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Scientific Computing
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Scientific Computing
Problems

The biggest problem in scientific computing is programmability:
@ Lack of usable implementations of modern algorithms

e Unstructured Multigrid
o Fast Multipole Method

@ Lack of comparison among classes of algorithms

e Meshes
@ Discretizations
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Scientific Computing
Problems

The biggest problem in scientific computing is programmability:
@ Lack of widespread implementations of modern algorithms

e Unstructured Multigrid
o Fast Multipole Method

@ Lack of comparison among classes of algorithms

e Meshes
@ Discretizations

We should reorient thinking from
@ characterizing the solution (FEM)
e “what is the convergence rate (in h) of this finite element?”
to
@ characterizing the computation (FErari)
e “how many digits of accuracy per flop for this finite element?”
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Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems

Programming Languages
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Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems
Distributed Computing

Database Systems

Datamining

Programming Languages
Code Generation
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Scientific Computing
Future Compilers

| think compilers are victims of their own success (ala Rob Pike)

@ Efforts to modularize compilers retain the same primtives

e compiling on the fly (JIT)
o Low Level Virtual Machine

@ Raise the level of abstraction

e Fenics Form Compiler (variational form compiler)
e Mython (Domain Specific Language generator)
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Scientific Computing

DFT (single precision): on 3 GHz 2 x Core 2 Extreme
performance [Gflop/s]
30

=+=Spiral 5.0 SPMD
Spiral 5.0 sequential
35 ==Intel IPP 5.0
=4=FFTW 3.2 alpha SMP
=w=FFTW 2.2 alpha sequential

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144
input size

@ Spiral Team, http://www.spiral.net
@ Uses an intermediate language, SPL, and then generates C
@ Works by circumscribing the algorithmic domain
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Scientific Computing

FLAME & FLASH

Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070

T T T T
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@ Robert van de Geijn, http://www.cs.utexas.edu/users/flame
@ FLAME is an Algorithm-By-Blocks interface
@ FLASH/SuperMatrix is a runtime system
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Scientific Computing
Representation Hierarchy

Divide the work into levels:
@ Model

@ Algorithm

@ Implementation
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Scientific Computing
Representation Hierarchy

Divide the work into levels:  Spiral Project:

@ Model @ Discrete Fourier Transform (DSP)
@ Algorithm @ Fast Fourier Transform (SPL)
@ Implementation @ C Implementation (SPL Compiler)
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Scientific Computing
Representation Hierarchy

Divide the work into levels: FLAME Project:

@ Model @ Abstract LA (PME/Invariants)
@ Algorithm @ Basic LA (FLAME/FLASH)
@ Implementation @ Scheduling (SuperMatrix)
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Scientific Computing
Representation Hierarchy

Divide the work into levels: FEnICS Project:
@ Model @ Navier-Stokes (FFC)
@ Algorithm @ Finite Element (FIAT)
@ Implementation @ Integration/Assembly (FErari)
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http://www.fenics.org

Scientific Computing
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)
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Scientific Computing
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer
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Hierarchy

Outline

9 Hierarchy
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Hierarchy
Hierarchical Design

Big ldea: Hierarchy
Multilevel Method

@ Solve local problems

@ Stitch together to form a global solution
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Big ldea: Hierarchy
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Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
@ Should enable reuse of serial implementation
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Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
@ Should enable reuse of serial implementation
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Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
@ Should enable reuse of serial implementation

@ Stitch together to form a global solution

e Manifold or Domain Decomposition idea: local pieces w/ overlap
o Global complexity is encoded in the (small) Overlap
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Hierarchy

Example: Manifold

Manifolds are locally homeomorphic to R":

Transition maps provide a mechanism to connect the pieces.
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Example: FEM

The Finite Element Method does computation in a local basis:

An un=fu

The operator 7 maps between the local and global bases.
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Hierarchy
Global and Local

Local (analytical) Global (topological)
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Hierarchy
Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions
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Hierarchy
Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions

@ Largely dim dependent
(e.g. quadrature)
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Hierarchy
Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals e Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) @ Mesh hierarchies
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Hierarchy
Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals e Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) @ Mesh hierarchies

@ Largely dim independent
(e.g. mesh traversal)
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Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
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Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
© Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary
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Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface
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Hierarchy

Why Optimal Algorithms?

@ The more powerful the computer,
the greater the importance of optimality
@ Example:

e Suppose Alg; solves a problem in time CN?, N is the input size
@ Suppose Alg: solves the same problem in time CN
e Suppose Alg; and Alg, are able to use 10,000 processors

@ In constant time compared to serial,

e Alg1 can run a problem 100X larger
@ Alg2 can run a problem 10,000X larger

@ Alternatively, filling the machine’s memory,

o Alg1 requires 100X time
e Alg2 runs in constant time
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Hierarchy
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)
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Hierarchy
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)

@ Single relation, covering, handles all hierarchy
e Rich enough for FEM

@ Single operation, completion, for parallelism
e Enforces consistency of the relation
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Doublet Mesh

@ Incidence/covering arrows
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Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,3,4}
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Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,3,4}
@ support(7) = {2,3}
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Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,3,4,7,8,9}
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Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,3,4,7,8,9}
@ star(7) ={7,2,3,0}
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Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}
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Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}
@ join(8,9) = {4}
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Hierarchy
Doublet Section
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@ Section interface
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Hierarchy
Doublet Section
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@ Section interface
e restrict(0) = {fv}
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Hierarchy
Doublet Section
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@ Section interface

e restrict(0) = {fv}
e restrict(2) = {w}
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Hierarchy
Doublet Section
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@ Section interface

e restrict(0) = {fv}
o restrict(2) = {w}
e restrict(6) = {ep, €1}
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@ Topological traversals: follow connectivity
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CDoubletSecton
TYY
vl
799911

4 5 0

@ Topological traversals: follow connectivity
o restrictClosure(0) = {fyepeie2e3e465Vp Vi Va}
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CDoubletSecton
TYY
vl
799911

4 5 0

@ Topological traversals: follow connectivity
o restrictClosure(0) = {fyepeie2e3e465Vp Vi Va}
o restrictStar(7) = {vpepeies6s5y }
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Doublet Mesh Distribution

———————————————————————————————————————————————
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Doublet Mesh Distribution
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Doublet Mesh Distribution
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Hierarchy
Restriction

(12.9) @

(411} .. e “e :

90 9.9

@ Localization

o Restrict to patches (here an edge closure)
o Compute locally
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Hierarchy
Delta

e o
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@ Delta

o Restrict further to the overlap
@ Overlap now carries twice the data
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Hierarchy
Fusion

X3

'Y o
o %0 ‘00 0%,
- @" @ 4@ élé _ - é@ I@g. (v
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@ Merge/reconcile data on the overlap
o Addition (FEM)
@ Replacement (FD)
e Coordinate transform (Sphere)
e Linear transform (MG)
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Update

'Y *? @
. @ N e
0 ° @9 _ee @:@
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@ Update
e Update local patch data
@ Completion = restrict — fuse — update, in parallel
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Hierarchy
Uses

Completion has many uses:
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Hierarchy
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices
@ distributing mesh entities after partition
@ redistributing mesh entities and data for load balance
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Hierarchy
Uses

Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
@ distributing mesh entities after partition
@ redistributing mesh entities and data for load balance
@ accumlating matvec for a partially assembled matrix
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Conclusions
Benefits

Better mathematical abstractions
bring concrete benefits

@ Vast reduction in complexity

o Declarative, rather than imperative, specification
e Dimension independent code

@ Opportunites for optimization

e Higher level operations missed by traditional compilers
@ Single communication routine to optimize

@ Expansion of capabilities

e Easy model definition
o Arbitrary elements
o Complex geometries and embedded boundaries
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Part Il

Global Computation: Theory
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Hierarchy

Outline

e Hierarchy
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Hierarchy
Hierarchical Design

Big ldea: Hierarchy
Multilevel Method

@ Solve local problems

@ Stitch together to form a global solution
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Hierarchy
Hierarchical Design
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Multilevel Method
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Hierarchy
Hierarchical Design

Big ldea: Hierarchy

Multilevel Method
@ Solve local problems

o Locality of operations is key for efficient implementation
@ Should enable reuse of serial implementation

@ Stitch together to form a global solution

e Manifold or Domain Decomposition idea: local pieces w/ overlap
o Global complexity is encoded in the (small) Overlap
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Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
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Payoff

Why should | care?

@ Current algorithms do not efficiently utilize modern machines
@ Processor flops are increasing much faster than bandwidth
© Multicore processors are the future

© Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface
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What Is Optimal?

| will define optimal as an O(N) solution algorithm

These are generally hierarchical, so we need
@ hierarchy generation
@ assembly on subdomains
@ restriction and prolongation
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Hierarchy

Why Optimal Algorithms?

