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The best way to create robust,
efficient and scalable,
maintainable scientific codes,

IS to use libraries.
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MP1 does for this for machines and networks
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Computational Science

Why Libraries?

e Hides hardware details

MP1 does for this for machines and networks

e Hide Implementation Complexity

PETSc does for this Matrices and Krylov Solvers
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Computational Science
Why GPUs?

In the next 10 years, every machine will
probably have manycores, 100—1000 cores.

NVidia C2070 Intel MIC
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Outline
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Computational Science Linear Algebra

VECCUDA

Strategy: Define a new Vec implementation

@ Uses Thrust for data storage and operations on GPU
@ Supports full PETSc Vec interface

@ Inherits PETSc scalar type

@ Can be activated at runtime, —vec_type cuda

@ PETSc provides memory coherence mechanism
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http://code.google.com/p/thrust/

Computational Science Linear Algebra

MATAIJCUDA

Also define new Mat implementations

@ Uses Cusp for data storage and operations on GPU
@ Supports full PETSc Mat interface, some ops on CPU
@ Can be activated at runtime, -mat_type aijcuda

@ Notice that parallel matvec necessitates off-GPU data transfer
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http://code.google.com/p/cusp-library/

Computational Science Linear Algebra

Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,
Minden, Smith, Knepley, 2010

@ All linear algebra types work with solvers
@ Entire solve can take place on the GPU
e Only communicate scalars back to CPU
@ GPU communication cost could be amortized over several solves

@ Preconditioners are a problem
@ Cusp has a promising AMG
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http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf

Computational Science Linear Algebra

Example

PFLOTRAN

Flow Solver S s 005 025 043 05 038
32 x 32 x 32 grid

Routine | Time (s) | MFlops | MFlops/s

CPU

KSPSolve | 8.3167 4370 526

MatMult 1.5031 769 512 e
KSPSolve 1.6382 4500 2745 | P Lichtner, G. Hammond,
MatMult 0.3554 830 2337 | R. Mills, B. Phillip
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Computational Science Linear Algebra

Example

Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
—-da_mat_type aijcusp -mat_no_inode
-da_grid_x 100 -da_grid_y 100
—-pc_type none -pc_mg_levels 1
-preload off -cuda_synchronize
-log_summary

Setup types
Set grid size
Setup solver
Setup run
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Computational Science FEM Integration

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements
@ One universal interface @ Many Interfaces
e BLAS, PETSc, Trilinos, e FEniCS, FreeFEM++, DUNE,
FLAME, Elemental dealll, Fluent
@ Entire problem can be @ Problem definition requires
phrased in the interface general code
o Ax=0>b e Physics, boundary conditions
@ Standalone component @ Crucial interaction with other

simulation components
e Discretization, mesh/geometry
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Computational Science FEM Integration

FEM Integration Model

Proposed by Jed Brown
We consider weak forms dependent only on fields and gradients,

/ng-fo(u,Vu)qLqu:ﬁ(u,Vu)zo. (1)

Discretizing we have

el [BTWC’fO(UQ,qu)+ZD{WQﬁk(UQ,qu) =0 (2
e k

fn pointwise physics functions

u?  field at a quad point

W49  diagonal matrix of quad weights

B,D basis function matrices which
reduce over quad points

& assembly operator
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Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual
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Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

@ User provides point-wise physics functions

@ Loops are done in batches, remainder cells handled by CPU
@ One batch integration method with compile-time sizes
e CPU, multicore CPU, MIC, GPU, etc.

