’08 213/214

Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be

e combined into faces on a fault mesh, and
@ oriented

@ The fault mesh is used to
@ split vertices along the fault

M. Knepley (ANL,TTU) Theory Simula’08 213/214

Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be

e combined into faces on a fault mesh, and
@ oriented

@ The fault mesh is used to

@ split vertices along the fault
e introduce prism elements between adjacent fault faces

M. Knepley (ANL,TTU) Theory Simula’08 213/214

Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be

e combined into faces on a fault mesh, and
@ oriented

@ The fault mesh is used to

@ split vertices along the fault
e introduce prism elements between adjacent fault faces

@ Sieve code works for
e any dimension

M. Knepley (ANL,TTU) Theory Simula’08 213/214

Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be

e combined into faces on a fault mesh, and
@ oriented

@ The fault mesh is used to

@ split vertices along the fault
e introduce prism elements between adjacent fault faces

@ Sieve code works for

e any dimension
e any element shape

M. Knepley (ANL,TTU) Theory Simula’08 213/214

Coupling

Outline

@ Coupling

M. Knepley (ANL,TTU) Theory Simula’08 214/214

	Introduction
	Scientific Computing
	Hierarchy
	Hierarchy
	Representing Topology
	Mesh Distribution

	Representing Functions
	Mapping Interpretation
	Connecting Sieves

	Global Computation: Implementation
	Interfaces
	Mapping
	Completion
	Optimization and the Sieve Programming Model
	Automation
	Parallelism
	Completion
	Interval Sieves

	Finite Elements
	Boundary Conditions

	Local Computation: Theory
	FIAT
	Models of Local Computation
	Dof Kinds
	Boundary Conditions
	Weak Form Languages

	Local Computation: Implementation
	Serial Performance
	FIAT
	Implementation
	Optimization

	FErari
	Problem Statement
	Plan of Attack
	Results
	Mixed Integer Linear Programming

	Scheduling and Asynchronous Computation

	Fast Methods
	The Fast Multipole Method
	Spatial Decomposition
	Data Decomposition
	Serial Implementation
	Parallel Spatial Decomposition
	Parallel Performance

	Multigrid
	Structured
	Unstructured

	Sample Application: Fault Mechanics
	Formulation
	Mesh Handling
	Parallelism
	Fault Handling
	Coupling