@ The more powerful the computer,
the greater the importance of optimality
@ Example:

e Suppose Alg; solves a problem in time CN?, N is the input size
@ Suppose Alg: solves the same problem in time CN
e Suppose Alg; and Alg, are able to use 10,000 processors

@ In constant time compared to serial,

e Alg1 can run a problem 100X larger
@ Alg2 can run a problem 10,000X larger

@ Alternatively, filling the machine’s memory,

o Alg1 requires 100X time
e Alg2 runs in constant time
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Hierarchy

Example: Manifold

Manifolds are locally homeomorphic to R":

Transition maps provide a mechanism to connect the pieces.
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Example: FEM

The Finite Element Method does computation in a local basis:

An un=fu

The operator 7 maps between the local and global bases.
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Representing Topology
Outline

6 Representing Topology
@ Mesh Distribution
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Representing Topology
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)

M. Knepley (ANL,TTU) Theory Simula’08  34/214



Representing Topology
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)

@ Single relation, covering, handles all hierarchy
e Rich enough for FEM
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Representing Topology
Sieve Overview

@ Hierarchy is the centerpiece
@ Strip out unneeded complexity (dimension, shape, ...)

@ Single relation, covering, handles all hierarchy
e Rich enough for FEM

@ Single operation, completion, for parallelism
e Enforces consistency of the relation
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Representing Topology
Basic Operations

We begin with a basic covering operation:
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Representing Topology
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Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual: support ()
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Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual: support ()

followed by the transitive closures:
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Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual: support ()

followed by the transitive closures: closure (), star ()
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Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual: support ()

followed by the transitive closures: closure (), star ()
and finally lattice operations:
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Representing Topology
Basic Operations

We begin with a basic covering operation: cone ()
and then add its dual: support ()

followed by the transitive closures: closure (), star ()
and finally lattice operations: meet (), join ()
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Representing Topology
Sieve Definition

Definition

A Sieve consists of points, and arrows.
Each arrow connects a point to another which it covers.

cone(p) sequence of points which cover a given point p
closure(p) | transitive closure of cone

support(p) | sequence of points which are covered by a given point p

star(p) transitive closure of support
meet(p,q) | minimal separator of closure(p) and closure(q)
join(p,q) minimal separator of star(p) and star(q)
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Representing Topology
Doublet Mesh

@ Incidence/covering arrows
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Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,3,4}
@ support(7) = {2,3}
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Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,3,4,7,8,9}

M. Knepley (ANL,TTU) Theory Simula’08  37/214



Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,3,4,7,8,9}
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Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}
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Representing Topology
Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}
@ join(8,9) = {4}
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Representing Topology

The Mesh Dual
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Representing Topology Mesh Distribution

Outline

e Representing Topology
@ Mesh Distribution
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Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
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Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
@ distributing the topology (Sieve)
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Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
@ distributing the topology (Sieve)

@ distributing data (Section)
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Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
@ distributing the topology (Sieve)

@ distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!
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Representing Topology Mesh Distribution

Mesh Partition

@ 3rd party packages construct a vertex partition
@ For FEM, partition dual graph vertices
@ For FVM, construct hyperpgraph dual with faces as vertices

@ Assign closure (v) and star (v) to same partition
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Representing Topology Mesh Distribution

Doublet Mesh Distribution

———————————————————————————————————————————————

I
process 1 !
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Representing Topology Mesh Distribution

Doublet Mesh Distribution
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Representing Topology Mesh Distribution

Doublet Mesh Distribution
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Representing Topology Mesh Distribution

Section Distribution

Section distribution consists of

@ Creation of the local Section
@ Distribution of the Atlas (layout Section)

@ Completion of the Section
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Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition
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Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition
@ Construct partition overlap
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Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition

@ Construct partition overlap
© complete () the partition section
e This distributes the cells
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Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition

@ Construct partition overlap
© complete () the partition section
e This distributes the cells

© Update Overlap with new points
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Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition

@ Construct partition overlap
© complete () the partition section
o This distributes the cells
© Update Overlap with new points
@ complete () the cone section
o This distributes the remaining sieve points
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Representing Topology Mesh Distribution

Sieve Distribution

@ Construct local mesh from partition

@ Construct partition overlap
© complete () the partition section
o This distributes the cells
© Update Overlap with new points
@ complete () the cone section
o This distributes the remaining sieve points

Q Update local Sieves
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Representing Topology Mesh Distribution

2D Example

A simple triangular mesh

14 15 16
6 7
4 5
9 11 13
1 3
0 2
10 8 12
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Representing Topology Mesh Distribution

2D Example

Sieve for the mesh

000000090
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Representing Topology Mesh Distribution

2D Example

Local sieve on process 0

000 000 000 009
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Mesh Distribution
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2D Example

Partition Overlap
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Representing Topology Mesh Distribution

2D Example

Partition Section
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Representing Topology Mesh Distribution

2D Example

Updated Sieve Overlap
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Representing Topology Mesh Distribution

2D Example

Cone Section
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Representing Topology Mesh Distribution

2D Example

Distributed Sieve

oty W i 1 i i 1

Process (0
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Process 1
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Representing Topology Mesh Distribution

2D Example

Coordinate Section

o 00 00 o5 I oo oo o5 o5 I 1o oo B 1o o5 Moo o o5 1o [0 o]

000000O0OO0O

M. Knepley (ANL,TTU)

Simula '08

45/214



Representing Topology Mesh Distribution

2D Example

Distributed Coordinate Section

05 00
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Process 0
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006030
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Representing Topology Mesh Distribution

2D Example

Distributed Mesh
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Representing Topology Mesh Distribution

3D Example

A simple hexahedral mesh

2 Bl B0
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m T s . 12
3
3 m o
4 25 2o
15 16 5 1
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0 1
26 27 28
17 18 19
3 9 10

M. Knepley (ANL,TTU) Theory Simula’08  46/214



Representing Topology Mesh Distribution

3D Example

Sieve for the mesh

gl s
100000

W ————
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00000000

Its complicated!
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Representing Topology Mesh Distribution

3D Example

Sieve for the mesh

gl s
100000

W ————

==

00000000

Its complicated!
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Mesh Distribution
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3D Example

Partition Overlap
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Representing Topology Mesh Distribution

3D Example

Partition Section
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Representing Topology Mesh Distribution

3D Example

Distributed Mesh

Notice cells are ghosted
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Representing Functions

Outline

@ Representing Functions
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Representing Functions
Sections

Sections associate data to submeshes

@ Name comes from section of a fiber bundle
o Generalizes linear algebra paradigm

@ Define restrict (),update ()

@ Define complete ()
@ Assembly routines take a Sieve and several Sections
o Thisis called a Bundle
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Representing Functions
Basic Operations

We begin with a simple mapping operation:
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Representing Functions
Basic Operations

We begin with a simple mapping operation:  restrictPoint ()
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Representing Functions
Basic Operations

We begin with a simple mapping operation:  restrictPoint ()
and then add its converse:
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Representing Functions
Basic Operations

We begin with a simple mapping operation:  restrictPoint ()
and then add its converse: updatePoint ()
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Representing Functions
Basic Operations

We begin with a simple mapping operation:  restrictPoint ()
and then add its converse: updatePoint ()
followed by topological versions:
which appear as dual to covering,
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Representing Functions
Basic Operations

We begin with a simple mapping operation:  restrictPoint ()
and then add its converse: updatePoint ()
followed by topological versions: restrictClosure ()
which appear as dual to covering, = updateClosure ()
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Representing Functions
Basic Operations

We begin with a simple mapping operation:  restrictPoint ()
and then add its converse: updatePoint ()
followed by topological versions: restrictClosure ()
which appear as dual to covering, = updateClosure ()
and finally a consistency operation:
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Representing Functions
Basic Operations

We begin with a simple mapping operation:
and then add its converse:
followed by topological versions:
which appear as dual to covering,
and finally a consistency operation:

M. Knepley (ANL,TTU)

Theory

restrictPoint ()
updatePoint ()
restrictClosure ()
updateClosure ()
complete ()

Simula '08 49/214



Representing Functions
Duality

@ Need picture of sieve (graph) <—> mesh (picture) maybe doublet

@ Show both traversals (closure and restriction), perhaps an
animated FEM integral
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Representing Functions
Doublet Section
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@ Section interface
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Representing Functions
Doublet Section
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@ Section interface
e restrict(0) = {fv}
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Representing Functions
Doublet Section

° o9 o
hdid
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@ Section interface

e restrict(0) = {fv}
e restrict(2) = {w}
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Representing Functions
Doublet Section

° o9 o
hdid
*¥00%¢

4 5 0 1

@ Section interface

e restrict(0) = {fv}
o restrict(2) = {w}
e restrict(6) = {ep, €1}
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@ Topological traversals: follow connectivity
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@ Topological traversals: follow connectivity
o restrictClosure(0) = {fyepeie2e3e465Vp Vi Va}
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@ Topological traversals: follow connectivity
o restrictClosure(0) = {fyepeie2e3e465Vp Vi Va}
o restrictStar(7) = {vpepeies6s5y }
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Mapping Interpretation

Outline

e Mapping Interpretation
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Mapping Interpretation
Mapping

Since we have a single relation,

we can see all our objects merely as mappings:
@ Section
@ point — real

@ Sieve
@ point of S — {points of S}

@ Overlap
e point of S — {points of S’}
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Mapping Interpretation
Composition

We may compose mappings to generate
@ restrictClosure ()
@ closure () orestrictPoint ()

@ updateMeet ()
@ meet () oupdatePoint ()

and can even compose across an Overlap
@ complete () looks like a

restriction to the overlap

copy between adjacent sieves

fusion of values in the overlap sections
update to original section
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Connecting Sieves

Outline

0 Connecting Sieves

M. Knepley (ANL,TTU) Theory Simula’08  55/214



Connecting Sieves
Sieves of Sieves

@ We can connect two sieves by identifying points
e This can be seen as nonlocal covering

@ This relation is then encapsulated in an overlap,
e which is just another sieve.

