Getting Modern Algorithms into the Hands of
Working Scientists on Modern Hardware

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

Bridging the Gap Between the
Geosciences and Mathematics, Statistics, and Computer Science
Princeton, Nd October 1-2, 2012

/1 RUSH UNIVERSITY

M. Knepley (UC) Princeton

Impact of this Project

The main impact of mathematics will be

M. Knepley (UC) Princeton GAP 3/31

Impact of this Project

The main impact of mathematics will be

design/analysis of algorithms

Impact of this Project

The main impact of mathematics will be

design/analysis of algorithms
for simulation & data analysis

Impact of this Project

The main impact of mathematics will be

design/analysis of algorithms
for simulation & data analysis

This is where CS comes in ...

Computational Science
Outline

0 Computational Science
@ Linear Algebra
@ FEM Integration

M. Knepley (UC) Princeton GAP 4/31

Big Idea

The best way to create robust,

Big Idea

The best way to create robust,
efficient and scalable,

Big Idea

The best way to create robust,
efficient and scalable,
maintainable scientific codes,

Big Idea

The best way to create robust,
efficient and scalable,
maintainable scientific codes,

IS to use libraries.

Computational Science
Why Libraries?

e Hides hardware details

MP1 does for this for machines and networks

M. Knepley (UC) Princeton GAP 6/31

http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/petsc

Computational Science

Why Libraries?

e Hides hardware details

MP1 does for this for machines and networks

e Hide Implementation Complexity

PETSc does for this Matrices and Krylov Solvers

M. Knepley (UC) Princeton GAP 6/31

http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/petsc

Computational Science
Why GPUs?

In the next 10 years, every machine will

M. Knepley (UC) Princeton GAP 7/31

Computational Science
Why GPUs?

In the next 10 years, every machine will
at least have multicores, 2—16 cores,

M. Knepley (UC) Princeton GAP 7/31

Computational Science
Why GPUs?

In the next 10 years, every machine will
at least have multicores, 2—16 cores,

AMD Interlagos Intel Nehalem Beckton

M. Knepley (UC) Princeton GAP 7/31

Computational Science
Why GPUs?

In the next 10 years, every machine will
probably have manycores, 100—1000 cores.

M. Knepley (UC) Princeton GAP 7/31

Computational Science
Why GPUs?

In the next 10 years, every machine will
probably have manycores, 100—1000 cores.

NVidia C2070 Intel MIC

M. Knepley (UC) Princeton GAP 7/31

Computational Science Linear Algebra

Outline

0 Computational Science
@ Linear Algebra

M. Knepley (UC) Princeton GAP 8/31

Computational Science Linear Algebra

VECCUDA

Strategy: Define a new Vec implementation

@ Uses Thrust for data storage and operations on GPU
@ Supports full PETSc Vec interface

@ Inherits PETSc scalar type

@ Can be activated at runtime, —vec_type cuda

@ PETSc provides memory coherence mechanism

M. Knepley (UC) Princeton GAP 9/31

http://code.google.com/p/thrust/

Computational Science Linear Algebra

MATAIJCUDA

Also define new Mat implementations

@ Uses Cusp for data storage and operations on GPU
@ Supports full PETSc Mat interface, some ops on CPU
@ Can be activated at runtime, -mat_type aijcuda

@ Notice that parallel matvec necessitates off-GPU data transfer

M. Knepley (UC) Princeton GAP 10/31

http://code.google.com/p/cusp-library/

Computational Science Linear Algebra

Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,
Minden, Smith, Knepley, 2010

@ All linear algebra types work with solvers
@ Entire solve can take place on the GPU
e Only communicate scalars back to CPU
@ GPU communication cost could be amortized over several solves