@ PETSc ex52 is a single-field example
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http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

2D P; Laplacian Performance

300 Performance on SNES Example 52 - NVIDIA GTX 580
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Reaches 100 GF/s by 100K elements
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Computational Science FEM Integration

2D P; Laplacian Performance

Performance on SNES Example 52
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Linear scaling for both GPU and CPU integration
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Computational Science FEM Integration

2D P, Rate-of-Strain Performance

CPUVs. GPU Flop Rate for 2D P, Lagrange ['Elasticity’]

Interleave Stores = 1

100000 Loop Unrolling = full

80000
i
£ 60000
B
- NVIDIA bs64 cel is unroll
40000 — NVIDIA bs64 ce2 is unroll
NVIDIA bs64 ced is unroll
NVIDIA bs128 cel is unroll
NVIDIA bs128 ce2 is unroll
20000

NVIDIA bs128 ce4 is unroll
NVIDIA bs256 cel is unroll
NVIDIA bs256 ce2 is unroll
NVIDIA bs256 ce4 is unroll

150000 200000

50000 100000
Number of Elements.

Reaches 100 GF/s by 100K elements
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Computational Science FEM Integration

General Strategy

e Vectorize

e Overdecompose

e Cover memory latency with computation
o Multiple cycles of writes in the kernel

e User must relinquish control of the layout

Finite Element Integration on GPUs, accepted ACM TOMS,
Andy Terrel and Matthew Knepley.

Finite Element Integration with Quadrature on the GPU, to SISC,
Robert Kirby, Matthew Knepley, Andreas Kldckner, and Andy Terrel.
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http://arxiv.org/abs/1103.0066

Mathematics

Outline

e Mathematics
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Mathematics

Composable System for Scalable Preconditioners

Stokes and KKT

The saddle-point matrix is a canonical form for handling constraints:

@ Incompressibility Courtesy M.
@ Contact Sp|ege|man
@ Multi-constituent phase-field models
@ Optimal control

@ PDE constrained optimization

30, &
Oty "P&.
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Mathematics

Composable System for Scalable Preconditioners

Stokes and KKT

There are many approaches for saddle-point problems:

@ Block preconditioners FE B M u i
@ Schur complement methods| BT 0 0| [p] =0

N 0 K T q
@ Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in

a hierarchical manner.
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Composable System for Scalable Preconditioners

Stokes and KKT

There are many approaches for saddle-point problems:

@ Block preconditioners FE B M u i
@ Schur complement methods| BT 0 0| [p] =0

N 0 K T q
@ Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in
a hierarchical manner. For instance we might want,

a Gauss-Siedel iteration between blocks of (u,p) and T,

and a full Schur complement factorization for u and p.
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Mathematics

Composable System for Scalable Preconditioners

Stokes and KKT

There are many approaches for saddle-point problems:

@ Block preconditioners FE B M u i
@ Schur complement methods| BT 0 0| [p] =0

N 0 K T q
@ Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in

a hierarchical manner. For instance we might want,
an upper triangular Schur complement factorization for u and p,

and geometric multigrid for the u block.
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Mathematics

Composable System for Scalable Preconditioners

Stokes and KKT

There are many approaches for saddle-point problems:

@ Block preconditioners FE B M u i
@ Schur complement methods| BT 0 0| [p] =0

N 0 K T q
@ Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in
a hierarchical manner. For instance we might want,
algebraic multigrid for the full (u, p) system,
using a block triangular Gauss-Siedel smoother on each level,
and use identity for the (p, p) block.
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Mathematics

Approach for efficient, robust, scalable linear solvers

Need solvers to be:

@ Composable: separately developed solvers may be easily combined, by
non-experts, to form a more powerful solver

@ Nested: outer solvers call inner solvers

@ Hierarchical: outer solvers may iterate over all variables for a global problem,
while nested inner solvers handle smaller subsets of physics, smaller physical
subdomains, or coarser meshes

@ Extensible: users can easily customize/extend

Composable Linear Solvers for Multiphysics, IPDPS, 2012,
J. Brown, M. G. Knepley, D. A. May, L. C. Mclnnes and B. F. Smith.
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http://www.mcs.anl.gov/uploads/cels/papers/P2017-0112.pdf

Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

The Stokes System [ A B
BT 0




Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field _split_type additive PC
—fieldsplit_0O_pc_type ml N