@ Sections may be defined over the Overlap
e Data movement follows the arrows

@ Enforcing consistency across an Overlap gives completion ()
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Connecting Sieves
Restriction

(12,9) @

(411} .. e “e :

90 9.9

@ Localization

o Restrict to patches (here an edge closure)
o Compute locally
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Connecting Sieves
Delta

°e o
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[ | =S '“@ : !
e® ~ o 0O

(%-T) | @
Xy

90 9.9

@ Delta

o Restrict further to the overlap
@ Overlap now carries twice the data
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Connecting Sieves
Fusion

X3

'Y o
o %0 ‘00 0%,
- @" @ 4@ élé _ - é@ I@g. (v
° o0 °

@ Merge/reconcile data on the overlap
o Addition (FEM)
@ Replacement (FD)
e Coordinate transform (Sphere)
e Linear transform (MG)
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Connecting Sieves
Update

° bt °
. ® py-Y
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@ Update
e Update local patch data
@ Completion = restrict — fuse — update, in parallel
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Connecting Sieves
Completion

X3

o @.- :4@ | ?o; S @:@ o
%0 e ~ o 0

@ A ubiquitous parallel form of restrict — fuse — update
@ Operates on Sections

o Sieves can be "downcast" to Sections
@ Based on two operations

e Data exchange through overlap

o Fusion of shared data
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Connecting Sieves
Uses

Completion has many uses:
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Connecting Sieves
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
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Connecting Sieves
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
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Connecting Sieves
Uses

Completion has many uses:
FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices
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Connecting Sieves
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

@ distributing mesh entities after partition
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Connecting Sieves
Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices
@ distributing mesh entities after partition
@ redistributing mesh entities and data for load balance
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Connecting Sieves
Uses

Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
@ distributing mesh entities after partition
@ redistributing mesh entities and data for load balance
@ accumlating matvec for a partially assembled matrix
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Part

Global Computation: Implementation
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Interfaces

Outline

e Interfaces

M. Knepley (ANL,TTU) Theory Simula’08  61/214



Interfaces
Hierarchical Interfaces

Global/Local Dichotomy is the Heart of DD

Software interfaces do not adequately reflect this

@ PETSc DA is too specialized

o Basically 1D methods applied to Cartesian products
@ PETSc Index Sets and VecScatters are too fine

o User “does everything”, no abstraction
@ PETSc Linear Algebra (Vec & Mat) is too coarse

@ No access to the underlying connectivity structure
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Interfaces

Unstructured Interface (before)

@ Explicit references to element type

e getVertices(edgelD), getVertices(facelD)
e getAdjacency(edgelD, VERTEX)
o getAdjacency(edgelD, dim = 0)
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Interfaces

Unstructured Interface (before)

@ Explicit references to element type
e getVertices(edgelD), getVertices(facelD)
e getAdjacency(edgelD, VERTEX)
o getAdjacency(edgelD, dim = 0)
@ No interface for transitive closure
o Awkward nested loops to handle different dimensions
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Interfaces

Unstructured Interface (before)

@ Explicit references to element type

e getVertices(edgelD), getVertices(facelD)

e getAdjacency(edgelD, VERTEX)

o getAdjacency(edgelD, dim = 0)
@ No interface for transitive closure

o Awkward nested loops to handle different dimensions
@ Have to recode for meshes with different

@ dimension
e shapes
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Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.
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Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

@ Abstract to a relation, covering, on sieve points

e Points can represent any mesh element
e Covering can be thought of as adjacency
o Relation can be expressed in a DAG (Hasse Diagram)
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Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

@ Abstract to a relation, covering, on sieve points

e Points can represent any mesh element

e Covering can be thought of as adjacency

o Relation can be expressed in a DAG (Hasse Diagram)
@ Simple query set:

e provides a general API for geometric algorithms

o leads to simpler implementations

@ can be more easily optimized
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Interfaces

Unstructured Interface (after)

@ NO explicit references to element type

e A point may be any mesh element
e getCone(point): adjacent (d-1)-elements
@ getSupport(point): adjacent (d+1)-elements
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Interfaces

Unstructured Interface (after)

@ NO explicit references to element type

e A point may be any mesh element
e getCone(point): adjacent (d-1)-elements
@ getSupport(point): adjacent (d+1)-elements

@ Transitive closure
o closure(cell): The computational unit for FEM
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Interfaces

Unstructured Interface (after)

@ NO explicit references to element type

e A point may be any mesh element

o getCone(point): adjacent (d-1)-elements

o getSupport(point): adjacent (d+1)-elements
@ Transitive closure

o closure(cell): The computational unit for FEM
@ Algorithms independent of mesh

e dimension
shape (even hybrid)
global topology
data layout
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Interfaces
Hierarchy Abstractions

@ Generalize to a set of linear spaces

@ Sieve provides topology, can also model Mat
@ Section generalizes vec
e Spaces interact through an Overlap (justa Sieve)

@ Basic operations

o Restriction to finer subspaces, restrict () /update ()
e Assembly to the subdomain, complete ()

@ Allow reuse of geometric and multilevel algorithms
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Interfaces
FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
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Interfaces
FMM in Sieve

o | o | o | o | | o @ The Quadtree is a Sieve

| o o | e | | -| e with optimized operations

o | | e | o @ Multipoles are stored in sections
| o | | | |

o | | | |

|| e e {

o | | o e | o

o o | o |
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Interfaces
FMM in Sieve

M. Knepley (ANL,TTU)

@ The Quadtiree is a Sieve
o with optimized operations

@ Multipoles are stored in sections
@ Two Overlaps are defined
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Interfaces
FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined
o
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Interfaces
FMM in Sieve

M. Knepley (ANL,TTU)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined
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Interfaces
FMM in Sieve

M. Knepley (ANL,TTU)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

@ Completion moves data for
o Neighbors
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Interfaces
FMM in Sieve

M. Knepley (ANL,TTU)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List

Theory Simula '08 67 /214



Interfaces
Multigrid in Sieve
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@ Sieves represent coarse and fine meshes
@ Sections represent coarse and fine fields

@ An Overlap matches coarse and fine cells
@ Interpolation and restriction are completion over the overlap
e Fusion is a linear transformation
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Mapping

Outline

e Mapping
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Mapping
Traversal

Sequences:
@ http://en.wikipedia.org/wiki/lterator_pattern
@ State is held by the iterator
@ Special classes are unnecessary

const sequence& cells = mesh.heightStratum(0);

for (sequence::iterator c_iter = cells.begin();
c_iter != cells.end(); ++c_iter) {
point_type p = *c_iter;
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Mapping
Traversal

Visitors:
@ http://en.wikipedia.org/wiki/Visitor_pattern
@ State is split between sieve and visitor
@ User controls allocation

PrintVisitor pV;

sieve.cone (p, pV);
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Mapping
Visitor Composition

@ Visitors can be composed by chaining visit () calls
e Final template parameter is child visitor type

@ closure () is accomplished by composition
o Oriented traversal uses the variant visit (point, orient)

@ Composition can also proceed by slicing
o Discussed later by Dmitry
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Completion

Outline

@ Completion
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Section Distribution

Section distribution consists of

@ Creation of the local Section
@ Distribution of the Atlas (layout Section)

@ Completion of the Section
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Completion
Section Completion

Completion can be broken into 4 phases:
@ restrict () to an overlap section
© copy () data to the remote overlap section
© fuse () data with existing point data
© update () remote section with fused overlap section data

It is common to combine phases 1 & 2, and also 3 & 4

@ Data is moved directly between communication buffers and
storage
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Completion
Section Completion

Process 0 Process 1

Mesh Overlap
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Completion
Section Completion
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Completion
Section Completion
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Completion
Section Completion
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Completion
Section Completion

Process 0 Process 1

Mesh Overlap
®
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Completion
Section Hierarchy

We have a hierarchy of section types of increasing complexity
@ GeneralSection
@ An arbitrary number of values for each domain point
e Constrain arbitrary values
o Atlasisa UniformSection
@ UniformSection
o A fixed number of values for each domain point
o Atlasis a ConstantSection
@ ConstantSection
e The same single value for all domain points
@ Only the domain must be completed
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Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
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Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
o like a power-law (small world) graph,

M. Knepley (ANL,TTU) Theory Simula’08  78/214



Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
o like a power-law (small world) graph,
@ MatMult () can be very unbalanced
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Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
o like a power-law (small world) graph,
@ MatMult () can be very unbalanced
e since all edges for a vertex must be on one process.
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Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
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Completion