@ Preconditioners are a problem
@ Cusp has a promising AMG

M. Knepley (UC) Princeton GAP 11/31

http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf

Computational Science Linear Algebra

Example

PFLOTRAN

Flow Solver S s 005 025 043 05 038
32 x 32 x 32 grid

Routine | Time (s) | MFlops | MFlops/s

CPU

KSPSolve | 8.3167 4370 526

MatMult 1.5031 769 512 e
KSPSolve 1.6382 4500 2745 | P Lichtner, G. Hammond,
MatMult 0.3554 830 2337 | R. Mills, B. Phillip

M. Knepley (UC) Princeton GAP 12/31

Computational Science Linear Algebra

Example

Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
—-da_mat_type aijcusp -mat_no_inode
-da_grid_x 100 -da_grid_y 100
—-pc_type none -pc_mg_levels 1
-preload off -cuda_synchronize
-log_summary

Setup types
Set grid size
Setup solver
Setup run

M. Knepley (UC) Princeton GAP 13/31

Computational Science FEM Integration

Outline

0 Computational Science

@ FEM Integration

M. Knepley (UC) Princeton GAP 14/31

Computational Science FEM Integration

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements

Computational Science FEM Integration

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements
@ One universal interface @ Many Interfaces
e BLAS, PETSc, Trilinos, e FEniCS, FreeFEM++, DUNE,
FLAME, Elemental dealll, Fluent

M. Knepley (UC) Princeton GAP

15/31

Computational Science FEM Integration

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements
@ One universal interface @ Many Interfaces
e BLAS, PETSc, Trilinos, e FEniCS, FreeFEM++, DUNE,
FLAME, Elemental dealll, Fluent
@ Entire problem can be @ Problem definition requires
phrased in the interface general code
o Ax=0>b e Physics, boundary conditions

M. Knepley (UC) Princeton GAP

15/31

Computational Science FEM Integration

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements
@ One universal interface @ Many Interfaces
e BLAS, PETSc, Trilinos, e FEniCS, FreeFEM++, DUNE,
FLAME, Elemental dealll, Fluent
@ Entire problem can be @ Problem definition requires
phrased in the interface general code
o Ax=0>b e Physics, boundary conditions
@ Standalone component @ Crucial interaction with other

simulation components
e Discretization, mesh/geometry

M. Knepley (UC) Princeton GAP 15/31

Computational Science FEM Integration

FEM Integration Model

Proposed by Jed Brown
We consider weak forms dependent only on fields and gradients,

/ng-fo(u,Vu)qLqu:ﬁ(u,Vu)zo. (1)

Discretizing we have

el [BTWC’fO(UQ,qu)+ZD{WQﬁk(UQ,qu) =0 (2
e k

fn pointwise physics functions

u? field at a quad point

W49 diagonal matrix of quad weights

B,D basis function matrices which
reduce over quad points

& assembly operator

M. Knepley (UC) Princeton GAP 16/31

Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

M. Knepley (UC) Princeton GAP 17/31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

@ User provides point-wise physics functions

M. Knepley (UC) Princeton GAP

17/31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

@ User provides point-wise physics functions
@ Loops are done in batches, remainder cells handled by CPU

M. Knepley (UC) Princeton GAP

17/31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

@ User provides point-wise physics functions

@ Loops are done in batches, remainder cells handled by CPU
@ One batch integration method with compile-time sizes
e CPU, multicore CPU, MIC, GPU, etc.

M. Knepley (UC) Princeton GAP

17/31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

@ User provides point-wise physics functions

@ Loops are done in batches, remainder cells handled by CPU
@ One batch integration method with compile-time sizes
e CPU, multicore CPU, MIC, GPU, etc.