—fieldsplit_0_ksp_type preonly A O
~fieldsplit_1_pc_type jacobi O I

—fieldsplit_1_ksp_type preonly

Cohouet & Chabard, Some fast 3D finite element solvers for the generalized Stokes problem,
1988.
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Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field split_type multiplic PC
—fieldsplit_0_pc_type hypre N

—fieldsplit_0_ksp_type preonly A B
~fieldsplit_1_pc_type jacobi O I

—fieldsplit_1_ksp_type preonly

Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.
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Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field split_type schur PC
—fieldsplit_0_pc_type gamg A
—fieldsplit_0_ksp_type preonly A O
-fieldsplit_1_pc_type none 2
—fieldsplit_1_ksp_type minres O _S

-pc_fieldsplit_schur_factorization_type diag
May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.
Olshanskii, Peters, and Reusken, Uniform preconditioners for a parameter dependent saddle point
problem with application to generalized Stokes interface equations, 2006.
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The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field split_type schur PC
—fieldsplit_0_pc_type gamg A
-fieldsplit_0_ksp_type preonly A O

-fieldsplit_1_pc_type none BT é

—fieldsplit_1_ksp_type minres

—-pc_fieldsplit_schur_factorization_type lower

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.
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Stokes example

The common block preconditioners for Stokes require only options:
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-pc_field split_type schur PC
—fieldsplit_0_pc_type gamg A

—fieldsplit_0_ksp_type preonly A B
-fieldsplit_1_pc_type none 2
—fieldsplit_1_ksp_type minres O S
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May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
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Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field split_type schur PC
—fieldsplit_0_pc_type gamg A
-fieldsplit_0O_ksp_type preonly A B

—fieldsplit_1_pc_type 1lsc

/\
—fieldsplit_1_ksp_type minres O SLSC

—-pc_fieldsplit_schur_factorization_type upper

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

Kay, Loghin and Wathen, A Preconditioner for the Steady-State N-S Equations, 2002.

Elman, Howle, Shadid, Shuttleworth, and Tuminaro, Block preconditioners based on approximate
commutators, 2006.
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Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit
-pc_field split_type schur
—-pc_fieldsplit_schur_factorization_type full

PC
I 0\ (AO0\ /] A 1B

N

B'A-11)\o5)\o I
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Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D
@ constant mobility
@ triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres
-mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp
-mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5

-mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin
—snes_vi_monitor -ksp_monitor_true_residual -snes_atol l.e-11
-mg_levels_ksp_monitor -mg_levels_fieldsplit_ksp_monitor
-mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5
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https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Programming with Options
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Programming with Options

ex55: Allen-Cahn problem in 2D
Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65
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Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin
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Programming with Options

ex55: Allen-Cahn problem in 2D
Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd
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Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D
Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

M. Knepley (UC) Princeton GAP 29/31


https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D
Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5
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Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D
Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Apo inverse action: Use only the lower diagonal part of Agg
-mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward
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with modern algorithms.
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Mathematics
Composability

Composable interfaces allow the nested, hierarchical
interaction of different components,

¢ analysis (discretization)
e topology (mesh)

¢ algebra (solver)

so that non-experts can produce powerful simulations
with modern algorithms.

Jed Brown will discuss this interplay
in the context of multilevel solvers

M. Knepley (UC) Princeton GAP 30/31


http://59a2.org/research/

Conclusions

Main Points

M. Knepley (UC) Princeton GAP 31/31



Conclusions
Main Points

e Libraries encapsulate the Mathematics
o Users will give up more Control

M. Knepley (UC) Princeton GAP 31/31



Conclusions
Main Points

e Libraries encapsulate the Mathematics
o Users will give up more Control

e Multiphysics demands Composable Solvers
e Each piece will have to be Optimal

M. Knepley (UC) Princeton GAP 31/31



Conclusions
Main Points

e Libraries encapsulate the Mathematics
o Users will give up more Control

e Multiphysics demands Composable Solvers
e Each piece will have to be Optimal

Change alone is unchanging
— Heraclitus, 544—483 BC
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