Example: Balanced Matrix-Vector Product

@ If a mesh has a highly graded degree sequence,
o like a power-law (small world) graph,
@ MatMult () can be very unbalanced
e since all edges for a vertex must be on one process.
@ We can balance edges in local matrices
e by leaving the partition boundary unassembled.
@ We need only complete () the output section
@ due to the linearity of the operation
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Optimization and the Sieve Programming Model

Outline

0 Optimization and the Sieve Programming Model
@ Automation
@ Parallelism
@ Completion
@ Interval Sieves
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Optimization and the Sieve Programming Model Automation
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Optimization and the Sieve Programming Model Automation

Kernels Approach

Reducing operations to kernels is widespread in scientific computing:
@ Facilitates code reuse
@ Reduces code complexity
@ Reduces work of optimization (?)
@ Needs correct abstractions
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Optimization and the Sieve Programming Model Automation

Kernels Approach

Reducing operations to kernels is widespread in scientific computing:
@ Facilitates code reuse
@ Reduces code complexity
@ Reduces work of optimization (?)
@ Needs correct abstractions
Dual to introducing common software structures
@ Kernels operate on common structures

Must enable automatic selection of algorithmic variants
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Optimization and the Sieve Programming Model Automation

Dense Linear Algebra

Dense linear algebra is too rich:
@ Rich structure allow many different organizations
@ BLAS/LAPACK chooses certain kernel operations
o Consider only reuse, not optimization

@ LAPACK choose a single variant of each algorithm

@ LAPACK fixes the structure implementation in the interface
FLAME allows new kernels to be created

@ Abstracts among implementations (layouts)

M. Knepley (ANL,TTU) Theory Simula’08  82/214



Optimization and the Sieve Programming Model Automation

DFT

Spiral allows both reuse and optimization:
@ Abstract model from algorithms
@ Allows different implementations for common structures
@ Automates algorithm selection
@ Incorporates performance feedback
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Optimization and the Sieve Programming Model Automation

DFT

Spiral allows both reuse and optimization:
@ Abstract model from algorithms
@ Allows different implementations for common structures
@ Automates algorithm selection
@ Incorporates performance feedback

Unfortunately, DFT is simpler than our common operations.
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Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):

M. Knepley (ANL,TTU) Theory Simula’08  84/214



Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
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Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
@ Don’t specify our algorithms at the FLAME level
e Without a PME, cannot move between variants automatically
@ Can be built from Sieve completion operations

o Completion of operator gives assembled matrix
o Completion of output gives matrix-free application
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Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
@ Don’t specify our algorithms at the FLAME level
e Without a PME, cannot move between variants automatically
@ Can be built from Sieve completion operations

o Completion of operator gives assembled matrix
o Completion of output gives matrix-free application

@ VecScatter should be generalized to an Overlap
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Optimization and the Sieve Programming Model Automation

Performance Insights

There are two key insights for automatic performance tuning:

@ Memory layout controls performance (Goto)
e Must be able to switch layouts for different algorithmic variants
@ Bad LAPACK interface truncates ATLAS search space
o Example: GEPP kernel for DGEMM
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Optimization and the Sieve Programming Model Automation

Performance Insights

There are two key insights for automatic performance tuning:
@ Memory layout controls performance (Goto)
e Must be able to switch layouts for different algorithmic variants
@ Bad LAPACK interface truncates ATLAS search space
o Example: GEPP kernel for DGEMM
© Must understand data dependencies

@ OpenMP cannot express this
e Can be encapsulated in a DAG

@ SuperMatrix
@ Sieve

e Enables variants switching (loop fusion)
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Optimization and the Sieve Programming Model Automation

Sieve and Overlap

Sieve and Overlap can structure computation by expression of
@ Hierarchy
e Reduces complexity and enables code reuse with

@ common components (sieve)
@ operations (completion)

o Separates global and local concerns
o Maps well to multiresolution algorithms
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Optimization and the Sieve Programming Model Automation

Sieve and Overlap

Sieve and Overlap can structure computation by expression of
@ Hierarchy
e Reduces complexity and enables code reuse with

@ common components (sieve)
@ operations (completion)

o Separates global and local concerns
o Maps well to multiresolution algorithms
@ Dependency

@ Allows tranformation between different algorithmic variants
o Applies at many levels

@ algorithm selection
@ serial scheduling
@ parallel coordination

o Key advance over Map-Reduce paradigm
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Optimization and the Sieve Programming Model Parallelism
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Optimization and the Sieve Programming Model Parallelism

MPICH-G2

Early Attempt at Hierarchy

@ Communicator hierarchy, topology depth
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Optimization and the Sieve Programming Model Parallelism

MPICH-G2

Early Attempt at Hierarchy

@ Communicator hierarchy, topology depth

@ Only exposed to the user through Comm attributes
o Still have to support flat model

@ Hierarchy information is buried too deep
@ Only really accessible in the implementation (collectives)

M. Knepley (ANL,TTU) Theory Simula’08  88/214



Optimization and the Sieve Programming Model Parallelism

Hierarchy in MPI

MPI communicator should be imbued with hierarchy:
@ Single relation is easy to add
o Could be implemented using attributes
@ Can easily code hierarchical algorithms
o FMM, MG, ...
@ Can express data dependencies

e Communicator could represent a thread group
@ Scheduling could be done inside MPI interface (SuperMatrix)

@ Enables large and small scale parallelism

@ Domain decomposition
o Master-slave

@ Could be proposed in MPI-3
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Optimization and the Sieve Programming Model Completion

Outline

Q Optimization and the Sieve Programming Model

@ Completion
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Optimization and the Sieve Programming Model Completion

Completion Optimization

A section with unchanged structure need not recomplete its Atlas
@ The overlap could store the packing information and buffers
e AvecScatter could be created between buffers

@ For simple fusers, the Overlap maps directly to section storage
o AvecScatter could be created between the arrays
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Optimization and the Sieve Programming Model Interval Sieves
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Optimization and the Sieve Programming Model Interval Sieves

Interval Sieves and Sections

We can demand that our chart be an interval:
@ Membership is O(1)
@ cone () isO(1)
@ restrict () is O(1)

Formerly, all point queries were O(log n)

Moreover, no storage is needed for a search structure:
@ STL sets require 20 bytes/int

We can always achieve this in a static setting with local renumbering
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Optimization and the Sieve Programming Model Interval Sieves

ISieve

ISieve

@ Separate AlJ structures for cones and supports
Also store AlJ orientations
Must call allocate () before setting cones

Some support for dynamic insertion
Cones and supports unconnected
@ Use symmetrize () to automate arrow reversal

Has converter from standard Sieve
Visitors for all traversals
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Optimization and the Sieve Programming Model Interval Sieves

ISection

ISection
@ AlJ structure for values
@ Same allocate () call before setting values
@ Some support for dynamic insertion

@ Completion must still send chart explicitly
e Can amortize across similar completions
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Finite Elements
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@ Finite Elements
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Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
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Finite Elements
Integration

cells = mesh->heightStratum(0);

for(c = cells->begin(); c != cells->end(); ++c) {
coords = mesh->restrict (coordinates, c);
v0, J, invd, detJ = computeGeometry (coords);

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++qg) {
<Transform coordinates
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]xdetdJ;

}

<Update output vector>
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Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
inputVec = mesh->restrict (U, c);
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
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Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
realCoords = J*xrefCoords|[qg] + vO0;
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>

}
<Aggregate updates>
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Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
elemVec[f] += basis[qg, f]*rhsFunc(realCoords);
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
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Finite Elements

Integration
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Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
for(d = 0; d < dim; ++d)
for(e) testDerReal[d] += invJl[e,d]xbasisDer|q,
for(g = 0; g < numBasisFuncs; ++g) {
for(d = 0; d < dim; ++d)
for (e) basisDerReal[d] += invJ[e,d]*basisDer
elemMat [f,g] += testDerReal [d]xbasisDerReal |
elemVec[f] += elemMat[f,g]xinputVeclg]l;
}
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Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
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for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
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}
<Update output vector>
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Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
elemVec[f] += basis[qg, f]*lambda*exp (inputVec[£f])
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>

<Aggregate updates>
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Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
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Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
mesh->updateAdd (F, c, elemVec);
}
<Aggregate updates>
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Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>
}
<Aggregate updates>
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Finite Elements
Integration

cells = mesh->heightStratum(0);
for(c = cells—>begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=xdetdJ;

}
<Update output vector>

}

Distribution<Mesh>::completeSection (mesh, F);
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Boundary Conditions
Boundary Conditions

Dirichlet conditions may be expressed as
ur=g

and implemented by constraints on dofs in a Section
@ The user provides a function.