@ PETSc ex52 is a single-field example

M. Knepley (UC) Princeton GAP 17/31

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Computational Science FEM Integration

2D P; Laplacian Performance

300 Performance on SNES Example 52 - NVIDIA GTX 580

250

200

—

o

o
T

Computation Rate (GF/s)
=
w
o

= blockExp 3 |
== blockExp 4
50 L === blockExp 5 (]
== blockExp 6
m— blockExp 7

o 200000 400000 600000 800000 1000000 1200000
Number of Dof

Reaches 100 GF/s by 100K elements

M. Knepley (UC) Princeton GAP 18/31

Computational Science FEM Integration

2D P; Laplacian Performance

Performance on SNES Example 52

0.09 : T T T .
—— GPU-16 IntegBatchCPU
008F CPU-16 IntegBatchCPU
—— GPU-16 IntegBatchGPU
0.07 — GPU-16 IntegGPUONIy
0.06 |-
% 0.05F
u
E
= 0.04
0.03f
0.02}
0.01f
0.00 L=
0 50000 100000 150000 200000 250000 300000

Number of Dof

Linear scaling for both GPU and CPU integration

M. Knepley (UC) Princeton GAP 19/31

Computational Science FEM Integration

2D P, Rate-of-Strain Performance

CPUVs. GPU Flop Rate for 2D P, Lagrange ['Elasticity’]

Interleave Stores = 1

100000 Loop Unrolling = full

80000
i
£ 60000
B
- NVIDIA bs64 cel is unroll
40000 — NVIDIA bs64 ce2 is unroll
NVIDIA bs64 ced is unroll
NVIDIA bs128 cel is unroll
NVIDIA bs128 ce2 is unroll
20000

NVIDIA bs128 ce4 is unroll
NVIDIA bs256 cel is unroll
NVIDIA bs256 ce2 is unroll
NVIDIA bs256 ce4 is unroll

150000 200000

50000 100000
Number of Elements.

Reaches 100 GF/s by 100K elements

M. Knepley

Princetol GAP 20/31

Computational Science FEM Integration

General Strategy

e Vectorize

e Overdecompose

e Cover memory latency with computation
o Multiple cycles of writes in the kernel

e User must relinquish control of the layout

Finite Element Integration on GPUs, accepted ACM TOMS,
Andy Terrel and Matthew Knepley.

Finite Element Integration with Quadrature on the GPU, to SISC,
Robert Kirby, Matthew Knepley, Andreas Kldckner, and Andy Terrel.

M. Knepley (UC) Princeton GAP 21/31

http://arxiv.org/abs/1103.0066

Mathematics

Outline

e Mathematics

M. Knepley (UC) Princeton GAP 22/31

Mathematics

Composable System for Scalable Preconditioners

Stokes and KKT

The saddle-point matrix is a canonical form for handling constraints:

@ Incompressibility Courtesy M.
@ Contact Sp|ege|man
@ Multi-constituent phase-field models
@ Optimal control

@ PDE constrained optimization

30, &
Oty "P&.

M. Knepley (UC) Princeton GAP

23/31

Mathematics

Composable System for Scalable Preconditioners

Stokes and KKT

There are many approaches for saddle-point problems:

@ Block preconditioners FE B M u i
@ Schur complement methods| BT 0 0| [p] =0

N 0 K T q
@ Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in

a hierarchical manner.

M. Knepley (UC) Princeton GAP

24/31

Mathematics

Composable System for Scalable Preconditioners

Stokes and KKT

There are many approaches for saddle-point problems:

@ Block preconditioners FE B M u i
@ Schur complement methods| BT 0 0| [p] =0

N 0 K T q
@ Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in

a hierarchical manner. For instance we might want,

M. Knepley (UC) Princeton GAP

24/31

Mathematics

Composable System for Scalable Preconditioners

Stokes and KKT

There are many approaches for saddle-point problems:

@ Block preconditioners FE B M u i
@ Schur complement methods| BT 0 0| [p] =0

N 0 K T q
@ Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in
a hierarchical manner. For instance we might want,

a Gauss-Siedel iteration between blocks of (u,p) and T,

and a full Schur complement factorization for u and p.