Neumann conditions may be expressed as
Vu- ﬁ|r =h

and implemented by explicit integration along the boundary
@ The user provides a weak form.
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Boundary Conditions
Dual Basis Application

We would like the action of a dual basis vector (functional)

</\/,-,f>:/ Ni(x)F(x)dV
ref

@ Projection onto P
@ Code is generated from FIAT specification
e Python code generation package inside PETSc

@ Common interface for all elements
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Boundary Conditions

Assembly with Dirichlet Conditions

The original equation may be partitioned into
@ unknowns in the interior (1)
@ unknowns on the boundary (I

so that we obtain
<A// A/r><U/>:<f/)
Ari Arr ur fr

However ur is known, so we may reduce this to
Ajup = fj— Arrur

We will show that our scheme automatically constructs this extra term.
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Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly
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Boundary Conditions
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Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly
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Compute
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Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

u 5|1/ 317
f 1 5/0(0 0
Compute
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Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly
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Boundary Conditions
Dirichlet Values

@ Topological boundary is marked during generation
@ Cells bordering boundary are marked using
markBoundaryCells ()
@ To set values:
@ Loop over boundary cells
@ Loop over the element closure
@ For each boundary point /, apply the functional N; to the function g
@ The functionals are generated with the quadrature information
@ Section allocation applies Dirichlet conditions automatically

@ Values are stored in the Section
@ restrict () behaves normally, update () ignores constraints
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Boundary Conditions
Complex BC

We may want to constrain a dof not in the global basis:

when the global basis follows the coordinate directions.
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Boundary Conditions
Complex BC

@ In order to constrain the value we

e rotate the storage coordinates to the n — = frame
e project out the normal coordinate (freeze the value)

@ This rotation is also needed for restriction
@ and any action accessing section storage
@ In general, we need

e a transformation to BC coordinates
@ a projection onto free variables (trivial)

@ Transformation might involve all element variables
@ which would be an action on the closure
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Part IV

Local Computation: Theory
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Models of Local Computation
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Models of Local Computation
Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

S Voi(x) - V(x)dx ™)
— - 32;(()() J¢;(x )dx B
= fntBak 8227 |J|dx 3)
= el I, 83'55 249 gx @
= GM(TKS, (5)

Coefficients are also put into the geometric part.
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Models of Local Computation
Form Decomposition

Additional fields give rise to multilinear forms.

J70i(%) - (o(X)Ve5(x)) @A ©)
= Jroi <¢a( x) %% (x)> dA (7)
= L 035 2 A @)
S QLAY )
= GY(T)Ka, (10)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.
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http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

Models of Local Computation
Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

J7 V8i(x) - Vj(x)dA (11)
- 7 B e dA (12)
= Jnooe WY 8‘”‘5 J|dA (13)
= Wz Jf“aﬁg;)¢J7“a¢'()dA (14)
= N S, ok 25 (15)
= Gy (T)KY (16)

A different space could also be used for Jacobians
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Dof Kinds
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Boundary Conditions
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Boundary Conditions

Assembly with Dirichlet Conditions

The original equation may be partitioned into
@ unknowns in the interior (1)
@ unknowns on the boundary (I

so that we obtain
<A// A/r><U/>:<f/)
Ari Arr ur fr

However ur is known, so we may reduce this to
Ajup = fj— Arrur

We will show that our scheme automatically constructs this extra term.
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Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly
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Boundary Conditions
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Residual Assembly
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Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly
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Compute
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0.5 0.5 (1.0 3 0
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Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly

u 5|1/ 317
f 1 5/0(0 0
Compute
AIT AFI 5 1
1 | = |-1 This piece containsrhs
Apr Ay | ]
3 0
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Boundary Conditions

Assembly with Dirichlet Conditions

Residual Assembly
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Boundary Conditions
Dirichlet Values

@ Topological boundary is marked during generation
@ Cells bordering boundary are marked using
markBoundaryCells ()
@ To set values:
@ Loop over boundary cells
@ Loop over the element closure
@ For each boundary point /, apply the functional N; to the function g
@ The functionals are generated with the quadrature information
@ Section allocation applies Dirichlet conditions automatically

@ Values are stored in the Section
@ restrict () behaves normally, update () ignores constraints
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Boundary Conditions
Complex BC

We may want to constrain a dof not in the global basis:

when the global basis follows the coordinate directions.
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Boundary Conditions
Complex BC

@ In order to constrain the value we

e rotate the storage coordinates to the n — = frame
e project out the normal coordinate (freeze the value)

@ This rotation is also needed for restriction
@ and any action accessing section storage
@ In general, we need

e a transformation to BC coordinates
@ a projection onto free variables (trivial)

@ Transformation might involve all element variables
@ which would be an action on the closure
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Weak Form Languages

Outline

@ Weak Form Languages
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Weak Form Languages

FFC is a compiler for variational forms by Anders Logg.
Here is a mixed-form Poisson equation:
a((r,w), (o,u)) = L((1,w)) V(r,w)e V
where

a((r,w),(o,u)) = /QTU—V-TU—l—WV-UdX

L((m,w)) = /wadx
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Weak Form Languages

FFC

Mixed Poisson

shape = "triangle"

BDM1 = FiniteElement("Brezzi—Douglas—Marini" ,shape,1)
DGO = FiniteElement("Discontinuous Lagrange", shape,0)
element = BDM1 + DGO

(tau, w) = TestFunctions(element)

(sigma, u) = TrialFunctions (element)

a = (dot(tau, sigma) — div(tau)+u + w=div(sigma))~dx

f = Function (DGO)
L = wxf«dx
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Weak Form Languages

FFC

Here is a discontinuous Galerkin formulation of the Poisson equation:
alv,uy=»Lv) VveV
where

a(v,u) = /QVU-VvdX
T Z/ — < Vv > [u]]n = [[Vl]]n»- < VU > —(a/h)vu dS
5 /s

b [ Vvl - (- V- (/B ds
o

Lv) = /Qvfdx
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Weak Form Languages

FFC

DG Poisson

DG1 = FiniteElement("Discontinuous Lagrange" , shape,1)
TestFunctions (DG1)

TrialFunctions (DG1)

Function (DG1)

Function (DG1)

FacetNormal("triangle")
MeshSize("triangle")

dot(grad(v), grad(u))=dx
dot(avg(grad(v)), jump(u, n))=dS
dot(jump(v, n), avg(grad(u)))=«dS
alpha/h«dot(jump(v, n) + jump(u, n))=dS
dot(grad(v), jump(u, n))=«ds

dot(jump(v, n), grad(u))=ds
gamma/h=«v=ux~ds

v« fxdx + v«g«ds

»TSQ +~C <
(TR T

+

o+ |
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Part V

Local Computation: Implementation
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Serial Performance

Outline

@ Serial Performance
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STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

@ Protoypical operation is Triad (WAXPY): w =y + ax

@ Measures the memory bandwidth bottleneck (much below peak)
@ Datasets outstrip cache

Machine Peak (MF/s) | Triad (MB/s) | MF/MW Eqg. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 | 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 | 8500.0 (0.8%)

Table: Bandwidth limited machine performance

M. Knepley (ANL,TTU)
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Serial Performance

Analysis of Sparse Matvec (SpMV)

Assumptions
@ No cache misses
@ No waits on memory references
Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V' Number of vectors to multiply
We can look at bandwidth needed for peak performance

2\ m 6
<8 + V> ey byte/flop (17)
or achieveable performance given a bandwith BW
Vnz
BV 2)m+ enz oV Milop/s (18)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.
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Serial Performance
Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

—— bytes/flop(1122.4 MB/s) = 151 MFlops/s, 19
(8+2)%+6y/p( /3) ps/ (19)

which is a dismal 8.8% of peak.

Can improve performance by
@ Blocking
@ Multiple vectors
but operation issue limitations take over.
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Serial Performance
Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most
1
—— bytes/flop(1122.4 MB/s) = 151 MFlops/s, 19
(8+2)%+6y/p( /s) ps/ (19)
which is a dismal 8.8% of peak.

Better approaches:
@ Unassembled operator application (Spectral elements, FMM)

e N data, N° computation
@ Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

e N data, Nk computation
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Serial Performance
Performance Tradeoffs

We must balance storage, bandwidth, and cycles

@ Assembled Operator Action
o Trades cycles and storage for bandwidth in application
@ Unassembled Operator Action

e Trades bandwidth and storage for cycles in application

e For high orders, storage is impossible

e Can make use of FErari decomposition to save calculation
o Could storage element matrices to save cycles

@ Partial assembly gives even finer control over tradeoffs
@ Also allows introduction of parallel costs (load balance, ...)
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FIAT
Outline

@ FIAT

@ Implementation
@ Optimization
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FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
Can build arbitrary elements by specifying the Ciarlet triple (K, P, P’)
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FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
Can build arbitrary elements by specifying the Ciarlet triple (K, P, P’)

FIAT is part of the FEniCS project
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FIAT Integration

The quadrature. fiat file contains:

@ An element (usually a family and degree) defined by FIAT
@ A quadrature rule

It is run

@ automatically by make, or
@ independently by the user

It can take arguments
@ —element_family and —element_order, Or
@ make takes variables ELEMENT and ORDER

Then make produces quadrature.h with:
@ Quadrature points and weights
@ Basis function and derivative evaluations at the quadrature points
@ Integration against dual basis functions over the cell
@ Local dofs for Section allocation
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FIAT Implementation

Outline

@ FIAT

@ Implementation
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FIAT Optimization

Outline

@ FIAT

@ Optimization
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FErari
Ouitline

@ FErari

@ Problem Statement

@ Plan of Attack

@ Results

@ Mixed Integer Linear Programming
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FErari
FErari

Finite Element rearragement to automaically reduce instructions

@ Open source implementation http://www.fenics.org/wiki/FErari
@ Build tensor blocks K,’#’m, as vectors using FIAT

@ Discover dependencies

o Represented as a DAG
e Can also use hypergraph model

@ Use minimal spanning tree to construct computation
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FErari Problem Statement

Outline

@ FErari

@ Problem Statement
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FErari Problem Statement

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

J7 V6i(X) - Vj(x)0x (20)
- 7 e e dx 21)
= Jr PR 8227 [J]cx (22)
= By, 83'55 25 dx (23)
= GM(T)K3, (24)

Coefficients are also put into the geometric part.
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FErari Problem Statement

Form Decomposition

Additional fields give rise to multilinear forms.

J70i(%) - (o(X)Ve5(x)) @A (25)
= [ <¢a( x) %% (x)> dA (26)
S AL AGE IV @)
S QLAY 28)
- GM(T)K% (29)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.
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FErari Problem Statement

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

J7 Vi(X) - Vj(x)dA (30)
- 7 B e dA (31)
= o s e ok 8‘”‘5 |J|0A (32)
= M, o B 0 J7“a¢'()dA (33)
= N S, ok 25 (34)
= Gy ()KL (35)

A different space could also be used for Jacobians
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FErari Problem Statement

Element Matrix Formation

@ Element matrix K is now made up of small tensors
@ Contract all tensor elements with each the geometry tensor G(7")

3 0 0 -1 1 1 -4 -4 0 4 0 0
0 0 0 O 0 0 0 O 0 0 0 0
0 O 0 0 0 0 0 0 0 0 0 O
-1 0 0 3 1 1 0 0 4 0 -4 -4
1 0 0 1 3 3 -4 0 0 O 0 -4
1 0 0 1 3 3 -4 0 0 O 0 -4
-4 0 0 O -4 -4 8 4 0 -4 0 4
-4 0 0 O 0 O 4 8 -4 -8 4 0
0 0 0 4 0 O 0 -4 8 4 -8 4
4 0 0 0 0 0 -4 -8 4 8 -4 0
0 0 0 -4 0 O 0 4 -8 -4 8 4
0 O 0 -4 -4 -4 4 0 -4 0 4 8
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FErari Problem Statement

Element Matrix Computation

@ Element matrix K can be precomputed

e FFC
o SyFi

@ Can be extended to nonlinearities and curved geometry

@ Many redundancies among tensor elements of K
e Could try to optimize the tensor contraction. ..
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FErari Problem Statement

Abstract Problem

Given vectors v; € R™, minimize flops(vTg) for arbitrary g € R

@ The set v; is not at all random
@ Not a traditional compiler optimization

@ How to formulate as an optimization problem?
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FErari Plan of Attack

Outline

@ FErari

@ Plan of Attack
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FErari Plan of Attack

Complexity Reducing Relations

If v/ g is known, is flops(v] g) <2m — 17

We can use binary relations among the vectors:
@ Equality
o If v; = v;, then flops(v/ g) = 0
@ Colinearity
o If v = av;, then flops(v/ g) = 1
@ Hamming distance
o If disty(v;, vi) = k, then flops(v]g) = 2k
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FErari Plan of Attack

Algorithm for Binary Relations

@ Construct a weighted graph on v;
o The weight w(i,j) is flops(v]g) given v/ g
e With the above relations, the graph is symmetric

@ Find a minimum spanning tree
e Use Prim or Kruskal for worst case O(n? log n)

@ Traverse the MST, using the appropriate calculation for each edge
e Roots require a full dot product
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FErari Plan of Attack

Coplanarity

@ Ternary relation
o If vk = av; + Bv;, then flops(v] g) = 3
e Does not fit our undirected graph paradigm

@ SVD for vector triples is expensive
e Use a randomized projection into a few R3s

@ Use a hypergraph?
o MST algorithm available

@ Appeal to geometry?
@ Incidence structures
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FErari Results

Outline

@ FErari

@ Results
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Preliminary Results

FErari Results

Order | Entries | Base MAPs | FErari MAPs
1 6 24 7
2 21 84 15
3 55 220 45
4 120 480 176
5 231 924 443
6 406 1624 867

M. Knepley (ANL,TTU)
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FErari Mixed Integer Linear Programming

Outline

@ FErari

@ Mixed Integer Linear Programming
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FErari Mixed Integer Linear Programming

Modeling the Problem

@ Obijective is cost of dot products (tensor contractions in FEM)
e Set of vectors V with a given arbitrary vector g

@ The original MINLP has a nonconvex, nonlinear objective

@ Reformulate to obtain a MILP using auxiliary binary variables
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FErari Mixed Integer Linear Programming

Modeling the Problem

Variables

ajj = Basis expansion coefficients

yi = Binary variable indicating membership in the basis

s;j = Binary variable indicating nonzero coefficient «;;

z; = Binary variable linearizes the objective function (equivalent to y;y;)
U = Upper bound on coefficients

Constraints

) : Basis expansion
) : Exclude nonbasis vector from the expansion

Eq. (36d) : Remove offdiagonal coefficients for basis vectors
) : Exclude vanishing coefficients from cost
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FErari Mixed Integer Linear Programming

Original Formulation

MINLP Model
n
minimize Z yim—-1)+(1-y)|2 Z yi—1 (36a)
i=1 J=1,j#i
n
subjectto v =Y a;y i=1,...,n
(36b)
— Uy < a; < Uy i,j=1,...,n
(36¢)
_U(1_yl)§al_/SU(1_yl) ivj:17"'7n7
(36d)
yi € {0,1} i=1,....n
(36€)
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FErari Mixed Integer Linear Programming

Original Formulation

Equivalent MILP Model: z; = y; - y;

minimize 2m Z yi+2 Z Z - Zj) — (36a)

i=1 j=1,j#i

subject to v;:Za,-jvj i=1,...,n
(36b)

— Uy < a; < Uy, ILj=1,...,n
(36¢)
_U(1_y/)§OéUSU(1_y/) i?j:17"'7n7i7éj
(36d)

zi <V, zZj<Yy, zj=zyi+y—1, ihj=1,....n
(36€)

yi€{0,1}, z;€{0,1} ij=1,...,n
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FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

@ Take advantage of sparsity of «;; coefficient
@ Introduce binary variables s; to model existence of «;

@ Add constraints —Us;; < a;; < Us;;
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FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

MINLP Model
n
minimize Z yim-1)+(1-y) |2 Z Sjj — (37a)
i=1 J=1,j#i
subjectto v, = ayy; i=1,...,n
(37b)
—US,'jSOz,'jSUS,'j ihj=1,...,n
(37c)
—U(1 —yi) <o < U1~ i) ij=1,....n
(37d)
Si <Y ihj=1,....n
(37¢)
yi€{0,1}, s;€{0,1} ij=1,....n
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FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

Equivalent MILP Model

minimize 2mZy,+22 Z Sjj — Zj) — (37a)
i=1 j=1,j#i
subject to V,':ZOZI'/'V/' i=1,...,n
(37b)
— Usj < aj < Us; ij=1,...,n
(37¢)
—U(1—y,-)§o<,-j§U(1—y,-) ihj=1,....n i#
(37d)
ZijS}’ia legslja ZUZyI+SU_17 i?j:1)"'7n
(37€)

yie{0,1}, ze{0,1}, s;€{0,1} ij=1,....n
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Results

FErari

Mixed Integer Linear Programming

Initial Formulation

@ Initial formulation only had sparsity in the «;;
@ MINTO was not able to produce some optimal solutions
o Report results after 36000 seconds

Default MILP Sparse Coef. MILP
Element | Flops | Flops LPs  CPU | Flops LPs CPU
P; 2D 42 42 33 0.10 34 187  0.43
P> 2D 147 147 2577 37.12 67 6030501 36000
P; 3D 170 166 79 049 146 727  3.97
P, 3D 935 | 935 25283 36000 | 829 33200 36000

M. Knepley (ANL,TTU)
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FErari Mixed Integer Linear Programming

Results

Formulation with Sparse Basis

@ We can also take account of the sparsity in the basis vectors
@ Count only the flops for nonzero entries
e Significantly decreases the flop count

Sparse Coefficient | Sparse Basis
Elements Flops Flops
P; 2D 34 12
Py 3D 146 26
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Scheduling and Asynchronous Computation
Outline

@ Scheduling and Asynchronous Computation
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Part VI

Fast Methods
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The Fast Multipole Method
Outline

@ The Fast Multipole Method
@ Spatial Decomposition
@ Data Decomposition
@ Serial Implementation
@ Parallel Spatial Decomposition
@ Parallel Performance
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The Fast Multipole Method Spatial Decomposition

Outline

@ The Fast Multipole Method
@ Spatial Decomposition
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The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
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The Fast Multipole Method Spatial Decomposition