M. Knepley (UC) Princeton GAP 24/31

Mathematics

Composable System for Scalable Preconditioners

Stokes and KKT

There are many approaches for saddle-point problems:

@ Block preconditioners FE B M u i
@ Schur complement methods| BT 0 0| [p] =0

N 0 K T q
@ Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in

a hierarchical manner. For instance we might want,
an upper triangular Schur complement factorization for u and p,

and geometric multigrid for the u block.

M. Knepley (UC) Princeton GAP 24/31

Mathematics

Composable System for Scalable Preconditioners

Stokes and KKT

There are many approaches for saddle-point problems:

@ Block preconditioners FE B M u i
@ Schur complement methods| BT 0 0| [p] =0

N 0 K T q
@ Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in
a hierarchical manner. For instance we might want,
algebraic multigrid for the full (u, p) system,
using a block triangular Gauss-Siedel smoother on each level,
and use identity for the (p, p) block.

M. Knepley (UC) Princeton GAP 24/31

Mathematics

Approach for efficient, robust, scalable linear solvers

Need solvers to be:

@ Composable: separately developed solvers may be easily combined, by
non-experts, to form a more powerful solver

@ Nested: outer solvers call inner solvers

@ Hierarchical: outer solvers may iterate over all variables for a global problem,
while nested inner solvers handle smaller subsets of physics, smaller physical
subdomains, or coarser meshes

@ Extensible: users can easily customize/extend

Composable Linear Solvers for Multiphysics, IPDPS, 2012,
J. Brown, M. G. Knepley, D. A. May, L. C. Mclnnes and B. F. Smith.

M. Knepley (UC) Princeton GAP 25/31

http://www.mcs.anl.gov/uploads/cels/papers/P2017-0112.pdf

Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

The Stokes System [A B
BT 0

Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field _split_type additive PC
—fieldsplit_0O_pc_type ml N

—fieldsplit_0_ksp_type preonly A O
~fieldsplit_1_pc_type jacobi O I

—fieldsplit_1_ksp_type preonly

Cohouet & Chabard, Some fast 3D finite element solvers for the generalized Stokes problem,
1988.

M. Knepley (UC) Princeton GAP 26/31

Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field split_type multiplic PC
—fieldsplit_0_pc_type hypre N

—fieldsplit_0_ksp_type preonly A B
~fieldsplit_1_pc_type jacobi O I

—fieldsplit_1_ksp_type preonly

Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.

M. Knepley (UC) Princeton GAP 26/31

Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field split_type schur PC
—fieldsplit_0_pc_type gamg A
—fieldsplit_0_ksp_type preonly A O
-fieldsplit_1_pc_type none 2
—fieldsplit_1_ksp_type minres O _S

-pc_fieldsplit_schur_factorization_type diag
May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.
Olshanskii, Peters, and Reusken, Uniform preconditioners for a parameter dependent saddle point
problem with application to generalized Stokes interface equations, 2006.

M. Knepley (UC) Princeton GAP 26/31

Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field split_type schur PC
—fieldsplit_0_pc_type gamg A
-fieldsplit_0_ksp_type preonly A O

-fieldsplit_1_pc_type none BT é

—fieldsplit_1_ksp_type minres

—-pc_fieldsplit_schur_factorization_type lower

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

M. Knepley (UC) Princeton GAP 26/31

Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field split_type schur PC
—fieldsplit_0_pc_type gamg A

—fieldsplit_0_ksp_type preonly A B
-fieldsplit_1_pc_type none 2
—fieldsplit_1_ksp_type minres O S

—-pc_fieldsplit_schur_factorization_type upper

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

M. Knepley (UC) Princeton GAP 26/31

Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field split_type schur PC
—fieldsplit_0_pc_type gamg A
-fieldsplit_0O_ksp_type preonly A B

—fieldsplit_1_pc_type 1lsc

/\
—fieldsplit_1_ksp_type minres O SLSC

—-pc_fieldsplit_schur_factorization_type upper

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

Kay, Loghin and Wathen, A Preconditioner for the Steady-State N-S Equations, 2002.