FMM in Sieve

o | o | o | o | | o @ The Quadtree is a Sieve

| o o | e | | -| e with optimized operations

o | | e | o @ Multipoles are stored in sections
| o | | | |

o | | | |

|| e e {

o | | o e | o

o o | o |
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The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined
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The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined
o
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The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined
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The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

e o
]
I @ Completion moves data for
I o Neighbors
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The Fast Multipole Method Spatial Decomposition

FMM in Sieve

@ The Quadtreeis a sieve

o with optimized operations
@ Multipoles are stored in sections
@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List
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The Fast Multipole Method Spatial Decomposition

Quadtree Implementation

@ We use binary scheme to label cells (or vertices)

@ Relevant relations can be determined implicitly

@ cone ()
@ neighbors

e parent

@ interaction list

@ When vertices are not used, we can directly connect cells
@ cone () becomes neighbor method
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The Fast Multipole Method Spatial Decomposition

Tree Interface

@ locateBlob (blob)
o Locate point in the tree
@ fillNeighbors()
o Compute the neighbor section
@ findInteractionList ()
o Compute the interaction list cell section, allocate value section
@ fillInteractionList (level)
o Compute the interaction list value section
@ fill (blobs)
o Compute the blob section
@ dump ()
e Produces a verifiable repesentation of the tree
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The Fast Multipole Method Data Decomposition

Outline

@ The Fast Multipole Method

@ Data Decomposition
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The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
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The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
o Box centers, Neighbors
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The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
o Box centers, Neighbors

@ box + neighbors
o Blobs
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The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
@ box
o Box centers, Neighbors

@ box + neighbors
o Blobs

@ box + interaction list

o Interaction list cells and values
e Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (ANL,TTU) Theory Simula’08  163/214



The Fast Multipole Method Serial Implementation

Outline

@ The Fast Multipole Method

@ Serial Implementation
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The Fast Multipole Method Serial Implementation

Evaluator Interface

@ initializeExpansions (tree, blobInfo)
o Generate multipole expansions on the lowest level
e Requires loop over cells
e O(p)
@ upwardSweep (tree)
e Translate multipole expansions to intermediate levels
e Requires loop over cells and children (support)
° O(p%)
@ downwardSweep (tree)
o Convert multipole to local expansions and translate local
expansions on intermediate levels
@ Requires loop over cells and parent (cone)
o O(p?)

M. Knepley (ANL,TTU) Theory Simula’08  165/214



The Fast Multipole Method Serial Implementation

Evaluator Interface

@ evaluateBlobs (tree, blobInfo)
e Evaluate direct and local field interactions on lowest level
@ Requires loop over cells and neighbors (in section)
o O(p?)
@ evaluate(tree, blobs, blobInfo)
o Calculate the complete interaction (multipole + direct)
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The Fast Multipole Method Serial Implementation

Kernel Interface

Method Description

P2M(t) Multipole expansion coefficients
L2P (t) Local expansion coefficients
M2M (t) Multipole-to-multipole translation
M21T, (t) Multipole-to-local translation
L2L(t) Local-to-local translation
evaluate (blobs) | Direct interaction

@ Evaluator is templated over Kernel
@ There are alternative kernel-independent methods
o kifmm3d
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The Fast Multipole Method Parallel Spatial Decomposition

Outline

@ The Fast Multipole Method

@ Parallel Spatial Decomposition
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

@ Divide tree into a root and local trees
@ Distribute local trees among processes

@ Provide communication pattern for local sections (overlap)
e Both neighbor and interaction list overlaps

o Sieve generates MPI from high level description
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

How should we distribute trees?

@ Multiple local trees per process allows good load balance
@ Partition weighted graph

@ Minimize load imbalance and communication

o Computation estimate:

Leaf Nijp (P2M) + np? (M2L) + N;p (L2P) + 39N? (P2P)
Interior ngp? (M2M) + mp? (M2L) + nep? (L2L)

e Communication estimate:
Diagonal nc(L—k—1)

Lateral 2"% for incidence dimesion m
@ Leverage existing work on graph partitioning
e ParMetis
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

@ Good partitions exist for non-uniform distributions
2D O (v/n(log n)3/2) edgecut
3D O (n?/3(log n)*/) edgecut

@ As scalable as regular grids

@ As efficient as uniform distributions

@ ParMetis will find a nearly optimal partition
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

@ Good partitions exist for non-uniform distributions

2D C; = 1.24’:Co for random matching
3D C; =1.21'Cy?? for random matching

@ 3D proof needs assurance that averge degree does not increase

@ Efficient in practice
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

Advantages

e Simplicity
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Parallel Tree Implementation

Advantages

e Simplicity

e Complete serial code reuse

M. Knepley (ANL,TTU) Theory Simula’08  173/214



The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

Advantages

e Simplicity
e Complete serial code reuse

e Provably good performance and scalability

M. Knepley (ANL,TTU) Theory Simula’08  173/214



The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Interface

@ fillNeighbors()

o Compute neighbor overlap, and send neighbors
@ findInteractionList ()

o Compute the interaction list overlap
@ fillInteractionList (level)

o Complete and copy into local interaction sections
@ £fill (blobs)

o Now must scatter blobs to local trees
@ Uses scatterBlobs () and gatherBlobs ()
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Data Movement

@ Complete neighbor section

© Upward sweep

@ Upward sweep on local trees
@ Gather to root tree
© Upward sweep on root tree

© Complete interaction list section

© Downward sweep

@ Downward sweep on root tree
@ Scatter to local trees
© Downward sweep on local trees
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Evaluator Interface

@ initializeExpansions (local trees, blobInfo)
e Evaluate each local tree

@ upwardSweep (local trees, partition, root tree)
e Evaluate each local tree and then gather to root tree

@ downwardSweep (local trees, partition, root tree)
o Scatter from root tree and then evaluate each local tree

@ evaluateBlobs (local trees, blobInfo)
e Evaluate on all local trees

@ evaluate (tree, blobs, blobInfo)
o I|dentical
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The Fast Multipole Method Parallel Performance

Outline

@ The Fast Multipole Method

@ Parallel Performance
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The Fast Multipole Method Parallel Performance

Recursive Parallel

@ For large problems, a single root can be a bottleneck

@ We can recursively assign roots to subtrees

e Bandwidth to root is controlled
e What about utilization?

@ Root computation is similar to MG coarse solve
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Multigrid
Ouitline

@ Muttigrid
@ Structured
@ Unstructured
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Multigrid Structured

Outline

@ Muttigrid
@ Structured
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Multigrid Structured

A DMDA is more than a Mesh

A DMDA contains topology, geometry, and (sometimes) an implicit Q1
discretization.

It is used as a template to create
@ Vectors (functions)
@ Matrices (linear operators)
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Multigrid Structured

DMDA Gilobal vs. Local Numbering

@ Global: Each vertex has a unique id belongs on a unique process
@ Local: Numbering includes vertices from neighboring processes
e These are called ghost vertices

Proc 2 Proc 3 Proc 2 Proc 3
X X X | X X 21 22 23|28 29
X X X | X X 18 19 20 |26 27
12 13 14|15 X 15 16 17 |24 25
8 9 10|11 X 6 7 8 |13 14
4 5 6|7 X 3 4 5 |11 12
o 1 2|3 X o 1 2|9 10

Proc O Proc 1 Proc O Proc 1

Local numbering Global numbering
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Multigrid Structured

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)
(= If )(DMDALocallnfo =info, PetscScalar=+x, PetscScalarr, void «ctx)
info: All layout and numbering information
x: The current solution (a multidimensional array)

r: The residual
ctx: The user context passed to DMDASNESSetFunctionLocal ()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, Ifunc, &ctx)
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Multigrid Structured

Bratu Residual Evaluation

Au+2Xe'!=0
ResLocal (DMDALocallnfo =info, PetscScalar s+«x, PetscScalar «=f, void =ctx)
for(j = info—>ys; j < info—ys+info—ym; ++j) {
for(| = info—>xs; i < info—>xs+info—>xm; ++i) {
= x[j][1];
if (i==0 || j==0 || i ==M[] j ==N) {
fl[jl[i] = 2.0«(hydhx+hxdhy)~u; continue;
}
u_XX = (2.0«u — x[j1[i—=1]1 — x[j1[i+1])*hydhx;
u_yy = (2.0xu — x[j=1][1] = x[j+1][i])=hxdhy;
fljl[i] = u_xx + u_yy — hx+hy«lambda«exp(u);

$PETSC_DIR/src/snes/examples/tutorials/ex5.c
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Multigrid Structured

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(= liac )(DMDALocallnfo =info, PetscScalar++x, MatJ, void «ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian
ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)
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Multigrid Structured

Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil (Mat A, m, MatStencil idxm[], n, MatStencil idxn][],
PetscScalar values[], InsertMode mode)

@ Each row or column is actually a MatStencil

e This specifies grid coordinates and a component if necessary
e Can imagine for unstructured grids, they are vertices

@ The values are the same logically dense block in row/col
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Multigrid Structured

Updating Ghosts

Two-step process enables overlapping
computation and communication

@ DMGiobalToLocalBegin(da, gvec, mode, lvec)

e gvec provides the data
@ mode is either INSERT_VALUES or ADD_VALUES
@ lvec holds the local and ghost values

@ DMGiobalToLocalEnd(da, gvec, mode, Ivec)
o Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().
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Multigrid Structured

DM Integration with SNES

@ DM supplies global residual and Jacobian to SNES

o User supplies local version to DM
@ The Rhs_x* () and Jac_~ () functions in the example

@ Allows automatic parallelism
@ Allows grid hierarchy
e Enables multigrid once interpolation/restriction is defined
@ Paradigm is developed in unstructured work
@ Solve needs scatter into contiguous global vectors (initial guess)

@ Handle Neumann BC using KSPSetNullSpace ()
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Multigrid Structured

Multigrid with DM

Allows multigrid with some simple command line options

-pc_type mg, —-pc_mg_levels
-pc_mg_type, —pc_mg_cycle_type, -pc_mg_galerkin

o
o
@ —mg_levels_1_ksp_type, -mg_levels_1_pc_type
@ -mg_coarse_ksp_type, -mg_coarse_pc_type

o

—da_refine, ~ksp_view

Interface also works with GAMG and 3rd party packages like ML
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Multigrid Unstructured

Outline

@ Muttigrid

@ Unstructured
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Multigrid Unstructured

Unstructured Meshes

Same DMMG options as the structured case
Mesh refinement

@ Ruppert algorithm in Triangle and TetGen
Mesh coarsening

o Talmor-Miller algorithm in PETSc
@ More advanced options
@ —dmmg_refine

@ -dmmg_hierarchy

@ Current version only works for linear elements
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Unstructured

Multigrid

A Priori refinement

For the Poisson problem, meshes with reentrant corners have a
length-scale requirement in order to maintain accuracy:

C/OWI'1_M <h< Ch,'ghlj_u
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Multigrid Unstructured

The Folly of Uniform Refinement

uniform refinement may fail to eliminate error

Reentrant Cormner Error

L2 Error

T
Uniform Pacman s

Graded Pacman s

M. Knepley (ANL,TTU)
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Multigrid

Geometric Multigrid

@ We allow the user to
refine for fidelity

@ Coarse grids are created
automatically

@ Could make use of AMG
interpolation schemes

M. Knepley (ANL,TTU)
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Multigrid Unstructured

Requirements of Geometric Multigrid

@ Sufficient conditions for optimal-order convergence:

o |M;| < 2|M| in terms of cells
e any cell in M, overlaps a bounded # of cells in M;
@ monotonic increase in cell length-scale
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Multigrid Unstructured

Requirements of Geometric Multigrid

@ Sufficient conditions for optimal-order convergence:

o |[M.| < 2|Mg| in terms of cells
e any cell in M, overlaps a bounded # of cells in M;
@ monotonic increase in cell length-scale

@ Each M satisfies the quasi-uniformity condition:

Cihg < hg < Copi

@ hy is the length-scale (longest edge) of any cell K
@ hy is the maximum length-scale in the mesh M
@ pk is the diameter of the inscribed ball in K
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Multigrid Unstructured

Function Based Coarsening

@ (Miller, Talmor, Teng; 1997)
@ triangulated planar graphs = disk-packings (Koebe; 1934)
@ define a spacing function S() over the vertices

@ obvious one: S(v) = w
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Multigrid Unstructured

Function Based Coarsening

@ pick a subset of the vertices such that 5(S(v) + S(w)) > dist(v, w)
o forallv,w e M, with 8 > 1

@ dimension independent

@ provides guarantees on the size/quality of the resulting meshes
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Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh
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Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices

@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
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Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices

@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices
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Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh
remove colliding adjacent vertices from the mesh
remesh links of removed vertices
repeat until no vertices are removed.
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Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices

repeat until no vertices are removed.

@ Eventually we have that

e every vertex is either included or removed
e bounded degree mesh = O(n) time
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Multigrid Unstructured

Decimation Algorithm

@ Loop over the vertices
@ include a vertex in the new mesh
e remove colliding adjacent vertices from the mesh
e remesh links of removed vertices
repeat until no vertices are removed.
@ Eventually we have that
e every vertex is either included or removed
e bounded degree mesh = O(n) time
@ Remeshing may be performed either during or after coarsening

o local Delaunay remeshing can be done in 2D and 3D
o faster to connect edges and remesh later

M. Knepley (ANL,TTU) Theory Simula’08  198/214



Multigrid Unstructured

Implementation in Sieve
Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v
@ vertex link: closure(star(v)) \ star(closure(v))
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Multigrid Unstructured

Implementation in Sieve
Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v
@ vertex link: closure(star(v)) \ star(closure(v))
@ connectivity graph induced by limiting sieve depth
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Multigrid Unstructured

Implementation in Sieve
Peter Brune, 2008

@ vertex neighbors: cone(support(v)) \ v

@ vertex link: closure(star(v)) \ star(closure(v))

@ connectivity graph induced by limiting sieve depth

@ remeshing can be handled as local modifications on the sieve
@ meshing operations, such as cone construction easy
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Multigrid Unstructured

3D Test Problem

@ Reentrant corner

e —Au=f

@ f(x,y,z)=3sin(x+y+2)

@ Exact Solution: u(x,y,z) =sin(x +y + z)
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Multigrid Unstructured

GMG Performance

Linear solver iterates are nearly as system size increases:

KSP Iterates on Reentrant Domains
10 —— S S

Pacman s
Fichera e

KSP Iterates
1

0 L i il — | L — i
1000 10000 100000 le+06

Mesh Size (Vertices)
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Multigrid Unstructured

GMG Performance

Coarsening work is nearly constant as system size increases:

Vertex Comparisons on Reentrant Domains
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Multigrid Unstructured

Quality Experiments

Table: Hierarchy quality metrics - 2D

Pacman Mesh, 5 = 1.45

level | cells | vertices ) max % | min(h) | max. overlap
0 || 19927 10149 | 0.020451 | 4.134135 | 0.001305 -
1 5297 2731 | 0.016971 | 4.435928 | 0.002094 23
2 3028 1572 | 0.014506 | 4.295703 | 0.002603 14
3 1628 856 | 0.014797 | 5.295322 | 0.003339 14
4 863 464 | 0.011375 | 6.403574 | 0.003339 14
5 449 250 | 0.022317 | 6.330512 | 0.007979 13
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Part VII

Sample Application: Fault Mechanics
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Formulation

Outline

@ Formulation
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Formulation

Reverse-slip Benchmark
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Mesh Handling

Outline

@ Mesh Handling
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Mesh Handling

Multiple Mesh Types

-
Triangular ‘ Tetrahedral

Dhplacement m) Oaplacement (m)
08 .0

Rectangular E P ‘ Hexahedral
'’

AN

owplacement m) Daplacement am)
04 08
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Parallelism

Outline

@ Parallelism
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Parallelism
Parallelism

@ Function and Operator Assembly
o Parallel element integration over multiple materials/models
@ Assembly uses completion for functions and PETSc Mat for
operators
@ Algebraic sovlers
o Use MUMPS for small problems
e PETSc ASM/ILU for large problems
@ Hope to use unstructured MG when fault support is implemented
@ Parallel data movement routines do not change for
Different dimension
Different element shapes
Different discretization
Fault inclusion
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Fault Handling

Outline

@ Fault Handling
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Fault Handling
Cohesive Cells

Originaél Mesh5 Mesh with Coheswe Cell
1

3 7

0 2 4 0 2 6 4
1 33 5 1 3377 5
0 22 4 0 2266 4

Exploded view of meshes
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Fault Handling
Cohesive Cells

Cohesive cells are used to enforce slip conditions on a fault
@ Demand complex mesh manipulation

o We allow specification of only fault vertices
o Must “sew” together on output

@ Use Lagrange multipliers to enforce constraints
e Forces illuminate physics
@ Allow different fault constitutive models

e Simplest is enforced slip
@ Now have fault constitutive models
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Splitting the Mesh

@ In order to create a fault, the generator provides
e a set of fault vertices, or
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Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.
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Splitting the Mesh
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@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be
e combined into faces on a fault mesh, and
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Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be

e combined into faces on a fault mesh, and
@ oriented
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Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be

e combined into faces on a fault mesh, and
@ oriented

@ The fault mesh is used to
@ split vertices along the fault
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Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be

e combined into faces on a fault mesh, and
@ oriented

@ The fault mesh is used to

@ split vertices along the fault
e introduce prism elements between adjacent fault faces
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Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be

e combined into faces on a fault mesh, and
@ oriented

@ The fault mesh is used to

@ split vertices along the fault
e introduce prism elements between adjacent fault faces

@ Sieve code works for
e any dimension
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Splitting the Mesh

@ In order to create a fault, the generator provides

@ a set of fault vertices, or
e a set of fault faces.

@ Fault vertices, unlike fault faces, must be

e combined into faces on a fault mesh, and
@ oriented

@ The fault mesh is used to

@ split vertices along the fault
e introduce prism elements between adjacent fault faces

@ Sieve code works for

e any dimension
e any element shape
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Coupling

Outline

@ Coupling
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