Elman, Howle, Shadid, Shuttleworth, and Tuminaro, Block preconditioners based on approximate
commutators, 2006.

M. Knepley (UC) Princeton GAP 26/31

Mathematics
Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit
-pc_field split_type schur
—-pc_fieldsplit_schur_factorization_type full

PC
I 0\ (AO0\ /] A 1B

N

B'A-11)\o5)\o I

M. Knepley (UC) Princeton GAP 26/31

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D
@ constant mobility
@ triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres
-mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp
-mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5

-mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin
—snes_vi_monitor -ksp_monitor_true_residual -snes_atol l.e-11
-mg_levels_ksp_monitor -mg_levels_fieldsplit_ksp_monitor
-mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5

M. Knepley (UC) Princeton GAP 27/31

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Programming with Options

ex55: Allen-Cahn problem in 2D

M. Knepley (UC) Princeton GAP 28/31

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Programming with Options

ex55: Allen-Cahn problem in 2D
Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

M. Knepley (UC) Princeton GAP 28/31

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Programming with Options

ex55: Allen-Cahn problem in 2D
Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

M. Knepley (UC) Princeton GAP 28/31

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Programming with Options

ex55: Allen-Cahn problem in 2D
Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

M. Knepley (UC) Princeton GAP 28/31

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Programming with Options

ex55: Allen-Cahn problem in 2D

M. Knepley (UC) Princeton GAP 29/31

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D
Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

M. Knepley (UC) Princeton GAP 29/31

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D
Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

M. Knepley (UC) Princeton GAP 29/31

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics

Programming with Options

ex55: Allen-Cahn problem in 2D
Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Apo inverse action: Use only the lower diagonal part of Agg
-mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

M. Knepley (UC) Princeton GAP 29/31

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Mathematics
Composability

Composable interfaces allow the nested, hierarchical
interaction of different components,

M. Knepley (UC) Princeton GAP 30/31

http://59a2.org/research/

Mathematics
Composability

Composable interfaces allow the nested, hierarchical
interaction of different components,

¢ analysis (discretization)
e topology (mesh)

¢ algebra (solver)

M. Knepley (UC) Princeton GAP 30/31

http://59a2.org/research/

Mathematics
Composability

Composable interfaces allow the nested, hierarchical
interaction of different components,

¢ analysis (discretization)
e topology (mesh)

¢ algebra (solver)

so that non-experts can produce powerful simulations
with modern algorithms.

M. Knepley (UC) Princeton GAP 30/31

http://59a2.org/research/

Mathematics
Composability

Composable interfaces allow the nested, hierarchical
interaction of different components,

¢ analysis (discretization)
e topology (mesh)

¢ algebra (solver)

so that non-experts can produce powerful simulations
with modern algorithms.

Jed Brown will discuss this interplay
in the context of multilevel solvers

M. Knepley (UC) Princeton GAP 30/31

http://59a2.org/research/

Conclusions

Main Points

M. Knepley (UC) Princeton GAP 31/31

Conclusions
Main Points

e Libraries encapsulate the Mathematics
o Users will give up more Control

M. Knepley (UC) Princeton GAP 31/31

Conclusions
Main Points

e Libraries encapsulate the Mathematics
o Users will give up more Control

e Multiphysics demands Composable Solvers
e Each piece will have to be Optimal

M. Knepley (UC) Princeton GAP 31/31

Conclusions
Main Points

e Libraries encapsulate the Mathematics
o Users will give up more Control

e Multiphysics demands Composable Solvers
e Each piece will have to be Optimal

Change alone is unchanging
— Heraclitus, 544—483 BC

M. Knepley (UC) Princeton GAP 31/31

	Computational Science
	Linear Algebra
	FEM Integration

	Mathematics
	Conclusions

